
This is a repository copy of Comparing predictive accuracy in small samples using fixed-
smoothing asymptotic.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/155897/

Version: Published Version

Article:

Coroneo, Laura orcid.org/0000-0001-5740-9315 and Iacone, Fabrizio orcid.org/0000-
0002-2681-9036 (2020) Comparing predictive accuracy in small samples using fixed-
smoothing asymptotic. Journal of Applied Econometrics. pp. 391-405. ISSN 0883-7252 

https://doi.org/10.1002/jae.2756

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Received: 17 October 2016 Revised: 14 January 2020

DOI: 10.1002/jae.2756

RE S EARCH ART I C L E

Comparing predictive accuracy in small samples using
fixed-smoothing asymptotics

Laura Coroneo1 Fabrizio Iacone2,1

1Department of Economics and Related

Studies, University of York, York, UK

2Department of Economics, Management

and Quantitative Methods, Università

degli Studi di Milano, Milan, Italy

Correspondence

Laura Coroneo, Department of Economics

and Related Studies, University of York,

Heslington, York YO10 5DD, UK.

Email: laura.coroneo@york.ac.uk

Summary

We consider fixed-smoothing asymptotics for the Diebold andMariano (Journal

of Business and Economic Statistics, 1995, 13(3), 253–263) test of predictive

accuracy. We show that this approach delivers predictive accuracy tests that are

correctly sized even when only a small number of out-of-sample observations is

available.We apply the fixed-smoothing asymptotics to theDiebold andMariano

test to evaluate the predictive accuracy of the Survey of Professional Forecast-

ers (SPF) and of the European Central Bank Survey of Professional Forecasters

(ECB SPF) against a simple random walk. Our results show that the predictive

abilities of the SPF and of the ECB SPF were partially spurious.

1 INTRODUCTION

Good forecasts are key to good decision making, and being able to compare predictive accuracy is key to discriminat-

ing between good and bad forecasts. To this end, one of the most used tests to compare the predictive accuracy of two

competing forecasts is the Diebold and Mariano (1995; DM) test.

The DM test is based on a loss function associated with the forecast errors of each forecast, testing the null hypothesis

of zero expected loss differential between two competing forecasts. This framework allows us to test for equal predictive

accuracy using any loss function, and the test statistic is valid for contemporaneously correlated, serially correlated, and

nonnormal forecast errors.

The DM approach takes forecast errors as model free, and the test is valid also when the forecasts are produced from

unknownmodels, as for example from forecast survey data.When the forecasts are produced by estimatedmodels, nested

or nonnested, it is in general necessary to account for the impact of the model parameter estimation uncertainty on the

distribution of the forecast accuracy test (see Clark &McCracken, 2001;West, 1996). In this case, the limiting distribution

of the test statistics depends on the specific modeling assumptions made for obtaining the forecast errors (see Clark &

McCracken, 2013; West, 2006). West (1996) showed that in some cases the DM approach was asymptotically valid even

when forecasts were obtained from estimated models. This happens when the number of in-sample observations is large

relative to the number of out-of-sample observations or when in-sample and out-of-sample loss is the same, for example

using a quadratic loss as an evaluation criterion for models that are estimated by ordinary least squares (OLS). However,

in practice, it is not uncommon to compare forecasts produced by models for which accounting for the model parameter

estimation uncertainty is not tractable. In addition, if the objective is to compare forecasting methods as opposed to

forecasting models, then Giacomini and White (2006) showed that in an environment with asymptotically nonvanishing

estimation uncertainty the DM test can still be applied. For these reasons, the DM test is still widely applied also when

forecasts are obtained by estimated models (see Diebold, 2015).

One additional reason for the success of the DM test is that the test statistic is simple to compute and asymptotically

normally distributed. However, as also noted by DM, the test can be subject to large size distortions in small samples,
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2 CORONEO AND IACONE

which can be spuriously interpreted as superior predictive ability for one forecast. This is due to the fact that in the test
statistic the long-run variance is replaced by a consistent estimate, and standard limit normality is then still employed,
this may be unsatisfactory when only a small number of out-of-sample observations are available. As remarked by Clark
and McCracken (2013), “one unresolved challenge in forecast test inference is achieving accurately sized tests applied at
multistep horizons—a challenge that increases as the forecast horizon grows and the size of the forecast sample declines”.
In this paper, maintaining the framework of asymptotically nonvanishing estimation uncertainty of Giacomini and

White (2006), we show theoretically, and we verify in a Monte Carlo exercise based on Giacomini and Rossi (2010),
that this challenge can be resolved by using alternative asymptotics for the limit distribution of the scaled expected loss
differential between two competing forecasts. The first alternative asymptotics is the fixed-b approach of Kiefer andVogel-

sang (2005), in which the limit properties of the weighted autocovariances estimate of the long-run variance are derived
assuming that the bandwidth-to-sample size ratio is constant. With this approach, the test to compare predictive accu-

racy has a nonstandard limit distribution that depends on the bandwidth-to-sample ratio b and on the kernel used to
estimate the long-run variance. The second alternative asymptotics that we consider is the fixed-m approach as in Sun
(2013) and Hualde and Iacone (2015, 2017). In this case, the estimate of the long-run variance is based on a weighted
periodogram estimate with Daniell kernel and a truncation parameter m that is assumed to be constant as the sample
size increases. The test to compare predictive accuracy has a t distribution with degrees of freedom that depend on the
truncation parameter. This averaged periodogram estimate can be seen as one application of the orthonormal series vari-
ance estimate (see Phillips, 2005). Following Sun, (2014a, 2014b), we refer to these two alternative asymptotics, fixed-b
and fixed-m, as “fixed-smoothing asymptotics”. With this type of asymptotics, the assumption on the bandwidth param-
eter implies that the estimate of the long-run variance is not consistent. However, inference is more precise than with
heteroskedasticity- and autocorrelation-consistent (HAC) standard asymptotics, and therefore it is often referred to as
“heteroskedasticity–autocorrelation robust” (HAR; see, e.g., Lazarus et al., 2018).

Fixed-smoothing asymptotics is a valuable improvement on standard asymptotics, especially when the sample size is
not too large, which is usually the case for forecast evaluation. Harvey et al. (2017) performed an extensive Monte Carlo
simulation exercise to examine the small-sample size and power properties of the fixed-m approach in this context. Their
results indicate that the fixed-m approach outperforms the modified statistic and critical value proposed by Harvey et al.
(1997) to improve the small-sample size behavior of the test. In larger samples, Patton (2015) and Li and Patton (2018)
showed that fixed-b asymptotics delivered considerable size improvements for high-frequency forecast evaluations. Our
paper is closer to Harvey et al. (2017), for the emphasis on small samples; moreover we consider fixed-b asymptotics.
We also show that fixed-smoothing asymptotics can be justified not only when forecasts are taken as primitive, but also
in the more realistic case in which forecasts are generated by a model. We also allow for a much more general level of
heterogeneity in the data-generating process (DGP), as in Giacomini and White (2006).

We perform a Monte Carlo study to analyze the size and power properties of the proposed tests of equal predictive
accuracy in small samples. We revisit the size and power properties of the standard DM test in an environment with
asymptotically nonvanishing estimation uncertainty, as in Giacomini and White (2006), using the Monte Carlo frame-

work proposed byGiacomini andRossi (2010). Our results indicate that: (i) fixed-smoothing asymptotics delivers correctly
sized predictive accuracy tests for correlated loss differentials even in small samples; (ii) the power of the tests with
fixed-smoothing asymptotics mimics the size-adjusted power and is comparable to the power of bootstrap tests. In sum-
mary, fixed-smoothing asymptotics, when coupled with an appropriate bandwidth choice, addresses the problem of
relevant size distortions that is typically observed when standard asymptotics is used, especially in small samples and in
the presence of serially correlated errors.

