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Supplementary Appendix: Issues in the Estimation of

Mis-Specified Models of Fractionally Integrated Processes

Gael M. Martin, K. Nadarajah & D. S. Poskitt

Department of Econometrics and Business Statistics, Monash University

Abstract

This material contains the proofs of Lemmas 1, 2, 3 and 4, Proposition 1, and Theorems
1, 2 and 3. Additional Lemmas used to prove the main theorems in the paper are also
provided with proofs. These technical details are given in Appendix A. Appendix B contains
the expressions used to calculate the bias term associated with the four estimators.

Appendix A: Proofs

A.1 Proof of Lemmas 1, 2, 3 and 4
A.1.1 Proof of Lemma 1:

The proof of the lemma uses a method that parallels that employed by Fox and Taqqu in the
proof of their Lemma 1 (see Fox and Taqqu, 1986, pages 523-524), which in turn employs an
argument first developed by Hannan in the proof of his Lemma 1 (see Hannan, 1973, pages

133-134). To describe the approach, set

1
cn(T) = cn(—7) = o Zytyt+T> T72>0,

and let

knr(m, A) = % n(r)( —L\TD exp(iAr)

r=—M
denote the Cesaro sum of the first M terms of the Fourier series of (f1(n,\) +v¢)~! where M
is chosen such that |(fi(n,A) +vs)~! — kar(m,A))| < € uniformly in § € ES. Then following

the same steps as in the derivation presented in Hannan (1973, pages 133-134) we have

n/2
% Z {(fitn ) +v) ™" = k(. Mg} | < een(0),
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and
M

S IUAS S
nlgrolo - Z Dea(mA) = > w(r) (1 A ) o) =0

r=—M

almost surely, the latter result since T(\) = (27)"' S22 ] ¢, (r) exp(—iAr) and ¢, (r) con-

T n

verges to 7, (r) almost surely by ergodicity. Moreover,

_inm( I o) = 28 [ fa0karen, i

differs from the required limiting value by a quantity bounded by evy(0), from which the
desired result follows because € is arbitrary.

An alternative proof of this lemma can be obtained by extending the arguments adopted
by Brockwell and Davis (1991, §10.8.2, page 378-379), in the proof of their Proposition 10.8.2,

to the stationary fractional case, as suggested in Brockwell and Davis (1991, page 528).

A.1.2 Proof of Lemma 2:

The proof parallels the proof of Lemma 1, only now we use the Cesaro sum of M terms of

the Fourier series of hi(m, \)~!

. Denote this sum by cpr(n,A) > 0. Since by construction
hi(n,A) > 0, M can be chosen so that |hi(n,\)™! — cpr(n, A)| < & uniformly on E{ since the
Cesaro sum converges uniformly in (n,\) for n € Eg. Once again the detailed steps follow

Hannan (1973, page 133-134), as above, or Brockwell and Davis (1991, §10.8.2, page 378-379).

A.1.3 Proof of Lemma 3:

Observe that f1(m,\) > 0 when d > 0 and hence for ¢ sufficiently small we have hi(n,A) =
fi(m, ) for all A € [—7, 7). It follows immediately from Lemma 2 that lim, ..o |Q% (1) —
Q(m)| = 0 almost surely and uniformly in  on EY when d > 0. We have thus established
Lemma 3 in the case where d > 0, (¢f. Chen and Deo, 2006, Lemma 2). To establish that
Lemma 3 also holds on E? when d < 0, observe that Lemma 1 implies that Q(n) provides
a limit inferior for Q,(Tl)(n) and it therefore only remains for us to establish that Q(n) also
provides a limit superior for QS) (n) onn e Eg when d < 0.

In the latter case fi(n,\) = |A|24L()\) where L()) is slowly varying and bounded as A — 0

and there exists an € € (0,2|d|) and a K > 0, that may depend on ¢, such that fi(n,\) =
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A2 K| \|7¢. We therefore have that fi(n,\) > K|A]?% when |A| < 1 and hi(n,\) # fi(n,))

whenever A < (K~16)1/Cl4=9) from which it follows that
» o [n/2] 1 /27 12l ks
1)
)< = —(z= )
wmsi Y S x () Lo )

where ks = |(K16)Y/@d=9) (27 /n)| + 1. The inequality in (1) follows because for all \; <

(K=16)/Cldl=¢) < 27ks/n we have

Gy )= (k)" )

and
In/2] s
Wy — 27 I(y) | 2m A.( L1 )
Q) n ; hi(m, Aj) D) ;I( i) filn, N5)  ha(n, )
In/2] ks
2 I0y) 2w I(\) (5 2 >
= Z .y ]Zhl(n,xj) 7)1

n/2

o 1 /or\ 2l ke
N ; Z hl 777 K(”) ZI(A]‘)'

=ks+1

Applying Lemma 2 to the first term on the right hand side in (1) gives a limit of

ap [T fo(A)

dX.
21 Jg-15y1/cla-o fi(n1,A)

Similarly

o (K 16)1/(2|d\ €) 0_2
Jim 7 Z =2 Fo(Wdx = 20 gy () (115120

for some X € [0, (K~16)Y/2ld=9] by the first mean value theorem for integrals. Setting

§ = (2m)?4=¢ /nP where p > 2|d| — €, we find that

1 /2m) 2 Js 1 /n\2ld o2 27ks
— | — ) ~ —= (—) O fo(N) =2
K<n) JZ—; (A9) K \27 27Tf0( ) n
p—2|d|+e

1 /2 2 o3 (1 @d=9
~ w %fo()\) -




MEAN ESTIMATION AND MIS-SPECIFIED MODELS

and hence we can conclude that

lim sup QS)(TI) <Q(n)

n—oo

uniformly in n € Eg, as required.

