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Supplementary Appendix: Issues in the Estimation of

Mis-Specified Models of Fractionally Integrated Processes

Gael M. Martin, K. Nadarajah & D. S. Poskitt

Department of Econometrics and Business Statistics, Monash University

Abstract

This material contains the proofs of Lemmas 1, 2, 3 and 4, Proposition 1, and Theorems
1, 2 and 3. Additional Lemmas used to prove the main theorems in the paper are also
provided with proofs. These technical details are given in Appendix A. Appendix B contains
the expressions used to calculate the bias term associated with the four estimators.

Appendix A: Proofs

A.1 Proof of Lemmas 1, 2, 3 and 4

A.1.1 Proof of Lemma 1:

The proof of the lemma uses a method that parallels that employed by Fox and Taqqu in the

proof of their Lemma 1 (see Fox and Taqqu, 1986, pages 523-524), which in turn employs an

argument first developed by Hannan in the proof of his Lemma 1 (see Hannan, 1973, pages

133-134). To describe the approach, set

cn(τ) = cn(−τ) =
1

n

n−τ∑

t=1

ytyt+τ , τ ≥ 0 ,

and let

kM (η, λ) =
M∑

r=−M

κ(r)

(
1− |r|

M

)
exp(iλr)

denote the Cesaro sum of the first M terms of the Fourier series of (f1(η, λ)+ νf )
−1 where M

is chosen such that |(f1(η, λ) + νf )−1 − kM (η, λ))| < ε uniformly in η ∈ E0δ . Then following

the same steps as in the derivation presented in Hannan (1973, pages 133-134) we have

∣∣∣∣∣∣
4π

n

[n/2]∑

j=1

I(λj)
{
(f1(η, λj) + νf )

−1 − kM (η, λj)
}
∣∣∣∣∣∣
< εcn(0) ,
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and

lim
n→∞

∣∣∣∣∣∣
4π

n

[n/2]∑

j=1

I(λj)kM (η, λj)−
M∑

r=−M

κ(r)

(
1− |r|

M

)
γ0(r)

∣∣∣∣∣∣
= 0

almost surely, the latter result since I(λ) = (2π)−1
∑n−1
r=1−n cn(r) exp(−iλr) and cn(r) con-

verges to γ0(r) almost surely by ergodicity. Moreover,

M∑

r=−M

κ(r)

(
1− |r|

M

)
γ0(r) =

σ20
2π

∫ π

−π
f0(λ)kM (η, λ)dλ

differs from the required limiting value by a quantity bounded by εγ0(0), from which the

desired result follows because ε is arbitrary.

An alternative proof of this lemma can be obtained by extending the arguments adopted

by Brockwell and Davis (1991, §10.8.2, page 378-379), in the proof of their Proposition 10.8.2,

to the stationary fractional case, as suggested in Brockwell and Davis (1991, page 528).

A.1.2 Proof of Lemma 2:

The proof parallels the proof of Lemma 1, only now we use the Cesaro sum of M terms of

the Fourier series of h1(η, λ)
−1. Denote this sum by cM (η, λ) > 0. Since by construction

h1(η, λ) > 0, M can be chosen so that |h1(η, λ)−1 − cM (η, λ)| < ε uniformly on E0δ since the

Cesaro sum converges uniformly in (η, λ) for η ∈ E0δ . Once again the detailed steps follow

Hannan (1973, page 133-134), as above, or Brockwell and Davis (1991, §10.8.2, page 378-379).

A.1.3 Proof of Lemma 3:

Observe that f1(η, λ) > 0 when d ≥ 0 and hence for δ sufficiently small we have h1(η, λ) =

f1(η, λ) for all λ ∈ [−π, π]. It follows immediately from Lemma 2 that limn→∞ |Q(1)n (η) −

Q(η)| = 0 almost surely and uniformly in η on E0δ when d ≥ 0. We have thus established

Lemma 3 in the case where d ≥ 0, (cf. Chen and Deo, 2006, Lemma 2). To establish that

Lemma 3 also holds on E0δ when d < 0, observe that Lemma 1 implies that Q(η) provides

a limit inferior for Q
(1)
n (η) and it therefore only remains for us to establish that Q(η) also

provides a limit superior for Q
(1)
n (η) on η ∈ E0δ when d < 0.

In the latter case f1(η, λ) = |λ|2|d|L(λ) where L(λ) is slowly varying and bounded as λ→ 0

and there exists an ε ∈ (0, 2|d|) and a K > 0, that may depend on ε, such that f1(η, λ) =

2
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|λ|2|d|K|λ|−ε. We therefore have that f1(η, λ) > K|λ|2|d| when |λ| < 1 and h1(η, λ) 6= f1(η, λ)

whenever λ < (K−1δ)1/(2|d|−ε), from which it follows that

Q(1)n (η) ≤
2π

n

bn/2c∑

j=kδ+1

I(λj)

h1(η, λj)
+
1

K

(
2π

n

)1−2|d| kδ∑

j=1

I(λj) (1)

where kδ = b(K−1δ)1/(2|d|−ε)(2π/n)c + 1. The inequality in (1) follows because for all λj <

(K−1δ)1/(2|d|−ε) < 2πkδ/n we have

(
h1(η, λj)

f1(η, λj)
− 1
)
≤
(
δ

K

( n
2π

)2|d|
− 1
)

and

Q(1)n (η) =
2π

n

bn/2c∑

j=1

I(λj)

h1(η, λj)
+
2π

n

kδ∑

j=1

I(λj)

(
1

f1(η, λj)
− 1

h1(η, λj)

)

≤ 2π

n

bn/2c∑

j=1

I(λj)

h1(η1, λj)
+
2π

n

kδ∑

j=1

I(λj)

h1(η, λj)

(
δ

K

( n
2π

)2|d|
− 1
)

=
2π

n

bn/2c∑

j=kδ+1

I(λj)

h1(η, λj)
+
1

K

(
2π

n

)1−2|d| kδ∑

j=1

I(λj) .

Applying Lemma 2 to the first term on the right hand side in (1) gives a limit of

σ20
2π

∫ π

(K−1δ)1/(2|d|−ε)

f0(λ)

f1(η1, λ)
dλ .

Similarly

lim
n→∞

2π

n

kδ∑

j=1

I(λj) =
σ20
2π

∫ (K−1δ)1/(2|d|−ε)

0
f0(λ)dλ =

σ20
2π
f0(λ

′)(K−1δ)1/(2|d|−ε)

for some λ′ ∈ [0, (K−1δ)1/(2|d|−ε)] by the first mean value theorem for integrals. Setting

δ = (2π)2|d|−ε/np where p > 2|d| − ε, we find that

1

K

(
2π

n

)1−2|d| kδ∑

j=1

I(λj) ∼ 1

K

( n
2π

)2|d| σ20
2π
f0(λ

′)
2πkδ
n

∼ 1

K

(
2π

n

)1−2|d| σ20
2π
f0(λ

′)

(
1

n

) p−2|d|+ε
(2|d|−ε)

3
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and hence we can conclude that

lim sup
n→∞

Q(1)n (η) ≤ Q(η)

uniformly in η ∈ E0δ , as required.