To illustrate the usefulness of fixed-smoothing asymptotics for equal predictive accuracy tests, we evaluate the predictive
accuracy of the Surveys of Professional Forecasters (SPF) and the European Central Bank Survey of Professional Forecast-

ers (ECB SPF) against a naive randomwalk. As for the SPF, we evaluate forecasts for four core macroeconomic indicators
(output growth, inflation, the unemployment rate and the 3-month Treasury bill rate) for the period from 1987:Q1 until
2016:Q4. Results show that part of the superior predictive accuracy of the SPFs indicated by the DM test is spurious, espe-
cially in the most recent subsample. As for the ECB SPF, we evaluate forecasts for year-on-year euro area gross domestic
product (GDP) growth and year-on-year euro area Harmonized Index of Consumer Prices (HICP) inflation for the period
from 2006:Q1 to 2016:Q4. With such a small sample size, standard tests of equal predictive ability suffer from large size
distortions and provide partially spurious results, which are not confirmed when using fixed-smoothing asymptotics.

The paper is organized as follows. In Section 2 we introduce the test for equal predictive accuracy, and in Section 3

we describe the DM estimate. In Section 4 we detail the tests for equal predictive accuracy using fixed-b and fixed-m

asymptotics. In Section 5 we present our Monte Carlo study, including a Monte Carlo comparison with the bootstrap. In

Section 6 we discuss the empirical applications, and in Section 7 we conclude. The Supporting Information Appendix
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contains a wide Monte Carlo simulation, in which forecasts are taken as primitives, dedicated to the bandwidth selection

problem.

2 COMPARING PREDICTIVE ACCURACY

We consider the variable of interest yt, for which we want to compare two h-step-ahead forecasts obtained from two

alternative forecasting methods, based on some predictor variables xt. We denote the observed vector by wt ≡ (yt, xt
′)′,

defined on a complete probability space (Ω, ,P), and we denote the information set at time t by t = 𝜎(w′
1, … ,w′

t).

The two h-step-ahead forecasts for time t are based on the information set t−h and are denoted by �̂�
(i)
t

(
𝛿
(i)

t−h,Ri

) ≡
𝑓 (i)(wt−h,wt−h−1, … ,wt−h−Ri+1; 𝛿

(i)

t−h,Ri
) for i = 1, 2, where the forecasts are measurable functions of a sample of size R1 for

f (1) and R2 for f (2). If a forecast is based on parametric models, the vector 𝛿
(i)

t−h,Ri
includes the estimates from the model.

Otherwise, 𝛿(i)
t−h,Ri

represents the semiparametric or nonparametric estimator used to construct the forecast.

We denote by L
[
e(i)t

(
𝛿
(i)

t−h,Ri

)]
, for i = 1, 2, the loss associated with the forecast error e(i)t

(
𝛿
(i)

t−h,Ri

)
= 𝑦t − �̂�

(i)
t

(
𝛿
(i)

t−h,Ri

)
;

for example, a quadratic loss would be L
[
e(i)t

(
𝛿
(i)

t−h,Ri

)]
=

[
e(i)t

(
𝛿
(i)

t−h,Ri

)]2
. The null hypothesis of equal predictive ability

of the two forecasting methods is then

H0 ∶ E
{
L
[
e(1)t

(
𝛿
(1)

t−h,R1

)]
− L

[
e(2)t

(
𝛿
(2)

t−h,R2

)]}
= 0. (1)

Let

dt ≡ dt
(
𝛿
(1)

t−h,R1
, 𝛿

(2)

t−h,R2

)
= L

[
e(1)t

(
𝛿
(1)

t−h,R1

)]
− L

[
e(2)t

(
𝛿
(2)

t−h,R2

)]

denote the time-t loss differential between the two forecasts and let

d̄ =
1

T

R+h+T−1∑
t=R+h

dt

denote the sample mean of the loss differential, where R ≡ max(R1,R2). We assume that the following assumptions hold.

Assumption 1. wt is mixing with 𝜙 of size −r∕(2r − 2), r ≥ 2, or 𝛼 of size −r∕(r − 2), r > 2.

Assumption 2. R < ∞, as T → ∞.

Assumption 3. E|dt|2r < ∞ for all t.

Assumption 4. 𝜎2
T
≡ var[

√
T d̄] > 0 for T sufficiently large.

Remark 1. Assumption 1 allows the data to be characterized by considerable heterogeneity and dependence.

Assumption 2 implies the presence of asymptotically nonvanishing estimation uncertainty. Assumption 3 is standard

in central limit theorems formixing processes (see, e.g.,Wooldridge&White, 1988), and it replaces the Lyapunov-type

condition E|dt|2+𝛿 < ∞, 𝛿 > 0, for strictly stationary processes. Assumption 4 in this framework with asymptoti-

cally nonvanishing estimation uncertainty allows for both nested and nonnested models. This is the same framework

considered by Giacomini and White (2006).

Remark 2. A particular case of the framework considered here is the one of DM,where forecasts are taken as primitive

and donot depend on forecastingmethods—as, for example, survey forecasts. In this case, Assumption 1 is understood

to be for e(1)t and e(2)t .

DM and Giacomini and White (2006) showed that under H0 in Equation (1), if Assumptions 1-4 hold, then

√
T
d̄

𝜎T
→dN(0, 1).
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Unfortunately, this statistic is unfeasible in testing H0, because 𝜎2
T
is unknown. However, the parameter 𝜎2

T
can be

replaced with an appropriate estimate and, if a consistent estimate is used, then the limit normality is not affected by the

replacement.

3 THE DM ESTIMATE

A typical estimate for the long run variance is the weighted autocovariances estimate (WCE):

�̂�2 = �̂�0 + 2

T−1∑
𝑗=1

k (𝑗∕M) �̂�𝑗 , (2)

where �̂�𝑗 =
1

T

∑T−𝑗
t=1 ûtût+𝑗 , with ût = dt − d̄, and k(.) is a kernel function such that k(0) = 1, |k(𝜏)| < 1, k(𝜏) = k (−𝜏) , k(𝜏)

is continuous at 𝜏 = 0, and ∫ 1

0 k(𝜏)
2d𝜏 < ∞. The parameter M is a bandwidth parameter (or a truncation lag), and for

consistency of 𝜎2 regularity conditions includeM → ∞ andM∕T → 0 as T → ∞. We refer to Hannan (1970) for a survey

of these estimates, and for a discussion of which kernels ensure that �̂�2 ≥ 0.

In a variation of this approach, DM noted that if �̂�(i)t

(
𝛿
(i)

t−h,Ri

)
was an optimal h-step-ahead forecast, then e(i)t

(
𝛿
(i)

t−h,Ri

)

was at most an MA(h− 1). Accordingly, they proposed settingM = h− 1 and k (𝑗∕M) = 1 if j∕M ≤ 1 and 0 otherwise, so

�̂�2DM = �̂�0 + 2

h−1∑
𝑗=1

�̂�𝑗 . (3)

This does notmeet the conditionM → ∞, but the estimate is nevertheless consistent, because it exploits the assumption

that ut ≡ dt − E(dt) is a stationary MA(h − 1), thus ensuring that under H0 in Equation (1)

√
T

d̄

�̂�DM
→dN(0, 1).

The choice of �̂�2
DM

may be very appealing, as it exploits information about the structure of ut. However, the rectangular

kernel used in Equation (3) may generate negative estimates for 𝜎2
DM
, and this is undesirable. Moreover, the Monte Carlo

exercise in DM suggests the possibility of large size distortions in small samples, whichwould be spuriously interpreted as

evidence of superior predictive power for one forecast method. To avoid the risk of negative estimates of 𝜎T, DMmention

the possibility of using alternative kernels and standard asymptotics, but simulations in Clark (1999), in which a Bartlett

kernel was used, do not suggest that simply replacing the kernel results in a definite improvement of the size distortion.

4 FIXED-SMOOTHING ASYMPTOTICS

4.1 Fixed-b asymptotics

Following the approach of Kiefer and Vogelsang (2005), we consider alternative asymptotics for the estimate in

Equation (2): for given M, the ratio M∕T is taken as fixed as T → ∞. As M∕T is fixed, letting b = M∕T, this alternative

approach is referred to as fixed-b asymptotics. With this assumption, Kiefer and Vogelsang (2005) showed that the esti-

mate of 𝜎T is not consistent and that the standardized sample mean has a nonstandard limit distribution that depends on

b and on the kernel, they also provided a formula to generate quantiles of the limit distribution that can be used as critical

values in tests.