A.1.4 Proof of Lemma 4:

Let Li(n,\) = A% f(n, \) and suppose that ) € Egl U Egz # (). Then

[n/2]
im0 = timint T Y 0N
lim f27r an/? I()\j))\gd
= liminf — _—
n—oo N =1 Ll(n7)‘])

_og n/2
o &Iy o)
s ))\1 2(do+9) ’

> liminf
n—oo n

j=1 Ll(n:

where the inequality in (2) arises because for all € Egl U ESQ we have (dp —d) > 0.5 — ¢ and

it follows that )\;2(d07d) > (2%)_(254‘1))\?571 for all A\; = 27j/n, j=1,...,|n/2].

Applying Lemma 1 and Lemma 2 to (2) by replacing f1(n,\;) by Li(n, \)A'~ Ado+9) " and
then letting the constant vy > Oin the lemmas approach zero, it follows from Fatou’s theorem

that

_o5 /2]
lim (27)

n— oo n

I(2)) 00/27T fo(A) Ao
(2r 26+1

s ))\1 2(do+38) Ll ,r,’ )\1 25 =0,

j=1 Ll('r’: 0

wherein we recognise that 0 < 1—2(dp+9) < 2(1—24) and that L1(n, \) = (¢2/27)g1(B, \) sinc(\/2) 24

and (02/27) fo(M)A2 = (03 /27)go(N) sinc(A/2) 2% where sinc(z) = sin(z)/x, the cardinal

sine function. Since 2/7 < sinc(A/2) <1 for 0 < A < m, it follows from Assumption (A.3) and
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Conditions A that there exists a finite positive constant R such that

™

L [(ed/2m ) n e
>
(27r)25+10/ Li(n 7)\))\1 25 dx = (2m)20+1 A dA

v

3)

The statements in Lemma 4 now follow from (3), directly in the case of n € Egl, and for

ne EgQ on setting 6 < R/(87C) and letting 6 — 0 as C' — oo.

A.2 Proof of Proposition 1

Let n,, denote a sequence in Eg that converges to ;. For any vy > 0 we have

1 1
AN+ filn ) + vy

’ |fl(nn7)‘)_fl(nv>‘)’
(fl(nnvA) +Vf)(fl(l’77A) +Vf)
11, A) = fr(m, M)

2
Vy

IN

Moreover, by assumption fi(m, A) is continuous for all A # 0 and hence uniformly continuous
for A in any closed interval of the form [e, 7], ¢ > 0. Consequently we can determine a value

n’ such that for n > n' there exists an ¢ sufficiently small that | f1(n,,,\) — fi(n, A)| < 1/322 and

Ln/?] [n/2] [n/2]
fl My A +Vf n — filn )+Vf
Using Lemma 1 in conjunction with (4), it follows that
[n/2]
L L 27 I(\))
lim inf Q(V > liminf = ) :
RO = BB 2 F ) vy
LH/QJ [n/2]
2 I()j) uym
> lim ¢ — J — g I(\;
n—oco | n Jz::l fi(n, \j) + vy no o ()
2 rm
00 Jo(A)
= —d)\—u m™0(0),
o Falm )+ P00
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where v4(0) is the variance of the TDGP. Letting vy — 0 and applying Lebegue’s monotone

convergence theorem gives

hmlan > 27r/ f10 =Q(n).

Since by definition 7n; minimises Q(n) it follows that Q(n;) provides a lower bound to the

limit inferior of Q,(ll)(nn) for any sequence in EJ.

Now let n,, denote a sequence in Egl U ESQ that converges to 1. Setting

o2 C 1
5<<min{ 0o~ ,0.25 — 0.5(dg — d } where ¢> 0,
@2 Cy (Qm) + ) (do =)

and applying Lemma 4 in conjunction with (4) implies that

lim inf Q4 (12,) > Q(my) + ¢

Hence we can conclude that for any sequence n,, € Egl UE22 the criterion value Qg)(nn) will,

for all n sufficiently large, exceed Q(n;), which equals lim,_, Q%l)(nl) by Lemma 3.

By definition of ﬁgl), however, Q,(@l)(ﬁgl)) < Qg)(nl) and it follows from Lemma 3 that

lim sup QM (71} ))<hmsupQ () =Q(n;).

We can therefore conclude that |Q£ll)(ﬁ§1))

contradiction then shows that ﬁgl) — 1, with probability one.

— Q(ny)] — 0 almost surely and an argument by

A.3 Proof of Theorem 1:

In what follows we assume that the mean is known, and without loss of generality set =0

and suppose that the data is mean corrected.
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A.3.1 The Whittle estimator:

Concentrating Qg)(a?,n) with respect to o2 and setting n - |[n/2] = 0.5 yields the profile

(negative) log-likelihood

[n/2]

27 (n) 27
@) () — 2T 2 .
Qy’(n) 5 10g< 5 >+ - ;:1 log fi(m, Aj) +m

where 5(n) = 204 (1) and QY (n) = S\ I(A;)/f1(n, A;). Now, following Beran (1994,

page 116), we have

[n/2] o0 .