A.1.4 Proof of Lemma 4:

Let L1(η, λ) = λ
2df1(η, λ) and suppose that η ∈ E0δ1 ∪ E

0
δ2 6= ∅. Then

lim inf
n→∞

Q(1)n (η) = lim inf
n→∞

2π

n

bn/2c∑

j=1

I(λj)

f1(η, λj)

= lim inf
n→∞

2π

n

bn/2c∑

j=1

I(λj)λ
2d
j

L1(η, λj)

≥ lim inf
n→∞

(2π)−2δ

n

bn/2c∑

j=1

I(λj)

L1(η, λj)λ
1−2(d0+δ)
j

, (2)

where the inequality in (2) arises because for all η ∈ E0δ1 ∪E
0
δ2 we have (d0 − d) > 0.5− δ and

it follows that λ
−2(d0−d)
j ≥ (2π)−(2δ+1)λ2δ−1j for all λj = 2πj/n, j = 1, . . . , bn/2c.

Applying Lemma 1 and Lemma 2 to (2) by replacing f1(η, λj) by L1(η, λ)λ
1−2(d0+δ), and

then letting the constant νf > 0in the lemmas approach zero, it follows from Fatou’s theorem

that

lim
n→∞

∣∣∣∣∣∣
(2π)−2δ

n

bn/2c∑

j=1

I(λj)

L1(η, λj)λ
1−2(d0+δ)
j

− 1

(2π)2δ+1

π∫

0

(σ20/2π)f0(λ)λ
2d0

L1(η, λ)λ
1−2δ

dλ

∣∣∣∣∣∣
= 0 ,

wherein we recognise that 0 ≤ 1−2(d0+δ) ≤ 2(1−2δ) and that L1(η, λ) = (σ21/2π)g1(β, λ) sinc(λ/2)−2d

and (σ20/2π)f0(λ)λ
2d0 = (σ20/2π)g0(λ) sinc(λ/2)

−2d0 where sinc(x) = sin(x)/x, the cardinal

sine function. Since 2/π ≤ sinc(λ/2) ≤ 1 for 0 ≤ λ ≤ π, it follows from Assumption (A.3) and

4



NADARAJAH, MARTIN AND POSKITT

Conditions A that there exists a finite positive constant R such that

1

(2π)2δ+1

π∫

0

(σ20/2π)f0(λ)λ
2d0

L1(η, λ)λ
1−2δ

dλ ≥ R

(2π)2δ+1
.

π∫

0

λ2δ−1dλ

=
R

(2π)2δ+1
.
π2δ

2δ

≥ R

8π
.
1

δ
. (3)

The statements in Lemma 4 now follow from (3), directly in the case of η ∈ E0δ1, and for

η ∈ E0δ2 on setting δ < R/(8πC) and letting δ → 0 as C →∞.

A.2 Proof of Proposition 1

Let ηn denote a sequence in E
0
δ that converges to η. For any νf > 0 we have

∣∣∣∣
1

f1(ηn, λ) + νf
− 1

f1(η, λ) + νf

∣∣∣∣ =

∣∣∣∣
|f1(ηn, λ)− f1(η, λ)|

(f1(ηn, λ) + νf )(f1(η, λ) + νf )

∣∣∣∣

≤ |f1(ηn, λ)− f1(η, λ)|
ν2f

.

Moreover, by assumption f1(η, λ) is continuous for all λ 6= 0 and hence uniformly continuous

for λ in any closed interval of the form [ε, π], ε > 0. Consequently we can determine a value

n′ such that for n ≥ n′ there exists an ε sufficiently small that |f1(ηn, λ)− f1(η, λ)| < ν3f and

∣∣∣∣∣∣
2π

n

bn/2c∑

j=1

I(λj)

f1(ηn, λj) + νf
− 2π
n

bn/2c∑

j=1

I(λj)

f1(η, λj) + νf

∣∣∣∣∣∣
≤ 2νfπ

n

bn/2c∑

j=1

I(λj) . (4)

Using Lemma 1 in conjunction with (4), it follows that

lim inf
n→∞

Q(1)n (ηn) ≥ lim inf
n→∞

2π

n

bn/2c∑

j=1

I(λj)

f1(ηn, λj) + νf

≥ lim
n→∞




2π

n

bn/2c∑

j=1

I(λj)

f1(η, λj) + νf
− 2νfπ

n

bn/2c∑

j=1

I(λj)





=
σ20
2π

∫ π

0

f0(λ)

f1(η, λ) + νf
dλ− νfπγ0(0) ,

5
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where γ0(0) is the variance of the TDGP. Letting νf → 0 and applying Lebegue’s monotone

convergence theorem gives

lim inf
n→∞

Q(1)n (ηn) ≥
σ20
2π

∫ π

0

f0(λ)

f1(η, λ)
dλ = Q(η) .

Since by definition η1 minimises Q(η) it follows that Q(η1) provides a lower bound to the

limit inferior of Q
(1)
n (ηn) for any sequence in E

0
δ .

Now let ηn denote a sequence in E
0
δ1 ∪ E

0
δ2 that converges to η. Setting

δ � min

{
σ20

4(2π)2
Cl
Cu

1

(Q(η1) + q)
, 0.25− 0.5(d0 − d1)

}
where q � 0 ,

and applying Lemma 4 in conjunction with (4) implies that

lim inf
n→∞

Q(1)n (ηn)� Q(η1) + q .

Hence we can conclude that for any sequence ηn ∈ E
0
δ1 ∪E

0
δ2 the criterion value Q

(1)
n (ηn) will,

for all n sufficiently large, exceed Q(η1), which equals limn→∞Q
(1)
n (η1) by Lemma 3.

By definition of η̂
(1)
1 , however, Q

(1)
n (η̂

(1)
1 ) ≤ Q

(1)
n (η1) and it follows from Lemma 3 that

lim sup
n→∞

Q(1)n (η̂
(1)
1 ) ≤ lim sup

n→∞
Q(1)n (η1) = Q(η1) .

We can therefore conclude that |Q(1)n (η̂(1)1 ) − Q(η1)| → 0 almost surely and an argument by

contradiction then shows that η̂
(1)
1 → η1 with probability one.

A.3 Proof of Theorem 1:

In what follows we assume that the mean is known, and without loss of generality set µ = 0

and suppose that the data is mean corrected.

