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Differential Hoare Logics and Refinement Calculi
for Hybrid Systems with Isabelle/HOL

Simon Foster1, Jonathan Julián Huerta y Munive2, and Georg Struth2

1 University of York, UK
2 University of Sheffield, UK

Abstract. We present simple new Hoare logics and refinement calculi
for hybrid systems in the style of differential dynamic logic. (Refinement)
Kleene algebra with tests is used for reasoning about the program struc-
ture and generating verification conditions at this level. Lenses capture
hybrid program stores in a generic algebraic way. The approach has been
formalised with the Isabelle/HOL proof assistant. Several examples ex-
plain the workflow with the resulting verification components.

1 Introduction

Differential dynamic logic (dL) is a prominent deductive method for verifying
hybrid systems [26]. It extends dynamic logic with specific inference rules for
reasoning about the discrete control and continuous dynamics that characterise
such systems. Continuous evolutions are modelled by dL’s evolution commands
within a hybrid program syntax. These declare a vector field and a guard, which
is meant to hold along the evolution. Reasoning with evolution commands in
dL requires either explicit solutions to differential equations represented by the
vector field, or invariant sets [28] that describe these evolutions implicitly. Veri-
fication components inspired by dL have already been formalised in the Isabelle
proof assistant [16]. Yet the shallow embedding used in this work has shifted
the focus from the original proof-theoretic approach to a semantic one, and ul-
timately to predicate transformer algebras supporting a different workflow.

Dynamic logics and predicate transformers are powerful tools. They sup-
port reasoning about program equivalences and transformations far beyond what
standard program verification requires [4]. For the latter, much simpler Hoare
logics generate precisely the verification conditions needed. Asking about the
feasibility of a differential Hoare logic (dH) is therefore natural. As Hoare logic
is strongly related to Morgan’s refinement calculus [25], it is equally reasonable
to ask whether and how a Morgan-style differential refinement calculus (dR)
might allow constructing hybrid programs from specifications.

A prima facie answer to these questions seems positive: after all, the laws of
Morgan’s refinement calculus can be proved using the rules of Hoare logic, which
in turn are derivable within dynamic logic. But the formalisms envisaged might
not be expressive enough for hybrid program verification or less suitable than
dL in practice. Conceptually it is also not obvious what exactly it would take to
extend a standard Hoare logic or refinement calculus to hybrid programs.



Our main contribution consists in evidence that dH and dR are as applicable
for verifying simple hybrid programs as dL, and that developing these methods
requires simply adding a single Hoare-style axiom and a single refinement rule
for evolution commands to the standard formalisms.

This conceptual simplicity is reflected in the Isabelle verification components
for dH and dR. These reuse components for (refinement) Kleene algebra with
tests [19,3,13] ((r)KAT) for the propositional Hoare logic and refinement cal-
culi, ignoring assignment and evolution commands. The axioms and laws for
these basic commands are derived in a concrete state transformer semantics for
hybrid programs [15] over a generic hybrid store model based on lenses [10],
reusing other Isabelle components [15,8,9]. Data-level verification conditions are
discharged using Isabelle’s impressive components for ordinary differential equa-
tions [17].

This simple modular development evidences the benefits of algebraic reason-
ing and shallow embeddings with proof assistants. Our verification components
merely require formalising a state transformer semantics for KAT and rKAT along
the lines of [16] and concrete store semantics for hybrid programs. Lenses [10] give
us the flexibility to switch seamlessly between stores based on real vector spaces
or executable Euclidean spaces. Beyond that it suffices to derive a few algebraic
laws for invariants and the Hoare-axioms and refinement laws for evolution com-
mands in the concrete semantics. Program verification is then performed at the
concrete level, but this remains hidden, as tactics generate data-level verifica-
tion conditions automatically and we have programmed boiler-plate syntax for
programs and correctness specifications.

Our Isabelle components support the workflows of dL in dH and dR. We
may reason explicitly with solutions to differential equations and implicitly with
invariant sets. We have formalised a third method in which solutions, that is
flows, are declared ab initio in correctness specifications and need not be certified.

Our program construction and verification components have so far been eval-
uated on a small set of simple examples. Further work is needed to evidence
scalability or compare performance with the standard dL tool chain. We present
some examples to explain the work flows supported by dH and dR. With Is-
abelle tactics for automated verification condition generation in place, we notice
little difference relative to our predicate transformer components [16]. The entire
Isabelle formalisation is available online3.