27 1 1
TS toghinA) =5 Y pilnorn) = [log fin A,
7=1 r=—00 g

™

where the Fourier coefficients p;(n,r) = / log f1(n, A) exp(2Ar)dA form a convergent series

—T
and

™

/ log fi(m, A)dA =

—Tr

log (g1(8,0)[2sin(A/2)] ") d

™

log g1(B,\)d\ — Qd/ log |2sin(A/2)|d.

—T

A A

T

By Assumption (A.2) / log g1(B,\)dA = 0, and from standard results for trigonometric inte-

—Tr
grals Gradshtein and Ryzhik (2007, page 583)

/log |2sin(A/2)|dA = 2/log |2sin(A/2)|dA = 0.
—m 0

Furthermore, since log f1(n, \) is integrable, and continuously differentiable for all A # 0 by
Assumption A.3, p;(n,n) = o(1/n), which implies that

[n/2 oo

]
2 .
% > log fi(m, \j) = pi(n,rn) = O(n~'logn) .
=1

r=1
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Hence it follows that

QP () — 7108 Q) (m) — m(log 7 +1)| = O(n ™" logn), (5)
almost surely and uniformly in 7. From this we can deduce that

lim ‘fo) (ﬁ?)) — mlog Q;l)(ﬁ(ll)) —m(logm + 1)‘ =0 a.s.,

n—oo

where ﬁgl) is the value of ) that minimises the profile log-likelihood, having first deleted the

[n/2]

term 2m Z log f1(n, A;j)/n, namely ﬁgl) = arg min,, Qg)(n). We are thereby lead directly to
j=1

the conclusion that ﬁ?) and ﬁgl) converge, i.e. limy, o ||1A7§2) — ﬁgl)H =0.

A.3.2 The TML estimator:

Using the argument employed by Hannan (1973, page 134-135) in the proof of his Lemma
4, following the detailed steps given by Brockwell and Davis (1991, §10.8.2, page 380-382) in
their proof of their Proposition 10.8.3, shows that

[n/2]
. 1 _ 47 I()\))
lim |[-Y'X IY——E =0 as., 6
n—oo (1 K no = filnAg) (©)

and the convergence is uniform in  on EJ. From a theorem due to Grenander and Szego
(1958, Chapter 5) we know that

™
1 1 _
—log|%,| = /log fi(m, N)dX +O(n™1h). (7)
n 27
—T
That the convergence in (7) is uniform in 7 is not stated in Grenander and Szegd, although
it follows from the uniformity of the order relations used in their proof. Their proof depends
on approximating fi(n,A) by trigonometric polynomials, and since fi(n,A) is a continuous
function of n and A for all A # 0 by Assumption A.3 the Stone-Weierstrass Theorem implies

that f1(n, ) can be so approximated uniformly. It follows that

(1)
2Qn
nl}gloo Q7(13) (O—Qa TI) - IOg 0—2 - QO_Q(T,> =0
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almost surely, and the convergence is uniform in 7 on Eg.

The almost sure limit of the criterion function Q%‘?) (02, m) is therefore

0o, Q) = logo® + AT

uniformly in 7 on EY by Lemma 3, whereas QS’)(U2, n) is either arbitrarily large for § suffi-
ciently small or divergent on Egl UESQ by Lemma 4. Concentrating Q3 (52, Q(n)) with respect
to 0 we find that the minimum of the asymptotic criterion function is given by log (2Q(n;))+1.
Once again 1, = argmin, Q(n) is the pseudo-true parameter for the estimator under mis-

specification and we can conclude that lim,,_, ﬁ?) =mn; and lim, ||ﬁg3) — ﬁgl) | =0.

A.3.3 The CSS estimator:

Recall that the objective function of the CSS estimation method is

where

t—1
et("?) :ZT’L(TI) (ytfl_:u’) ’ tzla"'vnv (9)
1=0

and the coefficients 7;(n), 7 =0,1,2,..., are given by 79(n) =1 and

" 0, (B)T(j — d)
I+ D0(~d) ’

7i(n) = j=12,.... (10)

s=0

Let T, and H,, denote the n X n upper triangular Toeplitz matrix with non-zero elements
Tii—j|(m), 3,5 = 1,...,n, and the n x oo reverse Hankel matrix with typical element 7,4 ;(n),

i=1,...,n,j=1,...,00, respectively. Let A, = [as_,(n)] where
as—r (1) ] ! exp(i(s —DA)dA, r,s=1 n (11)
s—r = 77\ KX - 3 30 — Ly, T
K fl("l,)\)

Then from (11) we can deduce that A, = T,]T;7r + HnH;?r and from (8) and (9) it follows

that Q%) (n) = %YTTWT; Y. Replacing 3 by A, in (6) and adapting the argument used
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10

to establish (6) accordingly, in a manner similar to the proof of Lemma 1, shows that

[n/2]
47 I(\))
lim |-YTA)Y - — ) I 1=0 as. 12
n—oo | n n n = fl(’l?,)\j) ( )

and that the convergence is uniform in 1 on Eg. It is also shown below that %YTHnH;Y =

o(1) when |d| < 0.5, |dyp| < 0.5 and dy — d < 0.5.