6
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A.3.1 The Whittle estimator:

Concentrating Q
(2)
n (σ2,η) with respect to σ2 and setting n · bn/2c = 0.5 yields the profile

(negative) log-likelihood

Q(2)n (η) =
2π

2
log

(
σ̂2(η)

2π

)
+
2π

n

bn/2c∑

j=1

log f1(η, λj) + π

where σ̂2(η) = 2Q
(1)
n (η) and Q

(1)
n (η) =

∑bn/2c
j=1 I(λj)/f1(η, λj). Now, following Beran (1994,

page 116), we have

2π

n

bn/2c∑

j=1

log f1(η, λj) =
1

2

∞∑

r=−∞

ρ1(η, rn)→
1

2

π∫

−π

log f1(η, λ)dλ ,

where the Fourier coefficients ρ1(η, r) =

π∫

−π

log f1(η, λ) exp(ıλr)dλ form a convergent series

and

π∫

−π

log f1(η, λ)dλ =

π∫

−π

log
(
g1(β,λ)|2 sin(λ/2)|−2d

)
dλ

=

π∫

−π

log g1(β,λ)dλ− 2d
π∫

−π

log |2 sin(λ/2)|dλ .

By Assumption (A.2)

π∫

−π

log g1(β,λ)dλ = 0, and from standard results for trigonometric inte-

grals Gradshtein and Ryzhik (2007, page 583)

π∫

−π

log |2 sin(λ/2)|dλ = 2
π∫

0

log |2 sin(λ/2)|dλ = 0 .

Furthermore, since log f1(η, λ) is integrable, and continuously differentiable for all λ 6= 0 by

Assumption A.3, ρ1(η, n) = o(1/n), which implies that

2π

n

bn/2c∑

j=1

log f1(η, λj) =
∞∑

r=1

ρ1(η, rn) = O(n
−1 log n) .

7
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Hence it follows that

∣∣∣Q(2)n (η)− π logQ(1)n (η)− π(log π + 1)
∣∣∣ = O(n−1 log n) , (5)

almost surely and uniformly in η. From this we can deduce that

lim
n→∞

∣∣∣Q(2)n (η̂
(2)
1 )− π logQ(1)n (η̂

(1)
1 )− π(log π + 1)

∣∣∣ = 0 a.s. ,

where η̂
(1)
1 is the value of η that minimises the profile log-likelihood, having first deleted the

term 2π

bn/2c∑

j=1

log f1(η, λj)/n, namely η̂
(1)
1 = argminη Q

(1)
n (η). We are thereby lead directly to

the conclusion that η̂
(2)
1 and η̂

(1)
1 converge, i.e. limn→∞ ‖η̂(2)1 − η̂(1)1 ‖ = 0.

A.3.2 The TML estimator:

Using the argument employed by Hannan (1973, page 134-135) in the proof of his Lemma

4, following the detailed steps given by Brockwell and Davis (1991, §10.8.2, page 380-382) in

their proof of their Proposition 10.8.3, shows that

lim
n→∞

∣∣∣∣∣∣
1

n
Y
>
Σ
−1
η Y −

4π

n

bn/2c∑

j=1

I(λj)

f1(η,λj)

∣∣∣∣∣∣
= 0 a.s. , (6)

and the convergence is uniform in η on E0δ . From a theorem due to Grenander and Szego

(1958, Chapter 5) we know that

1

n
log |Ση| =

1

2π

π∫

−π

log f1(η, λ)dλ+O(n
−1). (7)

That the convergence in (7) is uniform in η is not stated in Grenander and Szegö, although

it follows from the uniformity of the order relations used in their proof. Their proof depends

on approximating f1(η, λ) by trigonometric polynomials, and since f1(η, λ) is a continuous

function of η and λ for all λ 6= 0 by Assumption A.3 the Stone-Weierstrass Theorem implies

that f1(η, λ) can be so approximated uniformly. It follows that

lim
n→→∞

∣∣∣∣∣Q
(3)
n (σ

2,η)− log σ2 − 2Q
(1)
n (η)

σ2

∣∣∣∣∣ = 0

8



NADARAJAH, MARTIN AND POSKITT

almost surely, and the convergence is uniform in η on E0δ .

The almost sure limit of the criterion function Q
(3)
n (σ2,η) is therefore

Q(3)(σ2, Q(η)) = log σ2 + 2Q(η)
σ2

,

uniformly in η on E0δ by Lemma 3, whereas Q
(3)
n (σ2,η) is either arbitrarily large for δ suffi-

ciently small or divergent on E
0
δ1∪E

0
δ2 by Lemma 4. Concentrating Q(3)(σ2, Q(η)) with respect

to σ2 we find that the minimum of the asymptotic criterion function is given by log (2Q(η1))+1.

Once again η1 = argminη Q(η) is the pseudo-true parameter for the estimator under mis-

specification and we can conclude that limn→∞ η̂
(3)
1 = η1 and limn→∞ ‖η̂(3)1 − η̂(1)1 ‖ = 0.

A.3.3 The CSS estimator:

Recall that the objective function of the CSS estimation method is

Q(4)n (η) =
1

n

n∑

t=1

et(η)
2, (8)

where

et(η) =
t−1∑

i=0

τ i(η) (yt−i − µ) , t = 1, . . . , n , (9)

and the coefficients τ j(η), j = 0, 1, 2, . . ., are given by τ0(η) = 1 and

τ j(η) =

j∑

s=0

αj−s(β)Γ(j − d)
Γ(j + 1)Γ(−d) , j = 1, 2, . . . . (10)

Let Tη and Hη denote the n× n upper triangular Toeplitz matrix with non-zero elements

τ |i−j|(η), i, j = 1, . . . , n, and the n×∞ reverse Hankel matrix with typical element τn−i+j(η),

i = 1, . . . , n, j = 1, . . . ,∞, respectively. Let Aη = [as−r(η)] where

as−r(η) =

π∫

−π

1

f1(η,λ)
exp(i(s− l)λ)dλ , r, s = 1, . . . , n . (11)

Then from (11) we can deduce that Aη = TηT
>
η + HηH

>
η and from (8) and (9) it follows

that Q
(4)
n (η) =

1
nY

>
TηT

>
ηY. Replacing Σ

−1
η by Aη in (6) and adapting the argument used

9
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to establish (6) accordingly, in a manner similar to the proof of Lemma 1, shows that

lim
n→∞

∣∣∣∣∣∣
1

n
Y
>
AηY −

4π

n

bn/2c∑

j=1

I(λj)

f1(η,λj)

∣∣∣∣∣∣
= 0 a.s. (12)

and that the convergence is uniform in η on E0δ . It is also shown below that
1
nY

>
HηH

>
ηY =

o(1) when |d| < 0.5, |d0| < 0.5 and d0 − d < 0.5.

We can therefore conclude that
∣∣∣Q(4)n (η)− 2Q(1)n (η)

∣∣∣ converges to zero almost surely when

η ∈ Eδ, and hence that the limiting value of the criterion function Q
(4)
n (η) is 2Q(η) by

Lemma 3. When η ∈ E0δ1 ∪ E
0
δ2, expression (12) and Lemma 4, together with the equality

Q
(4)
n (η) =

1
nY

>
AηY− 1

nY
>
HηH

>
ηY, imply that lim infn→∞Q

(4)
n (η) ≥ limn→∞ 1

nY
>
AηY and

the CSS criterion function is either arbitrarily large for δ sufficiently small or divergent. That

the pseudo-true parameter for the CSS estimator under mis-specification is η1 = argminη Q(η)

and lim η̂
(4)
1 = η1 and limn→∞ ‖η̂(4)1 − η̂(1)1 ‖ = 0 follows directly.