For fixed-b asymptotics and assuming that the Bartlett kernel is used, we introduce the following notation:

�̂�2BART = �̂�0 + 2

T−1∑
𝑗=1

kBART (𝑗∕M) �̂�𝑗 , M∕T → b, (4)

kBART(x) =

{
1 − |x| , if |x| ≤ 1
0, otherwise. (5)
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Kiefer and Vogelsang (2005) showed that

if b ∈ (0, 1] , then
√
T

d̄

�̂�BART
⇒ ΦBART(b), (6)

where ⇒ denotes weak convergence in the D[0, 1] space with the Skorohod topology. They characterized the limit dis-

tribution 𝛷BART(b) and provided readily available critical values for various b and kernels. For the Bartlett kernel with

b ≤ 1, these can be obtained using the formula

q(b) = 𝛼0 + 𝛼1b + 𝛼2b
2 + 𝛼3b

3,

where

𝛼0 = 1.6449, 𝛼1 = 2.1859, 𝛼2 = 0.3142, 𝛼3 = −0.3427 for 0.950 quantile,

𝛼0 = 1.9600, 𝛼1 = 2.9694, 𝛼2 = 0.4160, 𝛼3 = −0.5324 for 0.975 quantile.

The results of Kiefer and Vogelsang (2005) provide asymptotics that may be valid for any M, even M = T, but note that

Kiefer and Vogelsang do not automatically recommend using M = ⌊bT⌋:1 Rather, they provide alternative asymptotics
for a user-chosen bandwidth. Thus, for example, assuming T = 128 andM =

⌊
T1∕3

⌋
= 5, then b = 5∕128 = 0.039063 and

the 5% critical value for a two-sided test is 2.0766 instead of 1.96.

When testing assumptions about the sample mean, Kiefer and Vogelsang (2005) showed in Monte Carlo simulations

that the fixed-b asymptotics yields a remarkable improvement in size. However, while the empirical size improves (it gets

closer to the theoretical size) as b is closer to 1, the power of the test worsens, implying that there is a size–power tradeoff.

These results are also confirmed analytically by Sun et al. (2008), who proved that the fixed-b limit distribution provides

a higher order correction.

4.2 Fixed-m asymptotics

We now consider an alternative estimate of the long run variance: a weighted periodogram estimate (WPE). Letting 𝜆j =

2𝜋j∕T for 𝑗 = 0,±1, … ,± ⌊T∕2⌋ as the Fourier frequencies, and

I
(
𝜆𝑗

)
=

||||||
1√
2𝜋T

T∑
t=1

dte
−i𝜆𝑗 t

||||||

2

as the periodogram of dt, we consider estimates

�̃�2 = 2𝜋

⌊T∕2⌋∑
𝑗=1

KM
(
𝜆𝑗

)
I
(
𝜆𝑗

)
, (7)

where KM
(
𝜆𝑗

)
is a kernel function that is symmetric andM is a bandwidth parameter.

Note that as 1√
2𝜋

∑T
t=1 d̄e

−i𝜆𝑗 t = d̄ 1√
2𝜋

∑T
t=1 e

−i𝜆𝑗 t and, for 𝑗 ≠ 0,
∑T

t=1 e
−i𝜆𝑗 t = 0, I

(
𝜆𝑗

)
is also the periodogram of ût

at these frequencies, where ût = dt − d̄. Kernels k (𝑗∕M) in Equation (2) and KM
(
𝜆𝑗

)
in Equation (7) are related, as

KM(𝜆) ∶= (2𝜋)−1
∑

|l|<Tk (l∕M) e−il𝜆, and the WCE in Equation (2) has frequency domain representation

∫
𝜋

−𝜋

KM(𝜆)I
∗ (𝜆) d𝜆,

where I*(𝜆) is the periodogram of dt − d̄. Weighted covariance estimation and weighted periodogram estimation are

therefore very similar, and this suggests for WPE an alternative theory analogue to fixed-b for WCE.

1Where ⌊·⌋ denotes the integer part of a number.
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The WPE of the long-run variance using the Daniell kernel is

�̂�2DAN = 2𝜋
1

m

m∑
𝑗=1

I
(
𝜆𝑗

)
, (8)

wherem is a function of the bandwidthM (and, slightly abusing the notation, it is usually referred to as bandwidth itself).

Regularity conditions, includingm → ∞, ensure that �̂�2
DAN

is a consistent estimate of 𝜎2
T
; for fixed-m, this is no longer the

case but, using results from Hannan (1970), it is possible to show that

√
T

d̄

�̂�DAN
→dt2m (9)

(see also Brillinger, 1975, exercise 5.13.25; Müller, 2014; Sun, 2013). Regularity conditions inMüller (2014) include linear-

ity, whereas in Sun (2013) these are milder, basically including just a central limit theorem (CLT) with constant variance

𝜎2. In Appendix A, we show that Equation (9) also holds under Assumptions 1-4. This warrants the applicability of

fixed-smoothing asymptotics to a wide range of applications in forecast evaluation.

Monte Carlo simulations in Hualde and Iacone (2015) and Lazarus et al. (2018) show that fixed-m asymptotics has the

same size–power tradeoff documented for fixed-b asymptotics: the smaller the value form, the better the empirical size,

but also the weaker the power.

5 MONTE CARLO STUDY

In this section we revisit the size and power properties of the DM test in the framework of asymptotically nonvanishing

estimation uncertainty of Giacomini and White (2006), focusing on the case of serial dependence.

We assume the following DGP:

𝑦t = 𝛽txt + 𝜀t, (10)

xt = 0.5xt−1 + 𝜈t, (11)

𝜀t = 𝜌𝜀t−1 + ut, (12)

𝜈t ∼ i.i.d. N(0, 1), ut ∼ i.i.d. N(0, 𝜎2), independent of each other, (13)

and we close the model by setting

𝛽t+1 =
1

2
Kt +

1

2

x′Ω(1)x

KtS
2
t

−

.
𝜔(1)′x xt+1

KtStx
2
t+1

, (14)

where

Kt =

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

, St =

t∑
𝑗=t−R+1

x2𝑗 ,

and x = (xt−R+1, … , xt)
′, 𝜀 = (𝜀t−R+1, … , 𝜀t)

′,Ω(𝜎) = E
(
𝜀𝜀′

)
, and

.
𝜔(𝜎) = (𝜔R(𝜎), … , 𝜔1(𝜎))

′ with 𝜔t+1−𝑗(𝜎) =

E
(
𝜀𝑗𝜀t+1

)
.

The DGP in Equations (10)–(14) is based on Giacomini and Rossi (2010), who, however, only considered the case of

𝜌 = 0. As we are interested in analyzing the performance of standard and fixed-smoothing asymptotics when the auto-

correlation of the loss differential increases, we augment the model of Giacomini and Rossi by adding dependence in

Equation (12).

We give here an explanation of why the choice of 𝛽 t+1 in Equation (14) is appropriate, and refer to Appendix B for the

complete derivation. Following Giacomini and Rossi (2010), we use a quadratic loss function to compare one-step-ahead

forecasts from two models: Model 1, where 𝑦t = 𝛽xt + v(1)t ; and Model 2, where 𝑦t = v(2)t . The one-step-ahead forecasts of

yt+1 implied by the two models are

�̂�
(1)
t+1 = 𝛽t,Rxt+1, (15)
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�̂�
(2)
t+1 = 0, (16)

where 𝛽t,R is the in-sample parameter estimated based on a rolling window of size R, and where we assume for simplicity

that xt+1 is known at time t.

The two models have equal predictive performance at the estimated parameter values in each point in time if

E

{[
𝑦t+1 − �̂�

(1)
t+1

(
𝛽t,R

)]2}
= E

[(
𝑦t+1 − �̂�

(2)
t+1

)2]
. (17)

When 𝜎2 = 1 in Equation (13), Giacomini and Rossi (2010) showed that, if 𝜌 = 0, then Equation (17) holds for

𝛽t+1 =
1

2
Kt +

1

2

1

KtSt
. (18)

For generic |𝜌| < 1 and 𝜎2 = 1, Equation (17) holds for Equation (14).2On the other hand,when 𝜎2 < 1 in Equation (13),

then, due to a reduction in the variance of the parameter estimate 𝛽t,R, Model 1 provides more accurate forecasts.