0

We can therefore conclude that — 2Q£11)(17) converges to zero almost surely when
n € Es, and hence that the limiting value of the criterion function ngl) (n) is 2Q(n) by
Lemma 3. When 1 € Egl U EEZ, expression (12) and Lemma 4, together with the equality
QW (m) = LYTA, Y- 1YTH,H]Y, imply that lim inf,—oo Q% (1) > limy—0o LY TA, Y and
the CSS criterion function is either arbitrarily large for § sufficiently small or divergent. That
the pseudo-true parameter for the CSS estimator under mis-specification is n; = argmin,, Q(n)

and lim ?)§4) =mn; and lim,,_, ||ﬁ§4) - T]gl) | = 0 follows directly.

It remains for us to establish that %YTHnH; Y = o(1) in regions of the parameter space
where dg — d < 0.5. Suppressing the dependence on the parameter 1 for notational simplicity,

set M=HH'. Then M = [mijlij=1,..n Where mi; = > 0% o Tyin—iTutn—j, and

Eo[Y TMY] = tr (M) = szzﬂo j—1)
i=1 j=1
where v¢(7), 7 = 0,+1,42,..., denotes the autocovariance function of the TDGP. Since
17| ~ k~0FC, €, < oo, the series S5 [7k]? ~ C2¢(2(d + 1)) for all d > —1/2, where ((-)
denotes the Riemann zeta function, from which we can deduce that |m;;| ~ {(n —i+1)(n —
7+ 1)}~ for some C!, < co. Hence on setting 7 =n —i+1 and s = n — j + 1 we have

that

0<D > mivo(i — i) ~ Coan 2D YN Ty (r = 5)] (13)

i=1j=1 r=1 s=1
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where Cp, < 00. But |vo(7)] < Cpyo(0)|72%~1L, C, < o0, for all 7 # 0, and

—2(d+1) Z Z |’YO(T _ S)| < nf2(d+1) n+ QCQ k2d0 1
r=1s=1
n—1
< ey 0)(1 4 2, Z o)
k=1
1+ QCQC(l — 2d0) , do <0
Yo(0
7l(g¢§4r)1)x 1+2C,logn, do = 0;
1+ 2C,n2% /2dy,  dy > 0.
It follows that for all d where |d| < 0.5
14 2C,¢(1 — 2dp) /n? | dy < 0;
CmYo(0
Eo[lY '™MY] < 711;(2(520 X § 14+2C,logn, do = 0;
1+C,/dy, dg > 0;
We can therefore conclude that
O(n—20d+1) | 0.5 < dy < 0;
Pr <’I’l71YTMY > 6) = O(log n/n2(d+1)) , dO = O7 (14)
O(n?(do—d)=2) 0 < dy < 0.5

for all € > 0 by Markov’s inequality. Since e is arbitrary it follows that when |d| < 0.5

and |dg| < 0.5 the almost sure limit of n™'Y MY is zero whenever dy — d < 0.5, by the

Borell-Cantelli lemma, giving the desired result.

A.4 Proof of Theorem 2:

First note that

Qn(n) = {

o3T(1 — 2(do — d))

} Kn(n) (15)

9T2(1 — (dy — d))

11
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12

by the same argument that gives (15). Now let ACN(z) = > 272 vy cjzl = C(z) — Cn(2).
Then

[C(eM)? = [Cn(e™)P+Cn(e™)ACN (e™™)

+ ACN(eM)Cn(e7™) + |ACN (e™)|?

and the remainder term can be decomposed as Ry = Ry + Ran where

2 s
Riy = @0) / [ACK (€™)[?[2sin()/2)[ 2@~ d) (16)
@ 0
and
2 ™ . .
Ron — <(;0> ACN (€M) Cx (e~ ™) |25in(A/2)| 20D g (17)
7T —TT

The first integral in (16) equals

2 oo o0 o0
ogl'(1—2(do — d)) 9 .
) . —k
{2F2(1—(do—d)) PO AL IR DR LA
j=N+1 k=N+1j=k+1
Because B(z) # 0, |2| < 1, it follows that |c;| < C¢, j = 1,2,..., for some C < oo and

¢ € (0,1), and hence that

i 2 2(N+1) CZ
2 < =
j=N+1 ! (1 - 42)

Furthermore, since |dyp — d| < 0.5 Sterling’s approximation can be used to show that |p(h)| <

C2do—d)=1 1 — 1 2 . for some C' < co. This implies that

o> Gani-k)| < > C2CPINH s (s — )2 do—d)—1
k=N+1j=k+1 r=0 s=r+1
CQC/
o(N+1) L0
< .
N (o

Thus we can conclude that Riy < const.§2(N +1) where 0 < ¢ < 1. Applying the Cauchy-
Schwarz inequality to the second integral in (17) enables us to bound |Ran| by 2(0-0/0)vIN - RiN-
It therefore follows from the preceding analysis that |Ron| < const.(V+1. Since |Ry| <

Rin + |Ran| and (N + 1)/ exp(—(N + 1)log¢) — 0 as N — oc it follows that Ry = o(N~1),
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as stated. The gradient vector of Q(n) with respect to n is

Q) _ (ag\ [™ C(e™) 0 Cle=™)
on (27?’) /_7r |2 sin(\/2)|(do—d) %{ |2 sin()\/2)|(d0*d)}d)\

and substituting C(z) = Cn(2) + ACN(z) gives 0Q(vp)/0n; = 0QN(n)/On; + Ran + Ryn for

the typical j’th element where

e
2w ) J_y [2sin(\/2)[(d0=d) dn; *[2sin()\/2)|(do~d)

and

R _ (8 /” ACn(e?) a0 C(e™) 1aa
W \er) ) |2sin(A/2)](do=) 9n; *|2sin(A/2)|(do—d) :

The Cauchy-Schwarz inequality now yields the inequalities

2 s IAY |2
Cx(e™)
Ran|? < Riy (20 / |
ol < mu (32) [ e

2
dA

0 (o, ACx(Ee™)

o, U8 Dsin(h/2) [ |

and
2

0 C(e™™) I

dn; *|2sin(\/2)|(@o

2 g (% "
|Ran|” < Rin o
T —Tr

from which we can infer that |Rsy + Ran| < const. (VT = o(N—1), thus completing the

)

proof.