It remains for us to establish that 1
nY

>
HηH

>
ηY = o(1) in regions of the parameter space

where d0− d < 0.5. Suppressing the dependence on the parameter η for notational simplicity,

set M = HH>. Then M = [mij ]i,j=1,...,n where mij =
∑∞
u=0 τu+n−iτu+n−j , and

E0[Y
>
MY] = tr (MΣ0) =

n∑

i=1

n∑

j=1

mijγ0(j − i)

where γ0(τ), τ = 0,±1,±2, . . ., denotes the autocovariance function of the TDGP. Since

|τk| ∼ k−(1+d)Cτ , Cτ < ∞, the series
∑∞
k=0 |τk|2 ∼ C2τ ζ(2(d+ 1)) for all d > −1/2, where ζ(·)

denotes the Riemann zeta function, from which we can deduce that |mij | ∼ {(n− i+ 1)(n−

j + 1)}−(1+d)C′m for some C′m <∞. Hence on setting r = n− i+ 1 and s = n− j + 1 we have

that

0 ≤
n∑

i=1

n∑

j=1

mijγ0(j − i) ∼ Cmn−2(d+1)
n∑

r=1

n∑

s=1

|γ0(r − s)| , (13)

10



NADARAJAH, MARTIN AND POSKITT

where Cm <∞. But |γ0(τ)| ≤ C%γ0(0)|τ |2d0−1, C% <∞, for all τ 6= 0, and

n−2(d+1)
n∑

r=1

n∑

s=1

|γ0(r − s)| ≤ n−2(d+1)γ0(0)(n+ 2C%
n−1∑

k=1

(n− k)k2d0−1)

≤ n−(2d+1)γ0(0)(1 + 2C%
n−1∑

k=1

k2d0−1)

∼ γ0(0)

n(2d+1)
×





1 + 2C%ζ(1− 2d0) , d0 < 0;

1 + 2C% log n , d0 = 0;

1 + 2C%n2d0/2d0 , d0 > 0.

It follows that for all d where |d| < 0.5

E0[Y
>
MY] ≤ Cmγ0(0)

n1−2(d0−d)
×





1 + 2C%ζ(1− 2d0)/n2d0 , d0 < 0;

1 + 2C% log n , d0 = 0;

1 + C%/d0 , d0 > 0;

We can therefore conclude that

Pr
(
n−1Y>

MY > ε
)
=





O(n−2(d+1)) , 0.5 < d0 < 0;

O(log n/n2(d+1)) , d0 = 0;

O(n2(d0−d)−2) , 0 < d0 < 0.5;

(14)

for all ε > 0 by Markov’s inequality. Since ε is arbitrary it follows that when |d| < 0.5

and |d0| < 0.5 the almost sure limit of n−1Y>
MY is zero whenever d0 − d < 0.5, by the

Borell-Cantelli lemma, giving the desired result.

A.4 Proof of Theorem 2:

First note that

QN (η) =

{
σ20Γ(1− 2(d0 − d))
2Γ2(1− (d0 − d))

}
KN (η) (15)

11
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by the same argument that gives (15). Now let ∆CN (z) =
∑∞
j=N+1 cjz

j = C(z) − CN (z).

Then

|C(eiλ)|2 = |CN (eiλ)|2+CN (eiλ)∆CN (e−iλ)

+ ∆CN (e
iλ)CN (e

−iλ) + |∆CN (eiλ)|2

and the remainder term can be decomposed as RN = R1N +R2N where

R1N =

(
σ2ε0
2π

)∫ π

0
|∆CN (eiλ)|2|2 sin(λ/2)|−2(d0−d)dλ (16)

and

R2N =

(
σ2ε0
2π

)∫ π

−π
∆CN (e

iλ)CN (e
−iλ)|2 sin(λ/2)|−2(d0−d)dλ . (17)

The first integral in (16) equals

{
σ20Γ(1− 2(d0 − d))
2Γ2(1− (d0 − d))

}


∞∑

j=N+1

c2j + 2
∞∑

k=N+1

∞∑

j=k+1

cjckρ(j − k)


 .

Because B(z) 6= 0, |z| ≤ 1, it follows that |cj | < Cζj , j = 1, 2, . . ., for some C < ∞ and

ζ ∈ (0, 1), and hence that
∞∑

j=N+1

c2j < ζ
2(N+1) C2

(1− ζ2) .

Furthermore, since |d0 − d| < 0.5 Sterling’s approximation can be used to show that |ρ(h)| <

C′2(d0−d)−1, h = 1, 2, . . . , for some C′ <∞. This implies that
∣∣∣∣∣∣

∞∑

k=N+1

∞∑

j=k+1

cjckρ(j − k)

∣∣∣∣∣∣
<

∞∑

r=0

∞∑

s=r+1

C2C′2(N+1)ζrζs(s− r)2(d0−d)−1

< ζ2(N+1)
C2C′

(1− ζ)2 .

Thus we can conclude that R1N < const. ζ2(N+1) where 0 < ζ < 1. Applying the Cauchy-

Schwarz inequality to the second integral in (17) enables us to bound |R2N | by 2(σε0/σ)
√
IN ·R1N .

It therefore follows from the preceding analysis that |R2N | < const. ζ(N+1). Since |RN | ≤

R1N + |R2N | and (N + 1)/ exp(−(N + 1) log ζ)→ 0 as N →∞ it follows that RN = o(N
−1),

12
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as stated. The gradient vector of Q(η) with respect to η is

∂Q(η)

∂η
=

(
σ20
2π

)∫ π

−π

C(eiλ)

|2 sin(λ/2)|(d0−d)
∂

∂η
{ C(e−iλ)

|2 sin(λ/2)|(d0−d) }dλ

and substituting C(z) = CN (z) +∆CN (z) gives ∂Q(ψ)/∂ηj = ∂QN (η)/∂ηj +R3N +R4N for

the typical j’th element where

R3N =

(
σ20
2π

)∫ π

−π

CN (e
iλ)

|2 sin(λ/2)|(d0−d)
∂

∂ηj
{ ∆CN (e

−iλ)

|2 sin(λ/2)|(d0−d) }dλ

and

R4N =

(
σ20
2π

)∫ π

−π

∆CN (e
iλ)

|2 sin(λ/2)|(d0−d)
∂

∂ηj
{ C(e−iλ)

|2 sin(λ/2)|(d0−d) }dλ .