With this generalization of 𝛽 t+1 to allow for nonzero 𝜌, we can analyze the size and power properties of the proposed

tests for values of 𝜌 that range from 0 to 0.8. To this end, we first generate time series for xt and 𝜀t as in Equations (11)–(13).

As in Giacomini and Rossi (2010), we initialize 𝛽 t with 𝛽 t = 0.05 for t = 1, … ,R. Then, using Equations (10) and (14) we

generate n = R + T observations for yt. To study size, we set 𝜎
2 = 1 in Equation (13); to study power we set 𝜎2 < 1 in

Equation (13). In all cases, we use 10,000 replications and the in-sample and out-of-sample sizes (R,T) equal to (50, 40)

and (150, 120).

We consider three estimates of the long-run variance of the loss differential: the WCE using the DM estimate

in Equation (3); the WCE using the Bartlett kernel in Equations (4)–(5); and the WPE using the Daniell kernel in

Equation (8). We refer to these three estimates as WCE-DM, WCE-B, and WPE-D, respectively. For the WCE-DM in this

Monte Carlo exercise, we set h = 1 as in Giacomini and White (2006). For the WCE-B and the WPE-D estimates, we also

need to specify a bandwidth. Newey and West (1994) showed that the optimal bandwidth, in minimal MSE sense, was

proportional toM =
⌊
T1∕3

⌋
, so we use this bandwidth for the test with WCE-B and standard asymptotics. As for the tests

with fixed-smoothing asymptotics, we use the bandwidths M =
⌊
T1∕2

⌋
for the WCE-B and m =

⌊
T1∕3

⌋
for the WPE-D,

as we found in a preliminary Monte Carlo study that they give the best size–power combination when combined with

fixed-smoothing asymptotics; see the Supporting Information Appendix for details.

In the top plots of Figure 1, we report results of the Monte Carlo exercise with theoretical size set to 5%. We con-

sider five different tests: two with standard normal limit distribution, one with bootstrap critical values, and two that use

fixed-smoothing asymptotics. The test with bootstrap critical values uses a WCE-B estimate of the long-run variance and

truncationM =
⌊
T1∕3

⌋
. Bootstrap critical values are computed using the overlapping stationary block-bootstrap of Politis

and Romano (1994) with a circular scheme, as described in Appendix C.

Given that in thisMonte Carlo h = 1, the test withWCE-DM estimate uses the sample variance to estimate the long-run

variance, and for this reason it becomes seriously oversized as the degree of autocorrelation of the error increases. This

problem is more serious in theMonte Carlo experiment with small in-sample and out-of-sample sizes, but it is substantial

also for the rolling window of 150 observations and the out-of-sample size of 120, as shown by the 0.13 empirical size of

the test for 𝜌 = 0.8. This problem is partly addressed by the test that uses a WCE of the long-run variance with Bartlett

kernel and truncation
⌊
T1∕3

⌋
and standard normal asymptotics. Still, also this test is oversized, especially for R = 50 and

T = 40. On the other hand, the tests that use bootstrap-critical values and fixed-smoothing asymptotics are correctly sized

for all the rolling windows and out-of-sample sizes, and also for any degree of autocorrelation of the error.

To assess the power properties of the DM test with standard and fixed-smoothing asymptotics, we generate data under

the alternative hypothesis that Model 1 provides more accurate forecasts by simulating the DGP in Equations (10)–(14)

with 𝜎2 in Equation (13) that decreases from its value of 1 when the null hypothesis is correct to 0.05. Since, in this case,

we are interested in the power of the test, we set 𝜌 = 0 in all experiments. Results are reported in the bottom plots of

Figure 1. As expected, the power of the tests increases towards 1 as 𝜎2 decreases from 1 to 0.05. For small rolling windows

and out-of-sample sizes, the tests that use standard asymptotics are oversized and have higher rejection frequencies for

any 𝜎2. For larger rolling window and out-of-sample sizes, all tests are correctly sized and the plot shows that the power

loss associated with the use of fixed-smoothing asymptotics is very small.

2Note that for 𝜌 = 0, Equation (14) reduces to Equation (18).



8 CORONEO AND IACONE

FIGURE 1 Size and power of the DM test. The figure displays empirical rejection frequencies for the DM test at 5% nominal size.

In-sample and out-of-sample sizes (R,T) are equal to (50, 40) for the left-hand-side plots and (150, 120) for the right-hand-side plots. The top

plots report the empirical size for different values of 𝜌 in Equation (12). The bottom plots report the power of the tests for different values of

𝜎2 in Equation (13). WCE-DM, Standard refers to the test that uses the sample variance to estimate the long-run variance and standard

normal limit distribution. WCE-B, M=T1/3, Standard refers to the test that uses a WCE of the long-run variance with Bartlett kernel with

truncation
⌊
T1∕3

⌋
and standard normal limit distribution. WCE-B, M=T1/3, Bootstrap refers to the test that uses a WCE of the long-run

variance with Bartlett kernel with truncation
⌊
T1∕3

⌋
and bootstrap critical values, computed as detailed in Appendix C. WCE-B, M=T1/2,

Fixed-b refers to the test that uses WCE of the long-run variance with Bartlett kernel withM =
⌊
T1∕2

⌋
and fixed-b asymptotics. WPE-D,

m=T1/3, Fixed-m refers to the test that uses WPE of the long-run variance with Daniell kernel withm =
⌊
T1∕3

⌋
and fixed-m asymptotics

[Colour figure can be viewed at wileyonlinelibrary.com]

6 EMPIRICAL ILLUSTRATION

To illustrate the usefulness of fixed-smoothing asymptotics for equal predictive accuracy tests, we evaluate the predictive

accuracy of the Surveys of Professional Forecasters (SPF) and of the ECB Survey of Professional Forecasters (ECB SPF).

We perform the DM test, with WCE-DM, WCE-B, and WCE-D estimates of the long-run variance, using standard and

fixed-smoothing asymptotics. To compute the WCE-DM, we use truncation lags equal to the forecast horizons as in

Diebold and Mariano (1995). We use the bandwidths M =
⌊
T1∕2

⌋
for the WCE-B and m =

⌊
T1∕3

⌋
for the WPE-D, as in

a preliminary Monte Carlo study they gave the best size–power combination; see the Supporting Information Appendix

for details.
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TABLE 1 Real output growth: SPF versus random walk

Forecast horizon 0 1 2 3 4

Evaluation period: 1987:Q1–2016:Q4, T = 120

WCE-DM 4.85 2.78 1.84 1.46 2.13

WCE-B,M = ⌊T1/2⌋ 4.47** 2.64** 1.96* 1.76 2.24**

WPE-D,m = ⌊T1/3⌋ 5.21** 2.63** 1.86* 1.68 2.08*

Evaluation period: 1987:Q1–1996:Q4, T = 40

WCE-DM 3.61 2.28 2.51 1.51 3.35

WCE-B,M = ⌊T1/2⌋ 3.92** 2.18* 2.52** 1.68 2.01*

WPE-D,m = ⌊T1/3⌋ 4.01** 2.01* 2.72** 1.55 2.38*

Evaluation period: 1997:Q1–2006:Q4, T = 40

WCE-DM 2.27 3.21 1.37 0.87 1.84

WCE-B,M = ⌊T1/2⌋ 2.28* 3.01** 1.23 0.94 1.87

WPE-D,m = ⌊T1/3⌋ 2.04* 2.71** 1.13 0.84 1.68

Evaluation period: 2006:Q1–2016:Q4, T = 40

WCE-DM 2.79 1.63 1.14 0.99 1.12

WCE-B,M = ⌊T1/2⌋ 2.19* 1.59 1.22 1.09 1.10

WPE-D,m = ⌊T1/3⌋ 1.98* 1.43 1.08 0.94 0.98

Note. This table reports the predictive accuracy tests for the SPF forecasts of real

GNP/GDP growth with respect to a random walk. GNP/GDP growth is defined as the

annualized quarter-over-quarter growth rate of fixed-weighted real GNP in the sur-

veys conducted before 1992:Q1, fixed-weighted real GDP in the surveys from 1992:Q1

to 1995:Q4, and chain-weighted real GDP in the surveys thereafter. Random walk

predictions and realized values are computed accordingly. A positive entry means a

higher average loss for the forecast made using the random walk. Asterisks ** and

* indicate two-sided significance at, respectively, the 5% and 10% level using fixed-b

asymptotics for WCE-B and fixed-m asymptotics for WPE-D. and indicate,

respectively, two-sided significance at the 5% and 10% level using standard asymptotics

(limit normality).