A.5 Proof of Theorem 3:

The distributions exhibited in the three cases presented in Theorem 3 correspond to those
given in Theorems 1, 3 and 2 of Chen and Deo (2006), and in the following lemmas we state
the properties necessary to generalise the applicability of these distributions and establish
their validity under the current scenario and assumptions. Although the distributions are non-
standard, the proof proceeds standardly via the use of the mean value theorem and convergence
in probability of a Hessian in a neighbourhood of 1, plus the application to the criterion

differential function of an appropriate central limit theorem.

13
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Lemma 1 (A.1) Let

V@imzjijytexp(iAt)==£(A)==ég(A)zgs(A)
t=1

and set X = (€M), &, (M), -+ €A nya))s Ea(Apnya) JF /* where
Fo = diag(fo(M), fo(M)s - fo(A(ny2))s foA[ny2))) -

Assume that Conditions A hold. Then under Assumption A.1 the vector X converges in
distribution to a Gaussian random variable with zero mean and variance-covariance matrix
Q=:11I+4A), X" Dgn N(0,9Q), where A = [Ny, Npe = O(j~ %k ogk) forr =251

orr=2j,andc=2k—1o0r2k, 1 <j<k<|n/2]

Proof of Lemma A.1l.
Assumption (A.1") implies that Assumption (A.1) of Lahiri (2003) holds. Since Conditions
A imply that Assumption (A.3) of Lahiri (2003) also holds, the asymptotic normality of X”
follows from Theorem 2.1 of Lahiri (2003). The stated covariance structure follows from
Lemmas 1 and 4 of Moulines and Soulier (1999) in which the moment properties of £.();) and
&,(\;) are derived supposing that ezact Gaussianity holds for the sine and cosine transforms
for all n, with bounds that are uniform with respect to n for each j =1,...,[n/2]. See also
Corollary 5.2 of Lahiri (2003) and the discussion in Lahiri (2003, page 624).

Since the limiting joint distribution of the sine and cosine transforms is Gaussian, and the
sine and cosine transforms are uniformly integrable, the form of the asymptotic distribution

and covariance properties of the corresponding periodogram ordinates are determined by the

limit law of £.(\;) and £,(\;), 7 =1,...,|[n/2].

Corollary 1 (A.1) Assume that the conditions of Lemma A.1 hold, and for eachj =1,...|n/2]
set Z; = 109/ fo(N) = [EQR/fo(y) and let p, = CouoleaA)ELO)]/ fo(Ay).  Then
Zj = p;i€c(Nj)Es(Nj)/ fo(Nj) converges in distribution to IX2(2)(1+ Dagjoj) (1 — p?) where x?(2)
denotes a Chi-squared random variable with two degrees of freedom. Furthermore, Ey(Z;] =
1+ O(logj/j), Varo[Z;] = 1+ O(logj/j) and Covo|Z;Zy] = O(j2dlk2ldol=2]0g2k) for

1<j<k<|n/2].

14
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Proof of Corollary A.1.

For j =1,...|n/2] set

£(N) — & )] and V= EQ)FEON
RO B ) VAN + L)1+ py)

Then the Continuous Mapping Theorem implies that

Z; — pi€c(M)Es(N)/ fo(N))
(1 + Dagjoj) (1 = p3)

= U7+ 17 2 0C(2)

since by Lemma A.1 X7 2 & ~ N(0,92). Let A and B be any [n/2] x |n/2] symmetric
selection matrices. Then E[¢T A€] = trQA and E[(£ " A¢)(£B¢)] = trQAtrQB + trQAQB,
from which the stated moments can be derived via appropriate choice of A and B. Note, in

particular, that p; = Covg[€.(Nj)E5(Nj)]/ fo(A;) = 1A(2J 1)2; = O(logj/j) and Cov[fjgk] =
(BIE;61)? = 10300 = O 2IDIE2DI=2107k) for 1 < j <k < [n/2].

The remaining steps in the proof of Theorem 3 are based on Taylor expansions of the

gradient vector (or score function) of the criterion functions. For the FML estimator we have

0Qw) (m) | 8°Qu” (m)

0= o onon (M1 —m1)
where
o0V () 210y anm ) 2 B 1oy
on n ; filn,Aj)2 Om n ]Z; fo(Aj)W(n’ i)
y_ fo(A;) Olog fi(m, A))
wimA) ~fim,A)) on ’
and
QW () _2m |
onon’ Z f1 n, m )
310g(f1(777 ))810g(f1(n, ;) 1 9%fi(m, \))
H(m, ) = o on’ ~ filn, ;) omom’

and the components of 7; lie on the line segment between 77, and 7n,. Existence of the Taylor

expansion is justified by convexity and Assumptions (A.3) and (A.5).

15
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Lemma 2 (A.2) Let ng) (m;t), wheret = (ty,...,t41) ", denote the differential on,(ll) (n).