2 Kleene Algebra with Tests

A Kleene algebra with tests [19] (KAT) is a structure (K,B,+, ·, 0, 1,∗ ,¬) where
(B,+, ·, 0, 1,¬) is a boolean algebra with join +, meet ·, complementation ¬,
least element 0 and greatest element 1, B ⊆ K, and (K,+, ·, 0, 1,∗ ) is a Kleene
algebra—a semiring with idempotent addition equipped with a star operation
that satisfies the axioms 1 + α · α∗ ≤ α∗ and γ + α · β ≤ β → α∗ · γ ≤ β, as well

3 https://github.com/yonoteam/HybridKATpaper



as their opposities, with multiplication swapped. The ordering on K is defined
by α ≤ β ↔ α+ β = β, as idempotent semirings are semilattices.

Elements of K represent programs; those of B tests, assertions or proposi-
tions. The operation · models the sequential composition of programs4, + their
nondeterministic choice, (−)∗ their finite unbounded iteration. Program 0 aborts
and 1 skips. Tests are embedded implicitly into programs. They are meant to
hold in some states of a program and fail in others; pα (αp) restricts the execu-
tion of program α in its input (output) to those states where test p holds. The
ordering ≤ is the opposite of the refinement ordering on programs (see Section 7).

Binary relations of type P (S × S) form KATs [19] when · is interpreted as
relational composition, + as relational union, (−)∗ as reflexive-transitive closure
and the elements of B as subidentities—relations below the relational unit. This
grounds KAT within standard relational imperative program semantics. However,
we prefer the isomorphic representation known as state transformers of type
S → P S. Composition · is then interpreted as Kleisli composition

(f ◦K g)x =
⋃

{g y | y ∈ f x},

0 as λx. ∅ and 1 as ηS = {−}. Stars f∗ s =
⋃

i∈N
f i s are defined with respect to

Kleisli composition using f0 = ηS and fn+1 = f ◦K fn. The boolean algebra of
tests has carrier set BS = {f : S → P S | f ≤ ηS}, where the order on functions
has been extended pointwise, and complementation is given by

f x =

{

ηS x, if f x = ∅,

∅, otherwise.

We freely identify predicates, sets and state transformers below ηS , which are
isomorphic: P ∼= {s | P s} ∼= λs. {x | x = s ∧ P s}.

Proposition 2.1. StaS = ((P S)S , BS ,∪, ◦K , λx. ∅, ηS , (−)∗, (−)) forms a KAT,
the full state transformer KAT over the set S.

A state transformer KAT over S is any subalgebra of StaS.
KAT has been formalised via type classes in Isabelle [2]. As these allow only

one type parameter, we use an alternative to the standard two-sorted approach
that expands a Kleene algebra K by an antitest function n : K → K from which
a test function t : K → K is defined as t = n ◦ n. Then Kt = {α | t α = α}
forms a boolean algebra in which n yields test complementation. It can be used
in place of B. The state transformer KAT has been formalised for this article.

3 Propositional Hoare Logic and Invariants

KAT provides a simple algebraic semantics for while programs with

if p then α else β = p · α+ ¬p · β and while p do α = (p · α)∗ · ¬p.

4 We therefore often write ; for this operation in later sections.



It captures validity of Hoare triples in a partial correctness semantics as

{p}α {q} ↔ p · α · ¬q = 0,

or equivalently by p ·α ≤ α ·q or p ·α = p ·α ·q. It also allows deriving the rules of
propositional Hoare logic [20]—disregarding assignments—which are useful for
verification condition generation:

{p} skip {p}, (h-skip)

p ≤ p′ ∧ {p′}α {q′} ∧ q′ ≤ q → {p}α {q}, (h-cons)

{p}α {r} ∧ {r}β {q} → {p}α · β {q}, (h-seq)

{t · p}α {q} ∧ {¬t · p}β {q} → {p} if t then α else β {q}, (h-cond)

{t · p}α {p} → {p}while t do α {¬t · p}. (h-while)

Rules for commands with invariant assertions α inv i are derivable in KAT,
too (operationally, α inv i = α). An invariant for α ∈ K is a test i ∈ B satisfying
{i}α {i}. Then, with loopα as syntactic sugar for α∗, we obtain

p ≤ i ∧ {i}α {i} ∧ i ≤ q → {p}α {q}, (h-inv)