We use as benchmark a naive random walk—that is, a no-change benchmark using the vintages of data that were

available to the public before the survey's deadline. To evaluate the forecasts, we use the first release as realized value and

a quadratic loss function. A positive loss differential means a higher loss for the forecast made using the random walk;

conversely, a negative entry means a higher loss for the forecast made using the SPF. In the next two subsections, we

describe the survey data and the empirical results for, respectively, the SPF and the ECB SPF.

6.1 Survey of Professional Forecasters

Data on the SPF is provided by the Federal Reserve Bank of Philadelphia and is available at a quarterly frequency. In

particular, each quarter, the SPF asks panel members to make forecasts for a set of macroeconomic indicators for the

current quarter and for the following four quarters. The deadline for panel members to submit their forecasts is the

middle of the quarter. We focus on median responses for output growth, output inflation, the unemployment rate, and

the 3-month Treasury bill for the period from 1987:Q1 until 2016:Q4 and consider four evaluation periods: the full sample

and three 10-year subsamples—that is, from 1987:Q1 to 1996:Q4, from 1997:Q1 to 2006:Q4, and from 2007:Q1 to 2016:Q4.

Breaking the sample into three subsamples is very important here as each subsample is associatedwith different historical

features and different volatilities of the forecasts, with different impacts on the forecasting power of the SPF. The third

subsample, for example, is associated with the Financial Crisis and forecasts from the SPF should fare comparatively

better than the naive benchmark forecasts, as the SPF can readily take information into account, but this advantage may

be offset by the higher volatility in the subsample, whichmaymake itmore difficult to obtain rejections of the null of equal

forecasting power. However, as we have seen from the Monte Carlo exercise, the smaller dimension of the subsamples

increases the risk of spurious evidence of significance using standard asymptotics, making the role of fixed-smoothing

asymptotics very important.

In the SPF, the output price index is the implicit price deflator for gross national product (GNP) in surveys con-

ducted prior to 1992:Q1, the implicit deflator for GDP in surveys from 1992:Q1 to 1995:Q4, and the chain-weighted

price index in surveys conducted thereafter. In the same way, real output is defined as fixed-weighted real GNP in sur-

veys conducted before 1992:Q1, fixed-weighted real GDP in surveys from 1992:Q1 to 1995:Q4, and chain-weighted real
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TABLE 2 GNP/GDP inflation: SPF versus random walk

Forecast horizon 0 1 2 3 4

Evaluation period: 1987:Q1–2016:Q4, T = 120

WCE-DM 3.99 3.87 2.52 1.18 2.46

WCE-B,M = ⌊T1/2⌋ 2.81** 3.68** 2.72** 1.02 2.54**

WPE-D,m = ⌊T1/3⌋ 2.48** 3.53** 2.38** 0.86 2.25*

Evaluation period: 1987:Q1–1996:Q4, T = 40

WCE-DM 1.31 2.42 1.22 0.04 1.31

WCE-B,M = ⌊T1/2⌋ 1.36 2.37* 1.39 0.03 1.38

WPE-D,m = ⌊T1/3⌋ 1.40 2.09* 1.55 0.03 1.17

Evaluation period: 1997:Q1–2006:Q4, T = 40

WCE-DM 2.28 1.67 1.06 0.98 0.67

WCE-B,M = ⌊T1/2⌋ 2.23* 1.66 0.99 1.01 0.78

WPE-D,m = ⌊T1/3⌋ 2.25* 1.87 0.97 0.98 0.72

Evaluation period: 2007:Q1–2016:Q4, T = 40

WCE-DM 3.66 3.17 2.10 0.97 3.13

WCE-B,M = ⌊T1/2⌋ 2.75** 2.98** 2.29* 0.93 2.31*

WPE-D,m = ⌊T1/3⌋ 2.47** 3.10** 1.91 0.86 2.25*

Note. this table reports the predictive accuracy tests for the SPF forecasts

of GNP/GDP inflation with respect to a random walk. GNP/GDP infla-

tion is defined as the implicit price deflator for GNP in surveys conducted

prior to 1992:Q1, the implicit deflator for GDP in the surveys from 1992:Q1

to 1995:Q4, and the chain-weighted price index in the surveys thereafter.

Random walk predictions and realized values are computed accordingly.

A positive entry means a higher average loss for the forecast made using

the random walk. Asterisks ** and * indicate two-sided significance at,

respectively, the 5% and 10% level using fixed-b asymptotics for WCE-B

and fixed-m asymptotics for WPE-D. and indicate, respectively,

two-sided significance at the 5% and 10% level using standard asymptotics

(limit normality).

GDP in surveys conducted thereafter. Real GNP/GDP growth and GNP/GDP inflation are constructed as the annualized

quarter-over-quarter growth rates. For both variables, we define the corresponding benchmark forecasts and realized val-

ues accordingly, as in Stark (2010). Finally, the 3-month Treasury bill rate and the unemployment rate are expressed in

levels.

Tables 1– 4 report the test statistics for the null hypothesis of equal predictive accuracy of the SPF forecasts for real

GNP/GDP growth, GNP/GDP inflation, the unemployment rate, and the 3-month Treasury bill rates with respect to the

random walk. In the tables, we use shades of gray to indicate two-sided significance using standard asymptotics (limit

normality) and asterisks to indicate two-sided significance using fixed-smoothing asymptotics.

Results in Tables 1– 4 show that in the full sample the predictive ability of the SPF is stronger than that of the random

walk for all the variables at short and medium horizons. The tables also indicate that for all the variables, with the excep-

tion of inflation, the first subsample is characterized by stronger predictive ability of the SPF with respect to the random

walk than the other two subsamples. The results for the third subsample aremost interesting, as we best see how standard

asymptotics may lead to spurious rejections of the null hypothesis, and therefore to incorrect conclusions. To compare

our results with the existing literature, Demetrescu et al. (2018) seem to provide the most noteworthy reference, as their

sample was long enough to include the Financial Crisis and because they explicitly allowed for time-varying volatility.

On the other hand, to test for time variation in an endogenous way, Demetrescu et al. (2018) employed a larger sample.

Both the poor forecasting power in the second subsample and the weakness of the evidence of superior performance for

the SPF in the third subsample are consistent with their findings.

We now discuss details of the various tests. Table 1 shows that the SPF forecasts for real GNP/GDP growth outperform

the random walk on the full sample for short forecasting horizons. However, when looking at the three subsamples,

the evidence of significant outperformance of the SPF is consistently supported by the tests with fixed-b and fixed-m

asymptotics only for the nowcast. For the other horizons, the outperformance of the SPF sharply declined in the last

subsample. As for GNP/GDP price inflation, Table 2 shows a much stronger predictive ability of the SPF, especially for

short horizons and in the last subsample. Results in Table 3 indicate some predictive ability of the SPF forecasts for the

unemployment rate, but the evidence is much weaker when using the proposed tests with fixed-smoothing asymptotics.