Then under the assumptions of Theorem 8

n/2] -3
% Z (tTW(m, /\j)>2 (dQS) (ny;t) — E[dQW (nl;t)}) Bz~ N(©0,1)
j=1

for allt € R0 < [|t]| < oo.

Proof of Lemma A.2. By Assumption A.3 the differential of QS) (n) exists and is given
by QLY (m1) /OnTt, from which it follows that

[n/2]
QY (my;t) — E[dQLY (m15t)] = —2% Y (Zj - ElZhw(n. A ¢
j=1

Theorem 2 of Moulines and Soulier (1999) provides a generalisation of central limit theorems
for triangular arrays of martingale differences and weakly dependent sequences to similarly
weighted sums of correlated variables. Replacing Moulines and Soulier’s n,,; by Z; — E[Z;]
and their b, j by w(n, ;) 't, recognising from Corollary A.1 that Z; — E[Z;], = 1,..., |n/2],
share the same moment structure and order of correlation as Moulines and Soulier’s 7,,;, the
proof of the lemma follows Moulines and Soulier’s proof of their Theorem 2 presented in
Moulines and Soulier (1999, Appendix B). Conditions (¢) and (ii) of Theorem 2 of Moulines
and Soulier (1999) are satisfied because Cl)\j_Qd* log A\j < ||lw(m, Aj)| < Cg)\j_Qd* log \; for some

constants C; and Cz (see Chen and Deo, 2006, expression (21) pg. 276) and

/2] -1

lim  sup Z (tTW(nl,)\j)>2 (w(n,\) ' t)2=0. 1

The following lemma parallels Lemma 3 of Chen and Deo (2006) and is derived in a similar

fashion. The lemma and its proof are presented here for completeness.

Lemma 3 (A.3) Let E. denote a compact convex subset of EY and denote the second order
differential of the FML criterion function by szS) (mt)=tT (82 S) (n) /877817T> t. Then
for all t, ||t < oo,

plim,,_, sup |d*Q{Y (n;t) — d*Q (n;t)’ =0.
nek.
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under Assumptions (A.1") and (A.2) — (A.5).

Proof of Lemma A.2.

By definition of the second order differential we have

Ln/2J
Bo [@2Q) (n;t)] =E Z f1 ' tTH< Pk
& o)) fo(\)
*Zfl tTH( ””( “hiy) ‘1) Fum At T AE,

where Eg[I()\;)]/fo(Aj)—1 = O(logj/j), by Corollary A.1, and t "H(n, \;)t = O(log? );) since
sup,, dlog f1(n, A;)/0n is of order O(log \;) by Assumptions (A.2) and (A.3) and ||t]| < oo.

Thus we can conclude that

/2] 2.
27 I(X\)) fo(\j) 1 27 logj o4, o
o I £TH(n, \)t =0 | =% 87 \720" 10g2 ).
< >f1<n,Aj> %) w2y gy

] j=1

/2] logj «
-0 2d -1 Z ] —2d logQ(j/n)

7j=1

O(n**1log?n), 0<d*<0.5;
O(n~tlog*n), -1.0<d* <0,

and hence that Fy [dz 1) (n; )] -t %7%(?;7)’5 = d*>Q (m; t). Similarly, setting h(n; t, \j, \i) =

t "H(n, A\j)t - t "H(n, A\ )t and invoking Corollary A.1 once again we have

2 [n/2] [n/2]
Varg [dQQ()(m } (2 ) S 2 /\J Jo(Ax) h(n;t,Aj,Ak)Covo[I()\j? I(/\k)}

= = i) J1(m M) fo(Aj) fo(Ax)
LC T
=0 | =5 > D AN log? Ay log? A A R0 log?
=1 k2j

[n/2] n/2]
O( 4d*—2 Z +|do|)1og (/n) Z E—2(d"—|do])— 2log? klog (k/n))

k=1
O(n**~2log*n), d* +|dg| > 0.5 0<d*<0.5;

=1 O(n~+2dol=d") 105 n), d* 4 |do| <0.5 0 < d* <0.5;
O(n~(142ldo]) 1005 1), d* +|dp] <05 —1<d*<0.

17
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It therefore follows from Markov’s inequality that dQQg) (m;t) converges in probability to

d*Q (n; t).

Now, by the Mean Value Theorem, for any n; and n, in E,

o {a2Ql (m;t)
‘d2Q§3) (my;t) — d*QLY (nQ;t)‘ < { 7 } iy = ma

for some 7 between 1; and n,. Moreover,

3{(12 %1) (n't)} 9 /2] fo(A)) E . .
O] or D (B0 ) RO Yy,
Fo on = {fl(fh)\j) +< ) ) A Kl 29)
[n/2]
27 o(A\j) ' '
where
K t.y) = 2 T R oqiogt )

[n/2]
27 Eo[1(A))] > Jo(Aj)

r, =— -1 k(n;t, \;
> (TR 1) 7 a4
2m La/2] logj . _9q4

— < —2 *1 3
o= ?_1: A log? )

O(n*T1log3n), 0<d*<0.5;
O(n~1'log’n), —1<d* <0,

From Assumption (A.3) and (A.5) it follows that the components of the first term on the right

hand side of (18) converge to finite constants, and hence that
Q) (my5t) — QLY (myst)| < Cullmy — ma

where
o {@Q\ (m:v))

C, = su = 0,(1

T]E]Ec an p( )

18
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since sup,, Ep [8{(12@%1) (n;t)} / 877] < oo for all n € E.. We can therefore conclude that

dQQ,(ll) (n1;t) is stochastically equicontinuous, and hence that

plin, . sup [2Q) (m;t) = d*Q (m: )| = 0,
n€ke

for all t, ||t|| < oo, as required.