The Cauchy-Schwarz inequality now yields the inequalities

|R3N |2 ≤ R1N
(
σ20
2π

)∫ π

−π

|CN (eiλ)|2
|2 sin(λ/2)|2(d0−d)

∣∣∣∣
∂

∂ηj
{log ∆CN (e

−iλ)

|2 sin(λ/2)|(d0−d) }
∣∣∣∣
2

dλ

and

|R4N |2 ≤ R1N
(
σ20
2π

)∫ π

−π

∣∣∣∣
∂

∂ηj
{ C(e−iλ)

|2 sin(λ/2)|(d0−d) }
∣∣∣∣
2

dλ ,

from which we can infer that |R3N + R4N | ≤ const. ζ(N+1) = o(N−1), thus completing the

proof.

A.5 Proof of Theorem 3:

The distributions exhibited in the three cases presented in Theorem 3 correspond to those

given in Theorems 1, 3 and 2 of Chen and Deo (2006), and in the following lemmas we state

the properties necessary to generalise the applicability of these distributions and establish

their validity under the current scenario and assumptions. Although the distributions are non-

standard, the proof proceeds standardly via the use of the mean value theorem and convergence

in probability of a Hessian in a neighbourhood of η1, plus the application to the criterion

differential function of an appropriate central limit theorem.

13
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Lemma 1 (A.1) Let

1√
2πn

n∑

t=1

yt exp(−iλt) = ξ(λ) = ξc(λ)− ıξs(λ)

and set X> = (ξc(λ1), ξs(λ1), . . . , ξc(λbn/2c), ξs(λbn/2c)F
−1/2
0 where

F0 = diag(f0(λ1), f0(λ1), . . . , f0(λbn/2c), f0(λbn/2c)) .

Assume that Conditions A hold. Then under Assumption A.1′ the vector X> converges in

distribution to a Gaussian random variable with zero mean and variance-covariance matrix

Ω = 1

2
(I+∆), X>

D→ ξ ∼ N(0,Ω), where ∆ = [4rc], 4rc = O(j
−d0kd0−1 log k) for r = 2j−1

or r = 2j, and c = 2k − 1 or 2k, 1 ≤ j ≤ k ≤ bn/2c.

Proof of Lemma A.1.

Assumption (A.1′) implies that Assumption (A.1) of Lahiri (2003) holds. Since Conditions

A imply that Assumption (A.3) of Lahiri (2003) also holds, the asymptotic normality of XT

follows from Theorem 2.1 of Lahiri (2003). The stated covariance structure follows from

Lemmas 1 and 4 of Moulines and Soulier (1999) in which the moment properties of ξc(λj) and

ξs(λj) are derived supposing that exact Gaussianity holds for the sine and cosine transforms

for all n, with bounds that are uniform with respect to n for each j = 1, . . . , bn/2c. See also

Corollary 5.2 of Lahiri (2003) and the discussion in Lahiri (2003, page 624).

Since the limiting joint distribution of the sine and cosine transforms is Gaussian, and the

sine and cosine transforms are uniformly integrable, the form of the asymptotic distribution

and covariance properties of the corresponding periodogram ordinates are determined by the

limit law of ξc(λj) and ξs(λj), j = 1, . . . , bn/2c.

Corollary 1 (A.1) Assume that the conditions of Lemma A.1 hold, and for each j = 1, . . . bn/2c

set Zj = I(λj)/f0(λj) = |ξ(λj)|2/f0(λj) and let ρj = Cov0[ξc(λj)ξs(λj)]/f0(λj). Then

Zj − ρjξc(λj)ξs(λj)/f0(λj) converges in distribution to 1
2χ

2(2)(1+42j2j)(1− ρ2j ) where χ2(2)

denotes a Chi-squared random variable with two degrees of freedom. Furthermore, E0[Zj ] =

1 + O(log j/j), V ar0[Zj ] = 1 + O(log j/j) and Cov0[ZjZk] = O(j−2|d0|k2|d0|−2log2k) for

1 ≤ j < k ≤ bn/2c.

14
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Proof of Corollary A.1.

For j = 1, . . . bn/2c set

Uj =
ξc(λj)− ξs(λj)]√

f0(λj)(1 +42j2j)(1− ρj)
and Vj =

ξc(λj) + ξs(λj)]√
f0(λj)(1 +42j2j)(1 + ρj)

.

Then the Continuous Mapping Theorem implies that

Zj − ρjξc(λj)ξs(λj)/f0(λj)
(1 +42j2j)(1− ρ2j )

= U2j + V
2
j

D→ 1

2
χ2(2)

since by Lemma A.1 XT
D→ ξ ∼ N(0,Ω). Let A and B be any bn/2c × bn/2c symmetric

selection matrices. Then E[ξ>Aξ] = trΩA and E[(ξ>Aξ)(ξ>Bξ)] = trΩAtrΩB+ trΩAΩB,

from which the stated moments can be derived via appropriate choice of A and B. Note, in

particular, that ρj = Cov0[ξc(λj)ξs(λj)]/f0(λj) =
1
24(2j−1)2j = O(log j/j) and Cov[ξ2jξ

2
k] =

(E[ξjξk])
2 = 1

442
2j2k = O(j

−2|d0|k2|d0|−2log2k) for 1 ≤ j < k ≤ bn/2c.

The remaining steps in the proof of Theorem 3 are based on Taylor expansions of the

gradient vector (or score function) of the criterion functions. For the FML estimator we have

0 =
∂Q

(1)
n (η1)

∂η
+
∂2Q

(1)
n (η1)

∂η∂η′
(η̂1 − η1)

where

∂Q
(1)
n (η1)

∂η
=− 2π

n

bn/2c∑

j=1

I(λj)

f1(η, λj)2
∂f1(η, λj)

∂η
= −2π

n

bn/2c∑

j=1

I(λj)

f0(λj)
w(η, λj)

w(η, λj) =
f0(λj)

f1(η, λj)

∂ log f1(η, λj)

∂η
,

and

∂2Q
(1)
n (η)

∂η∂η′
=
2π

n

bn/2c∑

j=1

I(λj)

f1(η, λj)
H(η, λj) ,

H(η, λj) =2
∂ log(f1(η, λj))

∂η

∂ log(f1(η, λj))

∂η′
− 1

f1(η, λj)

∂2f1(η, λj)

∂η∂η′
,

and the components of η1 lie on the line segment between η̂1 and η1. Existence of the Taylor

expansion is justified by convexity and Assumptions (A.3) and (A.5).
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Lemma 2 (A.2) Let dQ
(1)
n (η; t), where t = (t1, . . . , tl+1)

>, denote the differential of Q
(1)
n (η).

Then under the assumptions of Theorem 3

n

2π



bn/2c∑

j=1

(
t
>
w(η1, λj)

)2


− 1
2 (
dQ(1)n (η1; t)− E[dQ(1)n (η1; t)]

)
D→ Z ∼ N(0, 1)

for all t ∈ Rl+1, 0 < ‖t‖ <∞.

Proof of Lemma A.2. By Assumption A.3 the differential of Q
(1)
n (η) exists and is given

by ∂Q
(1)
n (η1) /∂η

>
t, from which it follows that

dQ(1)n (η1; t)− E[dQ(1)n (η1; t)] = −
2π

n

bn/2c∑

j=1

(Zj − E[Zj ])w(η1, λj)>t .