CORONEO AND IACONE 11

TABLE 3 Unemployment rate: SPF versus random walk

Forecast horizon 0 1 2 3 4

Evaluation period: 1987:Q1–2016:Q4, T = 120

WCE-DM 3.84 2.15 1.98 2.06 2.27

WCE-B,M = ⌊T1/2⌋ 2.37** 1.99* 2.05* 2.20* 2.46**

WPE-D,m = ⌊T1/3⌋ 2.14* 1.86* 1.88* 2.00* 2.20*

Evaluation period: 1987:Q1–1996:Q4, T = 40

WCE-DM 3.47 1.72 1.66 2.07 2.52

WCE-B,M = ⌊T1/2⌋ 3.13** 1.89 1.93 2.37* 2.57**

WPE-D,m = ⌊T1/3⌋ 2.53** 1.61 1.58 1.89 2.01*

Evaluation period: 1997:Q1–2006:Q4, T = 40

WCE-DM 2.17 1.75 1.47 1.23 1.15

WCE-B,M = ⌊T1/2⌋ 2.23* 1.75 1.60 1.40 1.31

WPE-D,m = ⌊T1/3⌋ 2.02* 1.51 1.36 1.17 1.09

Evaluation period: 2007:Q1–2016:Q4, T = 40

WCE-DM 2.83 1.72 1.64 1.82 2.19

WCE-B,M = ⌊T1/2⌋ 1.81 1.68 1.80 2.04* 2.42**

WPE-D,m = ⌊T1/3⌋ 1.57 1.43 1.52 1.73 2.04*

Note. this table reports the predictive accuracy tests for the SPF forecasts

of the unemployment rate with respect to a random walk. A positive

entrymeans a higher average loss for the forecast made using the random

walk. Asterisks ** and * indicate two-sided significance at, respectively,

the 5% and 10% level using fixed-b asymptotics for WCE-B and fixed-m

asymptotics for WPE-D. and indicate, respectively, two-sided

significance at the 5% and 10% level using standard asymptotics (limit

normality).

Finally, Table 4 provides strong evidence of superior predictive accuracy of the SPF forecasts for the 3-month Treasury bill

rate with respect the random walk in the full sample. However, the predictive ability of the SPF for the 3-month Treasury

bill rate declined sharply in the last two subsamples.

Comparing the application of standard asymptotics with fixed-smoothing asymptotics, we reject the null of equal pre-

dictive abilitymore frequently for the tests with standard asymptotics, especially formultistep forecasts in the subsamples.

This is due to the fact that in the subsamples the tests are performed only on 40 observations andmultistep forecast errors

are more serially dependent, exacerbating the size distortions induced by standard asymptotics; see the Monte Carlo sim-

ulations in the Supporting Information Appendix. For example, Table 3 shows that for unemployment both the test with

WCE-DM and test the with WCE-B and standard asymptotics reject at 10% significance level the null of equal predictive

ability of the SPF and the randomwalk on the last subsample for almost all forecasting horizons. This could be interpreted

as a clear indication of predictive ability of the SPF for the unemployment rate. However, the tests with fixed-smoothing

asymptotics fail to reject the null of equal predictive ability for almost all forecasting horizons, especially when fixed-m

asymptotics is used, indicating that the SPF did not have much significant predictive ability for the unemployment rate

in this period.

Finally, we note that results for the nowcasts (and, to a lesser extent, for longer horizons too) are affected by a common

pitfall when using theWCE-DM, which is the presence of autocorrelation in the loss differential that is not accounted for

by the WCE-DM estimate. Consider, for example, the nowcast for the unemployment rate in the last subsample, where

T = 40. The WCE-DM test rejects the null of equal predictive ability of the SPF and the random walk with a test statistic

equal to 2.83—much larger than the test statistics using the Bartlett kernel, which is 1.81. This is because the WCE-DM

test statistic assumes optimality of the nowcasts and, as a consequence, uses only the sample variance to estimate the

long-run variance. However, the sample first- and second-order autocorrelations of the loss differential are 0.665 and

0.298, and these are due to both autocorrelation in the forecast error of the SPF, which are respectively 0.258 and 0.214,

and, more importantly, of the random walk, which are respectively 0.698 and 0.619. When we use the Bartlett kernel the

estimates of the long-run variance are larger than the sample variance used to construct the WCE-DM statistic because

the estimates of the long-run variance use also the first six autocovariances and these, given the degree of autocorrelation

of the loss differential, are different from zero.
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TABLE 4 Three-month Treasury bill: SPF versus random walk

Forecast horizon 0 1 2 3 4

Evaluation period: 1987:Q1–2016:Q4, T = 120

WCE-DM 5.05 3.79 3.16 2.72 1.76

WCE-B,M = ⌊T1/2⌋ 3.84** 3.78** 3.54** 3.11** 1.96*

WPE-D,m = ⌊T1/3⌋ 3.49** 3.58** 3.52** 3.27** 2.00*

Evaluation period: 1987:Q1–1996.Q4, T = 40

WCE-DM 4.73 3.01 2.58 2.77 2.82

WCE-B,M = ⌊T1/2⌋ 4.10** 3.50** 3.10** 2.94** 2.63**

WPE-D,m = ⌊T1/3⌋ 3.17** 2.68** 2.56** 2.53** 2.10*

Evaluation period: 1997:Q1–2006:Q4, T = 40

WCE-DM 3.02 2.46 2.10 1.69 1.07

WCE-B,M = ⌊T1/2⌋ 2.18* 2.34* 2.28* 1.85 1.16

WPE-D,m = ⌊T1/3⌋ 1.82 1.93 1.87 1.52 0.95

Evaluation period: 2007:Q1–2016.Q4, T = 40

WCE-DM 1.68 1.19 1.14 0.77 -0.47

WCE-B,M = ⌊T1/2⌋ 1.33 1.23 1.03 0.71 -0.46

WPE-D,m = ⌊T1/3⌋ 1.17 1.09 0.92 0.65 -0.45

Note. this table reports the predictive accuracy tests for the SPF forecasts of

the 3-monthTreasury bill ratewith respect to a randomwalk.Apositive entry

means a higher average loss for the forecast made using the random walk.

Asterisks ** and * indicate two-sided significance at, respectively, the 5% and

10% level using fixed-b asymptotics for WCE-B and fixed-m asymptotics for

WPE-D. and indicate, respectively, two-sided significance at the 5%

and 10% level using standard asymptotics (limit normality).

6.2 ECB Survey of Professional Forecasters

Data on the ECB SPF have been provided by European Central Bank since 1999. The survey is performed quarterly and

includes expectations for some of the key macroeconomic variables for the euro area. Between 1999:Q1 and 2001:Q3,

the survey was conducted in the middle month of each quarter—that is, in February, May, August, and November. Since

2001:Q4, the survey has been shifted to the first month of the quarter—that is, in January, April, July, and October. The

questionnaire is sent to the panelists just after the release of the Harmonized Index of Consumer Prices (HICP)—that is,

in the third week of the month before the survey—and the forecasts are collected in the second half of the first month of

each quarter. For more details, Bowles et al. (2007, 2010), and Garcia (2003).

We focus onmean responses about the year-on-yearGDPgrowth and year-on-yearHICP inflation at the rolling horizons

of 1, 2, and 5 years.3 In the ECB SPF, the rolling horizons are set to 1, 2, and 5 years ahead of the latest period for which

the variable in question is observed when the survey is conducted and not ahead of the survey date. For example, in the

survey of the first quarter of 2008 (sent out after the official release of the December 2007 figure for HICP and of the

2007:Q3 figure for GDP), the questionnaire asked for the expected year-on-year inflation rate in December 2008 and the

year-on-year GDP growth in 2008:Q3. Observations for the three forecasting horizons are only available from 2006:Q1 to

2016:Q4, for a total of 44 observations. With such a small sample size, standard tests of equal predictive ability suffer from

large size distortions but fixed-smoothing asymptotics can still provide reliable inference.

Since data on GDP and HICP are subject to revisions, following Conflitti et al. (2015), we use the euro area real-time

database (see Giannone et al., 2012) to match the survey data with the information that was available to the forecasters

at the time that they submitted their projections.

Table 5 reports the test statistics presented in Section 4 for the null hypothesis of equal predictive accuracy of the ECB

SPF forecasts for year-on-year GDP growth and year-on-year HICP inflation with respect to the random walk. As in

Tables 1– 4, we use asterisks to indicate two-sided significance using fixed-smoothing asymptotics, and shades of gray to

indicate two-sided significance using standard asymptotics and limit normality.