That the FML estimator possesses the asymptotic distributions as specified in Theorem
3 now follows by replacing Lemma 5 of Chen and Deo (2006) by Lemma and Corollary A.1,
Lemmas 8 and 9 by Lemma A.2, and Lemma 3 of Chen and Deo (2006) by Lemma A.3.
Having made these replacements we then find that the convergence rates and asymptotic
approximations given in Chen and Deo’s Lemma 4 and for their Cases 1, 2 and 3 in their

lemmas 6, 7, 10, 11 and 12 remain valid, thus establishing Theorem 3 for the FML estimator.

For the Whittle estimator we have, via definition of the differential and application of the

chain rule, that

dQY (mt)

D () <|IVQP (m;t) — dQP) (n;t) |+

dQ'? (n;t)

IVQ®P (n;t) — Vieg QY (m;t) |+

dQY (mst)
& ()

<2e[t]| + [V (m;%) — Viog QY (m; t) |

'wog QY (m;t)

where

Vieg QY (mit) =log QY (n+t) —1log QY (n) and VQP (;t) = QP (n+t) — QP (n)

and € — 0 as ||t|| — 0. Setting |[t|| = O(n~!logn), noting that (5) implies that the difference

in differences |VQ7(12) (n;t) — Vlog Qg) (m;t) | = O(n~1'logn), we find that

dQY (mst)

0 ) <O(n tlogn). (19)

dQY (n;t)

19
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Equation (19) leads, in turn, to the conclusion that

QP mo)\"
g{ g)(n) } + O(n "logn). (20)

Q' (n;t)

QP (m;
K QY ()

But by Lemma 4 of Chen and Deo (2006)

n/2)
E[dQQ)(m, ]:_Zz { A)} w(ng, Aj) 't

O(n**~llogn), 0<d*<0.5;
O(n~tlogn), —1.0<d*<0.

In addition,

n/2 [n/2]
Varg |:dQ :O ( Z )\‘;Qd* )\];2(1* log )\J log )\kjf2|do\k;2|do|f2 10g2 k)
j=1 k>j

3

In/2) (/2]
O( a2 Z AN Tog(ji/n) Y kAN 1047 klog(k/n)>

k=1
4"=210g% n), d* +|dg| > 0.5 0<d*<0.5;
= O(n’(1’2(d*"d0‘)) log®n), d*+|do| <05 0<d*<05; (22)
O(n~(+2do]) 1003 p), d* +|do] <05 —1.0<d"<0.

The asymptotic equivalence of the FML and Whittle estimators now follows since: by
Lemma 3 Q,(ll) (1) converges almost surely to @ (1;) > 02 > 0; equations (20), (21) and (22)

imply that ]dQng) (ny;t) — dZQg) (n;t) /Qg) (m1) | = 0p(1); and equation (19) implies that

N|=

[n/2] - (1) '
QE > (tTW(”llv/\j))Q QY (mst)—dQ’zl)i(m’t)
"\i= (m)

O(n~2do—d1)y " 0,25 < dy —dy <0.5;
O((nlogn)~2), —1.0<dy—dy <0.25.

20
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since

[n/2] , 2
3 {tTw(n,)\j)} =0( > A4 log? \y)
=1 j=1

O(n*" log?n), 0.25<d*<0.5;
O(nlog3n), —1.0<d* <0.25.

This establishes that Lemma A.2 also holds with dQS) (ny;t) replaced by Q(Th)ng) (ny;t).
For the TML estimator we begin by noting that
[n/2]

2w ™ _
— > log filn,A)) = —log|%,|| = O(n'logn),
j=1

and concentrating Q%z)(aa n) and QS’)(JQ, 1) with respect to o2 yields the inequality
Q) () = Q) (n) | < O(n~ " logn) + |1og 2QSY (n) — log(2r/m)Y T8, 1Y . (23)

If we let U denote the n x n unitary matrix with entries n"z exp(2m(r — 1)(¢ — 1)/n) in row
r and column ¢, r,c = 1,...,n, then the off diagonal entries in UX, U* are of order O(n™1),

and the diagonal entries are

n—1
(l — ’Z’) P}lla(zs)exp(z%r(j —1s/n) j=1,....n.
1

s=—(n—1)

Since f1(m, A) is absolutely integrable on [—m, 7], and by Assumptions 3 and 5 fi(n, ) is
continuously differentiable for all A # 0, from Fejer’s Theorem it follows that UX,U* —F; =

O(n~1) where F; equals

diag(Csf1, fr(m, A1) -+, f1(0, Apny2))s 10 A2 )s - - -5 f1(m5 A1), for n odd;
diag(Csfl, f1(777 )\1) s 7f1(77, )‘(n—Q)/Q)a fl(nv )‘\_n/ﬂ)’ fl(n7 )‘(n—2)/2)7 s afl(nv )‘1))7 for n even,

and the Césaro sum

Csfi = nz_:l < _ \8\) 71(s) _ ) On*'logn), 0<d <05
2
==y 7 o), ~05<d<0.
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Conditions A and Assumption A.3 imply that 3, and F are positive definite and it therefore

follows, upon application of the Rayleigh-Ritz theorem, that

(2r/n) [YTEY = YTUFT'UY | = |2r/m)Y =Y - 200 ()
=n"'Y'R,Y]

<n! max (|, (Ry) Y

=1,...

where 14;(R,), i = 1,...,n, are the eigenvalues of the residual R, = X, ~UF['U* = 0(n™).
Evaluating the characteristic polynomial of R, via the leading principle minors, or using
the Faddeev-Leverrier method, then indicates that |u;(R,)[™ < |u;(R,))["tO(n™!) and the

spectral radius of R, is O(n™1).