Theorem 2 of Moulines and Soulier (1999) provides a generalisation of central limit theorems

for triangular arrays of martingale differences and weakly dependent sequences to similarly

weighted sums of correlated variables. Replacing Moulines and Soulier’s ηnj by Zj − E[Zj ]

and their bn,j by w(η, λj)
>
t, recognising from Corollary A.1 that Zj−E[Zj ], j = 1, . . . , bn/2c,

share the same moment structure and order of correlation as Moulines and Soulier’s ηnj , the

proof of the lemma follows Moulines and Soulier’s proof of their Theorem 2 presented in

Moulines and Soulier (1999, Appendix B). Conditions (i) and (ii) of Theorem 2 of Moulines

and Soulier (1999) are satisfied because C1λ
−2d∗

j log λj ≤ ‖w(η, λj)‖ ≤ C2λ−2d
∗

j log λj for some

constants C1 and C2 (see Chen and Deo, 2006, expression (21) pg. 276) and

lim
n→∞

sup
j=1,...,bn/2c



bn/2c∑

j=1

(
t
>
w(η1, λj)

)2


−1

(w(η1, λj)
>
t)2 = 0 .

The following lemma parallels Lemma 3 of Chen and Deo (2006) and is derived in a similar

fashion. The lemma and its proof are presented here for completeness.

Lemma 3 (A.3) Let Ec denote a compact convex subset of E
0
δ and denote the second order

differential of the FML criterion function by d2Q
(1)
n (η; t) = t>

(
∂2Q

(1)
n (η) /∂η∂η>

)
t. Then

for all t, ‖t‖ <∞,

plimn→∞ sup
η∈Ec

∣∣∣d2Q(1)n (η; t)− d2Q (η; t)
∣∣∣ = 0 .
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under Assumptions (A.1′) and (A.2)− (A.5).

Proof of Lemma A.2.

By definition of the second order differential we have

E0

[
d2Q(1)n (η; t)

]
=E0


2π
n

bn/2c∑

j=1

I(λj)

f1(η, λj)
t
>
H(η, λj)t




=
2π

n

bn/2c∑

j=1

f0(λj)

f1(η, λj)
t
>
H(η, λj)t+

(
E0[I(λj)]

f0(λj)
− 1
)

f0(λj)

f1(η, λj)
t
>
H(η, λj)t ,

where E0[I(λj)]/f0(λj)−1 = O(log j/j), by Corollary A.1, and t>H(η, λj)t = O(log2 λj) since

supη ∂ log f1(η, λj)/∂η is of order O(log λj) by Assumptions (A.2) and (A.3) and ‖t‖ < ∞.

Thus we can conclude that

2π

n

bn/2c∑

j=1

(
E0[I(λj)]

f0(λj)
− 1
)

f0(λj)

f1(η, λj)
t
>
H(η, λj)t =O


2π
n

bn/2c∑

j=1

log j

j
λ−2d

∗

j log2 λj




=O


n2d∗−1

bn/2c∑

j=1

log j

j
j−2d

∗
log2(j/n)




=




O(n2d

∗−1 log2 n), 0 < d∗ < 0.5 ;

O(n−1 log4 n), −1.0 < d∗ ≤ 0 ,

and hence that E0

[
d2Q

(1)
n (η; t)

]
→ t

> ∂
2Q(η)
∂η∂η′ t = d

2Q (η; t). Similarly, setting h(η; t, λj , λk) =

t
>
H(η, λj)t · t>H(η, λk)t and invoking Corollary A.1 once again we have

V ar0

[
d2Q(1)n (η; t)

]
=

(
2π

n

)2 bn/2c∑

j=1

bn/2c∑

k=1

f0(λj)

f1(η, λj)

f0(λk)

f1(η, λk)
h(η; t, λj , λk)Cov0

[
I(λj)

f0(λj)

I(λk)

f0(λk)

]

=O


 1

n2

bn/2c∑

j=1

bn/2c∑

k≥j

λ−2d
∗

j λ−2d
∗

k log2 λj log
2 λkj

−2|d0|k2|d0|−2 log2 k




=O


n4d∗−2

bn/2c∑

j=1

j−2(d
∗+|d0|) log2(j/n)

bn/2c∑

k=1

k−2(d
∗−|d0|)−2 log2 k log2(k/n)




=





O(n4d
∗−2 log4 n), d∗ + |d0| > 0.5 0 < d∗ < 0.5 ;

O(n−(1+2(|d0|−d
∗)) log5 n), d∗ + |d0| ≤ 0.5 0 < d∗ < 0.5 ;

O(n−(1+2|d0|) log5 n), d∗ + |d0| ≤ 0.5 − 1 < d∗ ≤ 0 .
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It therefore follows from Markov’s inequality that d2Q
(1)
n (η; t) converges in probability to

d2Q (η; t).

Now, by the Mean Value Theorem, for any η1 and η2 in Ec

∣∣∣d2Q(1)n (η1; t)− d2Q(1)n (η2; t)
∣∣∣ ≤

∥∥∥∥∥∥

∂
{
d2Q

(1)
n (η; t)

}

∂η

∥∥∥∥∥∥
· ‖η1 − η2‖

for some η between η1 and η2. Moreover,

E0



∂
{
d2Q

(1)
n (η; t)

}

∂η


 =2π

n

bn/2c∑

j=1

{
f0(λj)

f1(η, λj)
+

(
E0[I(λj)]

f0(λj)
− 1
)

f0(λj)

f1(η, λj)

}
· k(η; t, λj)

=
2π

n

bn/2c∑

j=1

f0(λj)

f1(η, λj)
k(η; t, λj) + rn (18)

where

k(η; t, λj) =
∂t>H(η, λj)t

∂η
− t>H(η, λj)t

∂ log f1(η, λj)

∂η
= O(log3 λj)

and the remainder

rn =
2π

n

bn/2c∑

j=1

(
E0[I(λj)]

f0(λj)
− 1
)

f0(λj)

f1(η, λj)
k(η; t, λj)

=O


2π
n

bn/2c∑

j=1

log j

j
λ−2d

∗

j log3 λj




=




O(n2d

∗−1 log3 n), 0 < d∗ < 0.5 ;

O(n−1 log5 n), −1 < d∗ ≤ 0 ,

From Assumption (A.3) and (A.5) it follows that the components of the first term on the right

hand side of (18) converge to finite constants, and hence that

∣∣∣d2Q(1)n (η1; t)− d2Q(1)n (η2; t)
∣∣∣ ≤ Cn‖η1 − η2‖

where

Cn = sup
η∈Ec

∥∥∥∥∥∥

∂
{
d2Q

(1)
n (η; t)

}

∂η

∥∥∥∥∥∥
= Op(1)

18
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since supnE0

[
∂
{
d2Q

(1)
n (η; t)

}
/∂η

]
< ∞ for all η ∈ Ec. We can therefore conclude that

d2Q
(1)
n (η1; t) is stochastically equicontinuous, and hence that

plimn→∞ sup
η∈Ec

∣∣∣d2Q(1)n (η; t)− d2Q (η; t)
∣∣∣ = 0 ,

for all t, ‖t‖ <∞, as required.