Results in Table 5 indicate that the tests with standard asymptotics reject the null of equal predictive ability of the ECB

SPF with respect to random walk for year-on-year GDP growth at short and medium horizons, and also for year-on-year

3In the ECB SPF the 5-year horizon forecast refers to the full year. However, we take this horizon as the long-run forecast and treat it as a rolling window
forecast.
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TABLE 5 ECB Survey of Professional Forecasters

Forecast horizon (years) GDP growth HICP inflation

1 2 5 1 2 5

WCE-DM 2.09 1.80 1.04 1.28 1.75 1.04

WCE-B,M = ⌊T1/2⌋ 1.84 2.04* 1.08 1.18 1.79 0.89

WPE-D,m = ⌊T1/3⌋ 1.54 1.81 0.89 0.97 1.48 0.71

Note. this table reports the predictive accuracy tests for the ECB Survey of Pro-

fessional Forecasts for the year-on-year GDP growth (left panel) and year-on-year

HICP inflation (right panel) with respect to a random walk. The evaluation period

is 2006:Q1 to 2016:Q4, for a total of 44 observations. A positive entry means a

higher average loss for the forecast made using the randomwalk. Asterisks ** and *

indicate two-sided significance at, respectively, the 5% and 10% level using fixed-b

asymptotics for WCE-B and fixed-m asymptotics for WPE-D. and indi-

cate, respectively, two-sided significance at the 5% and 10% level using standard

asymptotics (limit normality).

HICP inflation at medium horizon. However, these results are partially spurious and demonstrate the risks of using stan-

dard asymptotics in a small sample. Indeed, when using fixed-smoothing asymptotics, we only find limited evidence of

superior predictive ability of the ECB SPF with respect to the random walk and only for the GDP growth at medium

horizon.

7 CONCLUSION

We propose fixed-smoothing asymptotics to overcome the small-sample size distortions of standard tests for predictive

accuracy. As an illustrative example, and to facilitate comparisonwith otherworks, we apply fixed-smoothing asymptotics

to reassess the predictive accuracy of the SPF. We also include an application to the ECB SPF, which has a short time

series dimension and thus makes our approach very convenient.

We focus on applying fixed-smoothing asymptotics to the Diebold and Mariano (1995) test. However, this approach is

of broader applicability in the forecasting evaluation literature: Demetrescu et al. (2018) applied the framework to the

forecast breakdown tests of Giacomini et al. (2009), and Coroneo et al. (2019) applied fixed-smoothing asymptotics to

density forecast evaluation. Future work will include applying fixed-smoothing asymptotics to forecast rationality tests

(see Granger & Newbold, 1986and Diebold and Lopez ; 1996).
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APPENDIX A: FIXED-SMOOTHING ASYMPTOTICS FOR FORECAST EVALUATION

• Fixed-m: In this case, under regularity conditions, such as strict stationarity of dt, existence of the second moment and

0 <
∑∞

𝑗=−∞ cov(dt, dt+𝑗) < ∞, then Equation (9) holds (see, e.g., Brillinger, 1975).

To see that it also holds under Assumptions 1-4, denote as W(r) a standard Brownian motion, and consider the

functional central limit theorem (FCLT) 1√
T

1

𝜎T

∑⌊rT⌋
t=1 dt ⇒ W(r), where ⌊.⌋ denotes the integer part of a number, and

r ∈ [0, 1]. This FCLT can be established for dt from Assumptions 1-4: in particular, Giacomini and White (2006, p.

1575) noted that conditions such as Assumptions 1-4 satisfy the conditions of corollary 3.1 of Wooldridge and White

(1988) FCLT and CLT for mixing processes.

Denote, as in Hualde and Iacone (2017), Ŵ(r) = W(r) − rW(1) and

Q( 𝑗) =

{(
2𝜋𝑗 ∫

1

0

sin (2𝜋𝑗r) Ŵ(r)dr

)2

+

(
2𝜋𝑗 ∫

1

0

cos (2𝜋𝑗r) Ŵ (r) dr

)2
}

.

Recall that ût = dt − d̄. Using summation by parts as in Hualde and Iacone (2017), rewrite the periodogram as

I
(
𝜆𝑗

)
=

1

2𝜋

{
T−1∑
t=1

[
−
2𝜋𝑗

T
sin

(
2𝜋𝑗

t

T

)
+ O

(
𝜆2𝑗

)] 1

T1∕2

t∑
s=1

ûs

}2

+
1

2𝜋

{
T−1∑
t=1

[
2𝜋𝑗

T
cos

(
2𝜋𝑗

t

T

)
+ O

(
𝜆2𝑗

)] 1

T1∕2

t∑
s=1

ûs

}2

,

then, by the FCLT and the continuous mapping theorem, as T → ∞,

2𝜋

𝜎T2
I
(
𝜆𝑗

)
⇒ Q( 𝑗).

Combining these results, another application of the continuous mapping theorem yields

√
T

d̄√√√√2𝜋 1

m

m∑
𝑗=1

I(𝜆𝑗)

=

√
T 1

𝜎T
d̄

√√√√2𝜋 1

𝜎2
T

1

m

m∑
𝑗=1

I(𝜆𝑗)

→d
W(1)√√√√ 1

m

m∑
𝑗=1

Q( 𝑗)

,

which is indeed the same limit as in Hualde and Iacone (2017), and note that this is a t2m distributed variable.

• Fixed-b: The proof for fixed-b asymptotics uses the same FCLT, to establish the limit in Kiefer and Vogelsang (2005).

APPENDIX B: THE UNCONDITIONAL PREDICTIVE ABILITY TEST IN PRESENCE OF SERIAL

CORRELATION

Consider the DGP in Equations (10)–(13), and the two competing forecasts in Equations (15)–(16) where



16 CORONEO AND IACONE

𝛽t,R =

t∑
𝑗=t−R+1

𝑦𝑗x𝑗

t∑
𝑗=t−R+1

x2
𝑗

=

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

+

t∑
𝑗=t−R+1

𝜀𝑗x𝑗

t∑
𝑗=t−R+1

x2
𝑗

.

Note that 𝛽 t in Equation (10) changes at any point t, but the estimate is madewith OLS, which is designed for 𝛽 constant

over the period t − R + 1, … , t. However, the estimate 𝛽t,R changes at any point in t because of its recursive structure.

To derive the values of 𝛽 t that ensure that the twomodels have equal predictive performance at the estimated parameters

values, as prescribed in Equation (17), we first revise the derivation for the case of no serial dependence, as in Giacomini

and Rossi (2010).

The forecast error of Model 1 is given by

𝑦t+1 − �̂�
(1)
t+1 = 𝛽t+1xt+1 + 𝜀t+1 − 𝛽t,Rxt+1 =

(
𝛽t+1 − 𝛽t,R

)
xt+1 + 𝜀t+1,

with

(
𝑦t+1 − �̂�

(1)
t+1

)2
=

⎛⎜⎜⎜⎜⎜⎝

𝛽t+1 −

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

−

t∑
𝑗=t−R+1

𝜀𝑗x𝑗

t∑
𝑗=t−R+1

x2
𝑗

⎞⎟⎟⎟⎟⎟⎠

2

x2t+1 + 𝜀2t+1 + 2

⎛⎜⎜⎜⎜⎜⎝

𝛽t+1 −

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

−

t∑
𝑗=t−R+1

𝜀𝑗x𝑗

t∑
𝑗=t−R+1

x2
𝑗

⎞⎟⎟⎟⎟⎟⎠

xt+1𝜀t+1

and note that 𝜀t+1 and 𝜀j for j = t − R + 1, … , t has E
(
𝜀t+1, 𝜀𝑗

)
= 0, so the expected value of the third term is 0.