We can therefore use the method leading to (19) and (20) to deduce from the inequality in
(23) that the first and second differentials satisfy |dQ,(12) (n1;t) —WdQ%S) (my;t) | = O(n~tlogn)
and |d? @ (my;t) — wd? @ (n1;t) | = op(1). It therefore follows that the Whittle estimator

and the TML estimator converge in distribution as

N

[n/2]
n 2
> (tTwimnA)) | 4P (yit) - 7dQ) (myst)

2
=1

O(n=2do=d1)) " 0.25 < dy —dy < 0.5;
O((nlogn)_%), —1.0<dp—d; <0.25.

For the CSS estimator we have Qg;l) (m) ={YTA,)Y = Y"M,Y} /n. Replacing %, by
A, and adapting the argument used previously shows that UA,U* = 27rF1_1 +O(n~1') and

hence, using (14), that

QW (my) —2QW ()] < O(n™Y) + 0,y(n~2).

Apart from notational changes, the remaining steps in showing that the CSS and FML esti-
mators converge in distribution are the same as those used in establishing the equivalence of

the FML, Whittle and TML estimators, and are therefore omitted.
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The preceding derivations imply that Lemma A.2 also holds with ngLl) (n;;t) replaced by
Qn1)dQ? (ny:t), 7Q(1n)dQY (my:t) and (1/2)dQYY (ny;t). As with the FML estimator,
we then find that the convergence rates and asymptotic approximations given in lemmas 4, 6,
7, 10, 11 and 12 of Chen and Deo (2006) remain valid, thus establishing Theorem 3 for the

Whittle, TML and CSS estimators, and hence confirming that the four estimators ﬁgl), ﬁ(12),

?)53) and ﬁ§4) are asymptotically equivalent.

Appendix B: Evaluation of Bias Correction Term

For the FML estimator we have

ln/2] _
QW m)\  2r Ofi(n,A;) "
Ey (817 = nj;EO(I()\J))an
ln/2] .
_ 2 L 2y oy | 9fi(mA) T
> lg;( n)w(k)exp(zw e

where 7,(k) denotes the autocovariance at lag k of the TDGP (see, for example, Brockwell

and Davis, 1991, Proposition 10.3.1). Similarly, for the Whittle estimator we have

2 Ln/2]
5 (aczw(o—z,n)) _ 4§~ log film)

on =~ on
[n/2] »

= L | 200 )

T2, ; “; < - > Yo (k) exp(ikA;) o '

Differentiating the TML criterion function with respect to n gives
ox-t

n
Y
on

0 (0% m) _ 1, o
on n

0%, 1 op
Y
on + no?

which has expectation

0¥\ 1 0%, 1 0%, _
Eo| =2 V| = 2% n_ Il Yt Y
0( on ntr T On na2tr T gn T S0
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where 3o = [vo (Ji — j|)] and 023, = [y, (i — j|)], 4,5 = 1,2, ..., n. The criterion function for

the CSS estimator can be re-written as

n t—1t—

n t—1
Q7(14)(77) = %Z (Z Ti@/t—i) i Z
t=1 \4i=0 t=1 i=

1
TiTjYt—iYt—j »
0 5=0

where 7; is as defined in (10). The gradient of Q%) (n), recalling that 7; = 7;(n), is thus given
by

n t—1 1
aQn 1 Z Z (Tz 87—] 87_2) Yt—iYt—j »

t—
t].’LOjO

and the expected value of the gradient is
8Qn n t—11t-1 o7 8
E =t —37).
0( ) ;;Z Ti +Tya Yol — J)

References

Beran, J. (1994). Statistics for long-memory processes. Chapman and Hall, New York, 1st

edition.

Brockwell, P. J. and Davis, R. A. (1991). Time series: Theory and Methods. Springer, New
York, 2nd edition.

Chen, W. W. and Deo, R. S. (2006). Estimation of mis-specified long memory models. Journal

of Econometrics, 134(1), 257-281.

Fox, R. and Taqqu, S. M. (1986). Large sample properties of parameter estimates for strongly

dependent stationary Gaussian time series. The Annals of Statistics, 14(2), 517-532.

Gradshtein, I. S. and Ryzhik, I. M. (2007). Tables of Integrals, Series and Products. Academic

Press, Sydney.

Grenander, U. and Szego, G. (1958). Toeplitz Forms and Their Application. University of

California Press, Berkeley.

Hannan, E. J. (1973). The asymptotic theory of linear time-series models. Journal of Applied
Probability, 10(1), 130-145.



NADARAJAH, MARTIN AND POSKITT

Lahiri, S. N. (2003). A necessary and sufficient condition for asymptotic independence of
discrete Fourier transforms under short- and long-range dependence. Annals of Statistics,

31(2), 613-641.

Moulines, E. and Soulier, P. (1999). Broadband log-periodogram regression of time series with

long-range dependence. Annals of Statistics, 27(4), 1415-1439.

25