That the FML estimator possesses the asymptotic distributions as specified in Theorem

3 now follows by replacing Lemma 5 of Chen and Deo (2006) by Lemma and Corollary A.1,

Lemmas 8 and 9 by Lemma A.2, and Lemma 3 of Chen and Deo (2006) by Lemma A.3.

Having made these replacements we then find that the convergence rates and asymptotic

approximations given in Chen and Deo’s Lemma 4 and for their Cases 1, 2 and 3 in their

lemmas 6, 7, 10, 11 and 12 remain valid, thus establishing Theorem 3 for the FML estimator.

For the Whittle estimator we have, via definition of the differential and application of the

chain rule, that

∣∣∣∣∣dQ
(2)
n (η; t)− dQ

(1)
n (η; t)

Q
(1)
n (η)

∣∣∣∣∣ ≤|∇Q
(2)
n (η; t)− dQ(2)n (η; t) |+

|∇Q(2)n (η; t)−∇ logQ(1)n (η; t) |+
∣∣∣∣∣∇ logQ

(1)
n (η; t)− dQ

(1)
n (η; t)

Q
(1)
n (η)

∣∣∣∣∣

≤2ε‖t‖+ |∇Q(2)n (η; t)−∇ logQ(1)n (η; t) |

where

∇ logQ(1)n (η; t) = logQ(1)n (η + t)− logQ(1)n (η) and ∇Q(2)n (η; t) = Q(2)n (η + t)−Q(2)n (η)

and ε→ 0 as ‖t‖ → 0. Setting ‖t‖ = O(n−1 log n), noting that (5) implies that the difference

in differences |∇Q(2)n (η; t)−∇ logQ(1)n (η; t) | = O(n−1 log n), we find that
∣∣∣∣∣dQ

(2)
n (η; t)− dQ

(1)
n (η; t)

Q
(1)
n (η)

∣∣∣∣∣ ≤ O(n
−1 log n) . (19)
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Equation (19) leads, in turn, to the conclusion that

∣∣∣∣∣d
2Q(2)n (η; t)− d

2Q
(1)
n (η; t)

Q
(1)
n (η)

∣∣∣∣∣ ≤
{
dQ

(1)
n (η; t)

Q
(1)
n (η)

}2
+O(n−1 log n). (20)

But by Lemma 4 of Chen and Deo (2006)

E
[
dQ(1)n (η1; t)

]
=− 2π

n

bn/2c∑

j=1

E

[
I(λj)

f0(λj)

]
w(η1, λj)

>
t

=




O(n2d

∗−1 log n), 0 < d∗ < 0.5 ;

O(n−1 log3 n), −1.0 < d∗ ≤ 0 .
(21)

In addition,

V ar0

[
dQ(1)n (η; t)

]
=O


 1

n2

bn/2c∑

j=1

bn/2c∑

k≥j

λ−2d
∗

j λ−2d
∗

k log λj log λkj
−2|d0|k2|d0|−2 log2 k




=O


n4d∗−2

bn/2c∑

j=1

j−2(d
∗+|d0|) log(j/n)

bn/2c∑

k=1

k−2(d
∗−|d0|)−2 log2 k log(k/n)




=





O(n4d
∗−2 log2 n), d∗ + |d0| > 0.5 0 < d∗ < 0.5 ;

O(n−(1−2(d
∗−|d0|)) log3 n), d∗ + |d0| ≤ 0.5 0 < d∗ < 0.5 ;

O(n−(1+2|d0|) log3 n), d∗ + |d0| ≤ 0.5 − 1.0 < d∗ ≤ 0 .

(22)

The asymptotic equivalence of the FML and Whittle estimators now follows since: by

Lemma 3 Q
(1)
n (η1) converges almost surely to Q (η1) ≥ σ20 > 0; equations (20), (21) and (22)

imply that |d2Q(2)n (η1; t)− d2Q(1)n (η1; t) /Q
(1)
n (η1) | = op(1); and equation (19) implies that

n

2π



bn/2c∑

j=1

(
t
>
w(η1, λj)

)2


− 1
2
∣∣∣∣∣dQ

(2)
n (η1; t)−

dQ
(1)
n (η1; t)

Q
(1)
n (η1)

∣∣∣∣∣

=




O(n−2(d0−d1)), 0.25 < d0 − d1 < 0.5 ;

O((n log n)−
1
2 ), −1.0 < d0 − d1 ≤ 0.25 .
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since

bn/2c∑

j=1

{
t
>
w(η, λj)

}2
=O(

bn/2c∑

j=1

λ−4d
∗

j log2 λj)

=




O(n4d

∗
log2 n), 0.25 < d∗ < 0.5 ;

O(n log3 n), −1.0 < d∗ ≤ 0.25 .

This establishes that Lemma A.2 also holds with dQ
(1)
n (η1; t) replaced by Q(η1)dQ

(2)
n (η1; t).

For the TML estimator we begin by noting that

∣∣∣∣∣∣
2π

n

bn/2c∑

j=1

log f1(η, λj)−
π

n
log |Ση|

∣∣∣∣∣∣
= O(n−1 log n) ,

and concentrating Q
(2)
n (σ2,η) and Q

(3)
n (σ2,η) with respect to σ2 yields the inequality

|Q(2)n (η)− πQ(3)n (η) | ≤ O(n−1 log n) + | log 2Q(1)n (η)− log(2π/n)Y>
Σ
−1
η Y| . (23)

If we let U denote the n× n unitary matrix with entries n− 1
2 exp(ı2π(r − 1)(c− 1)/n) in row

r and column c, r, c = 1, . . . , n, then the off diagonal entries in UΣηU
∗ are of order O(n−1),

and the diagonal entries are

n−1∑

s=−(n−1)

(
1− |s|

n

)
γ1 (s)

σ2
exp(ı2π(j − 1)s/n) j = 1, . . . , n .

Since f1(η, λ) is absolutely integrable on [−π, π], and by Assumptions 3 and 5 f1(η, λ) is

continuously differentiable for all λ 6= 0, from Fejer’s Theorem it follows that UΣηU
∗ −F1 =

O(n−1) where F1 equals




diag(Csf1, f1(η, λ1) . . . , f1(η, λbn/2c), f1(η, λbn/2c), . . . , f1(η, λ1)), for n odd;

diag(Csf1, f1(η, λ1) . . . , f1(η, λ(n−2)/2), f1(η, λbn/2c), f1(η, λ(n−2)/2), . . . , f1(η, λ1)), for n even,

and the Cèsaro sum

Csf1 =
n−1∑

s=−(n−1)

(
1− |s|

n

)
γ1 (s)

σ2
=




O(n2d log n), 0 < d < 0.5

O(1), −0.5 < d ≤ 0 .