As for the first term,

⎛
⎜⎜⎜⎜⎜⎝

𝛽t+1 −

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

−

t∑
𝑗=t−R+1

𝜀𝑗x𝑗

t∑
𝑗=t−R+1

x2
𝑗

⎞
⎟⎟⎟⎟⎟⎠

2

=

⎛
⎜⎜⎜⎜⎜⎝

𝛽t+1 −

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

⎞
⎟⎟⎟⎟⎟⎠

2

+

⎛
⎜⎜⎜⎜⎜⎝

t∑
𝑗=t−R+1

𝜀𝑗x𝑗

t∑
𝑗=t−R+1

x2
𝑗

⎞
⎟⎟⎟⎟⎟⎠

2

− 2

⎛
⎜⎜⎜⎜⎜⎝

𝛽t+1 −

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

t∑
𝑗=t−R+1

𝜀𝑗x𝑗

t∑
𝑗=t−R+1

x2
𝑗

⎞
⎟⎟⎟⎟⎟⎠

(B.1)

and again the expected value of the third term is 0. The first term is nonrandom, while the second one is

(
t∑

𝑗=t−R+1

𝜀𝑗x𝑗

)2

(
t∑

𝑗=t−R+1

x2
𝑗

)2
=

(
t∑

𝑗,k=t−R+1

𝜀𝑗x𝑗𝜀kxk

)

(
t∑

𝑗=t−R+1

x2
𝑗

)2

and, as 𝜀j is independently distributed, E

(
t∑

𝑗,k=t−R+1

𝜀𝑗x𝑗𝜀kxk

)
= 𝜎2

t∑
𝑗=t−R+1

x2
𝑗
, so the expectation of the second term is

(
t∑

𝑗=t−R+1

x2
𝑗

)−1

𝜎2. Thus

E
(
𝑦t+1 − �̂�

(1)
t+1

)2
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

𝛽t+1 −

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

⎞
⎟⎟⎟⎟⎟⎠

2

+
𝜎2

t∑
𝑗=t−R+1

x2
𝑗

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

x2t+1 + 𝜎2.
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For the other forecast,

E
(
𝑦t+1 − �̂�

(2)
t+1

)2
=E(𝛽t+1xt+1 + 𝜀t+1)

2

=E
(
𝛽2t+1x

2
t+1 + 𝜀2t+1 + 2𝛽t+1xt+1𝜀t+1

)

=𝛽2t+1x
2
t+1 + 𝜎2.

Imposing E
(
𝑦t+1 − �̂�

(1)
t+1

)2
= E

(
𝑦t+1 − �̂�

(2)
t+1

)2
, as in Equation (17), we obtain

{
(𝛽t+1 − Kt)

2 +
𝜎2

St

}
x2t+1 + 𝜎2 = 𝛽2t+1x

2
t+1 + 𝜎2,

with

Kt =

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

, St =

t∑
𝑗=t−R+1

x2𝑗 .

Solving for 𝛽 t+1 we get

𝛽t+1 =
1

2
Kt +

1

2

𝜎2

KtSt
,

as indeed in Giacomini and Rossi (2010); setting 𝜎2 = 1, we obtain the value given in Equation (18).

For the case inwhich 𝜀t is a dependent process, consider again the second term in Equation (B.1),E

(
t∑

𝑗,k=t−R+1

𝜀𝑗x𝑗𝜀kxk

)
.

Letting 𝜀 = (𝜀t−R+1, … , 𝜀t)
′, x = (xt−R+1, … , xt)

′, then

t∑
𝑗,k=t−R+1

𝜀𝑗x𝑗𝜀kxk =
(
𝜀′x

)2
= 𝜀′x𝜀′x = x′𝜀𝜀′x,

because 𝜀′x = x′𝜀 as these are scalars. So, letting Ω = Ω(𝜎) = E
(
𝜀𝜀′

)

E

(
t∑

𝑗,k=t−R+1

𝜀𝑗x𝑗𝜀kxk

)
= x′Ωx.

Also, letting 𝜔t+1−𝑗 = 𝜔t+1−𝑗(𝜎) = E
(
𝜀𝑗𝜀t+1

)
then

E

(
t∑

𝑗=t−R+1

𝜀𝑗x𝑗xt+1𝜀t+1

)
=

t∑
𝑗=t−R+1

𝜔t+1−𝑗x𝑗xt+1.
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Then

E
(
𝑦t+1 − �̂�

(1)
t+1

)2
= E

⎛
⎜⎜⎜⎜⎜⎝

𝛽t+1 −

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

−

t∑
𝑗=t−R+1

𝜀𝑗x𝑗

t∑
𝑗=t−R+1

x2
𝑗

⎞
⎟⎟⎟⎟⎟⎠

2

x2t+1 + E𝜀2t+1 + 2E

⎡
⎢⎢⎢⎢⎢⎣

⎛
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𝛽t+1 −
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𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

−

t∑
𝑗=t−R+1

𝜀𝑗x𝑗

t∑
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x2
𝑗

⎞
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xt+1𝜀t+1

⎤
⎥⎥⎥⎥⎥⎦

= (𝛽t+1 − Kt)
2x2t+1 +

E

(
t∑

𝑗=t−R+1

𝜀𝑗x𝑗

)2

(
t∑

𝑗=t−R+1

x2
𝑗

)2
x2t+1 − 2
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𝛽t+1 −

t∑
𝑗=t−R+1

𝛽𝑗x
2
𝑗

t∑
𝑗=t−R+1

x2
𝑗

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

E
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𝑗=t−R+1

𝜀𝑗x𝑗

t∑
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x2
𝑗
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x2t+1 + 𝜔0+

− 2

E

(
t∑

𝑗=t−R+1

)
𝜀𝑗x𝑗xt+1𝜀t+1

t∑
𝑗=t−R+1

x2
𝑗

= (𝛽t+1 − Kt)
2x2t+1 +

x′Ωx

S2t
x2t+1 + 𝜔0 − 2

.
𝜔′xxt+1

St
,

where
.
𝜔′xxt+1 =

∑t
𝑗=t−R+1 𝜔t+1−𝑗x𝑗xt+1.

For the other forecast,

E
(
𝑦t+1 − �̂�

(1)
t+1

)2
= E

(
𝛽2t+1x

2
t+1 + 𝜀2t+1 + 2𝛽t+1xt+1𝜀t+1

)
= 𝛽2t+1x

2
t+1 + 𝜔2

0

and, again imposing Equation (17),

(𝛽t+1 − Kt)
2x2t+1 +

x′Ωx

S2t
x2t+1 + 𝜔0 − 2

.
𝜔′xxt+1

St
= 𝛽2t+1x

2
t+1 + 𝜔0

and, solving for 𝛽 t+1, we get

𝛽t+1 =
1

2
Kt +

1

2

x′Ωx

KtS
2
t

−

.
𝜔′xxt+1

KtStx
2
t+1

.

APPENDIX C: BOOTSTRAP DETAILS

Given the loss differential dt and the test statistic

t =
√
T
(
d̄∕�̂�

)
, (C1)

where �̂� is the estimate of the long-run variance computed using theWCE-B or theWPE-D, for each bootstrap replication

r, we generate bootstrapped loss differentials d(r)t using the overlapping stationary block-bootstrap of Politis and Romano

(1994) with a circular scheme. In particular, in each bootstrap replication r, we perform the following steps:

1. Draw block sizes L1,L2, … from a discrete uniform distribution with support on {1, … , 2
⌊
T1∕4

⌋
}.

2. Draw random initial indices I1, I2, … from a discrete uniform distribution with support on {1, … ,T}.

3. Construct the series of bootstrapped loss differential d(r)t using the first T elements of

(d̃I1 , … , d̃I1+L1−1, d̃I2 , … , d̃I2+L2−1, … ), where d̃t is the collated loss differential; that is, d̃t ≡ (d1, … , dT , d1, … , dT).

4. Construct the bootstrapped test statistic as

t(r) =
√
T
(
(d̄(r) − d̄)∕�̂�(r)

)
,
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where d̄(r) is the sample mean of d(r)t , and �̂� (r) is the estimate of its long-run variance constructed using the same

formula as in Equation (C1).

We perform 10,000 bootstrap replications and use the 95% quantile of the bootstrap distribution of the test statistic,

(|t(1)|, … , |t(10,000)|), as critical value cv. We then reject the null of equal predictive ability if |t| > cv. Note that this is the

naive bootstrap also performed by Kiefer and Vogelsang (2005) and Gonçalves and Vogelsang (2011) for the test with the

WCE-B estimate of the long-run variance.
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