21



MEAN ESTIMATION AND MIS-SPECIFIED MODELS

Conditions A and Assumption A.3 imply that Ση and F1 are positive definite and it therefore

follows, upon application of the Rayleigh-Ritz theorem, that

(2π/n)
∣∣∣Y>

Σ
−1
η Y −Y>

UF
−1
1 U

∗
Y

∣∣∣ =
∣∣∣(2π/n)Y>

Σ
−1
η Y − 2Q(1)n (η)

∣∣∣

=n−1|Y>
RηY|

≤n−1 max
i=1,...,n

{|µi(Rη)|}‖Y‖2

where µi(Rη), i = 1, . . . , n, are the eigenvalues of the residualRη = Σ
−1
η −UF−11 U∗ = O(n−1).

Evaluating the characteristic polynomial of Rη via the leading principle minors, or using

the Faddeev-Leverrier method, then indicates that |µi(Rη)|n ≤ |µi(Rη)|n−1O(n−1) and the

spectral radius of Rη is O(n
−1).

We can therefore use the method leading to (19) and (20) to deduce from the inequality in

(23) that the first and second differentials satisfy |dQ(2)n (η1; t)−πdQ(3)n (η1; t) | = O(n−1 log n)

and |d2Q(2)n (η1; t) − πd2Q(3)n (η1; t) | = op(1). It therefore follows that the Whittle estimator

and the TML estimator converge in distribution as

n

2π



bn/2c∑

j=1

(
t
>
w(η1, λj)

)2


− 1
2 ∣∣∣dQ(2)n (η1; t)− πdQ(3)n (η1; t)

∣∣∣

=




O(n−2(d0−d1)), 0.25 < d0 − d1 < 0.5 ;

O((n log n)−
1
2 ), −1.0 < d0 − d1 ≤ 0.25 .

For the CSS estimator we have Q
(4)
n (η1) =

{
Y
>
AηY −Y>

MηY
}
/n. Replacing Ση by

Aη and adapting the argument used previously shows that UAηU
∗ = 2πF−11 + O(n−1) and

hence, using (14), that

|Q(4)n (η1)− 2Q(1)n (η1)| ≤ O(n−1) + op(n−
1
2 ) .

Apart from notational changes, the remaining steps in showing that the CSS and FML esti-

mators converge in distribution are the same as those used in establishing the equivalence of

the FML, Whittle and TML estimators, and are therefore omitted.
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The preceding derivations imply that Lemma A.2 also holds with dQ
(1)
n (η1; t) replaced by

Q(η1)dQ
(2)
n (η1; t), πQ(η1)dQ

(3)
n (η1; t) and (1/2)dQ

(4)
n (η1; t). As with the FML estimator,

we then find that the convergence rates and asymptotic approximations given in lemmas 4, 6,

7, 10, 11 and 12 of Chen and Deo (2006) remain valid, thus establishing Theorem 3 for the

Whittle, TML and CSS estimators, and hence confirming that the four estimators η̂
(1)
1 , η̂

(2)
1 ,

η̂
(3)
1 and η̂

(4)
1 are asymptotically equivalent.

Appendix B: Evaluation of Bias Correction Term

For the FML estimator we have

E0

(
∂Q

(1)
n (η)

∂η

)
=

2π

n

bn/2c∑

j=1

E0(I(λj))
∂f1(η, λj)

−1

∂η

=
2π

n

bn/2c∑

j=1


∑

|k|<n

(
1− |k|

n

)
γ0(k) exp(ikλj)


 ∂f1(η, λj)

−1

∂η
,

where γ0(k) denotes the autocovariance at lag k of the TDGP (see, for example, Brockwell

and Davis, 1991, Proposition 10.3.1). Similarly, for the Whittle estimator we have

E0

(
∂Q

(2)
n (σ2ε,η)

∂η

)
=
4

n

bn/2c∑

j=1

∂ log f1(η1,λj)

∂η

+
8π

σ2n

bn/2c∑

j=1


∑

|k|<n

(
1− |k|

n

)
γ0(k) exp(ikλj)


 ∂f1(η, λj)

−1

∂η
.

Differentiating the TML criterion function with respect to η gives

∂Q
(3)
n (σ2,η)

∂η
=
1

n
trΣ−1η

∂Ση
∂η

+
1

nσ2
Y
T
∂Σ−1η
∂η

Y ,

which has expectation

E0

(
∂Q

(3)
n (σ2,η)

∂η

)
=
1

n
trΣ−1η

∂Ση
∂η

− 1

nσ2
trΣ−1η

∂Ση
∂η

Σ
−1
η Σ0 ,
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where Σ0 = [γ0 (|i− j|)] and σ2Ση = [γ1 (|i− j|)] , i, j = 1, 2, ..., n. The criterion function for

the CSS estimator can be re-written as

Q(4)n (η) =
1

n

n∑

t=1

(
t−1∑

i=0

τ iyt−i

)2
=
1

n

n∑

t=1

t−1∑

i=0

t−1∑

j=0

τ iτ jyt−iyt−j ,

where τ i is as defined in (10). The gradient of Q
(4)
n (η), recalling that τ i = τ i(η), is thus given

by

∂Q
(4)
n (η)

∂η
=
1

n

n∑

t=1

t−1∑

i=0

t−1∑

j=0

(
τ i
∂τ j
∂η

+ τ j
∂τ i
∂η

)
yt−iyt−j ,

and the expected value of the gradient is

E0

(
∂Q

(4)
n (η)

∂η

)
=
1

n

n∑

t=1

t−1∑

i=0

t−1∑

j=0

(
τ i
∂τ j
∂η

+ τ j
∂τ i
∂η

)
γ0(i− j) .

References

Beran, J. (1994). Statistics for long-memory processes. Chapman and Hall, New York, 1st

edition.

Brockwell, P. J. and Davis, R. A. (1991). Time series: Theory and Methods. Springer, New

York, 2nd edition.

Chen, W. W. and Deo, R. S. (2006). Estimation of mis-specified long memory models. Journal

of Econometrics, 134(1), 257—281.

Fox, R. and Taqqu, S. M. (1986). Large sample properties of parameter estimates for strongly

dependent stationary Gaussian time series. The Annals of Statistics, 14(2), 517—532.

Gradshtein, I. S. and Ryzhik, I. M. (2007). Tables of Integrals, Series and Products. Academic

Press, Sydney.

Grenander, U. and Szego, G. (1958). Toeplitz Forms and Their Application. University of

California Press, Berkeley.

Hannan, E. J. (1973). The asymptotic theory of linear time-series models. Journal of Applied

Probability, 10(1), 130—145.

24



NADARAJAH, MARTIN AND POSKITT

Lahiri, S. N. (2003). A necessary and sufficient condition for asymptotic independence of

discrete Fourier transforms under short- and long-range dependence. Annals of Statistics,

31(2), 613—641.

Moulines, E. and Soulier, P. (1999). Broadband log-periodogram regression of time series with

long-range dependence. Annals of Statistics, 27(4), 1415—1439.

25