{i}α {i} ∧ {j}α {j} → {i · j}α {i · j}, (h-inv-mult)

{i}α {i} ∧ {j}α {j} → {i+ j}α {i+ j}, (h-inv-plus)

p ≤ i ∧ {i · t}α {i} ∧ ¬t · i ≤ q → {p}while t inv i do α {q}, (h-while-inv)

p ≤ i ∧ {i}α {i} ∧ i ≤ q → {p} loopα inv i {q}. (h-loop-inv)

We use (h-inv) for invariants for continuous evolutions of hybrid systems in
Section 6-8. The rules (h-inv-mult) and (h-inv-plus) are part of a procedure, de-
scribed in Section 6. Rule (h-while-inv) is standard for invariants for while loops;
(h-loop-inv) is specific to loops of hybrid programs (see Section 4). The rules for
propositional Hoare logic in Isabelle have already been derived for KAT [2,13],
those for invariants have been formalised for this work. By Proposition 2.1, all of
them hold in particular in the state transformer semantics. We have formalised
this fact with Isabelle. At this stage, verification condition rules for the basic
commands for assignments and evolution commands are still missing. These are
formalised within the concrete state transformer semantics (see Section 5).

4 State Transformer Semantics for Hybrid Programs

Hybrid programs of differential dynamic logic (dL) [26] are defined by the syntax

C ::= x := e | x′ = f &G |?P | C; C | C + C | C∗

that adds evolution commands x′ = f &G to the language of KAT—function
?(−) embeds tests explicitly into programs; in the tradition of KAT we leave this
embedding implicit. Evolution commands introduce a time independent vector
field f : S → S for an autonomous system of ordinary differential equations



(ODEs) [28] together with a guard G, a predicate modelling boundary condi-
tions or similar restrictions that hold along temporal evolutions. Guards are also
known as evolution domain restrictions [6].

Formally, we fix a state space S of the hybrid program such as S ⊆ R
n for

n ∈ N. We model continuous variables algebraically with lenses [10] to support
different state space models generically. A lens x : A =⇒ S is a tuple x =
(A,S, get, put), where A is a variable type. The functions getx : S → A and
putx : S → A → S query and update the value of x in a particular state. They
are linked by three intuitive algebraic laws [10]. For all s ∈ S and v, v′ ∈ A,

get (put s v) = v, put (put s v′) v = put s v, put s (get s) = s.

The predicate x ⊲⊳ y checks independence of lenses x and y, which holds
when x and y refer to two different regions of S. As each program variable is a
lens x : R =⇒ S, state spaces S ⊆ R

n require n independent lenses x1 · · ·xn.
Yet more general state spaces such as vector spaces are supported as well.

Systems of ODEs are modelled using vector fields: functions of type S → S
on some open set S. Geometrically, vector field f assigns vectors to each point
of the state space S. A solution to the initial value problem (IVP) for the pair
(f, s) and initial value (0, s) ∈ T ×S, where T is an open interval in R containing
0, is then a function X : T → S that satisfies X ′ t = f (X t)—an autonomous
system of ODEs in vector form—and X 0 = s. Solution X is thus a curve in S
through s, parametrised by T and tangential to f at any point in S; it is called
the trajectory or integral curve of f at s whenever it is uniquely defined [28].
For IVP (f, s) with continuous vector field f : S → S and initial state s ∈ S we
define the set of solutions on T as

Sols f T s = {X | ∀t ∈ T. X ′ t = f (X t) ∧X 0 = s} .

Each solution X is thus continuously differentiable and hence f ◦X integrable
in T . For X ∈ Sols f T s and guard G : S → B, we then define the G-guarded
orbit of X along T in s [16] as a state transformer γX

G : S → P S by

γX
G s = {X t | t ∈ T ∧ ∀τ ∈ ↓t. G (X τ)} ,

where ↓t = {t′ ∈ T | t′ ≤ t}. Intuitively, γX
G s is the orbit at s defined along the

longest interval in T that satisfies guard G. We also define the G-guarded orbital
of f along T in s [16] via the state transformer γf

G : S → P S as

γf
G s =

⋃

{

γX
G s | X ∈ Sols f T s

}

.

In applications, ↓t is usually an interval [0, t] ⊆ T . Expanding definitions,

γf
G s = {X t | X ∈ Sols f T s ∧ t ∈ T ∧ ∀τ ∈ ↓t. G (X τ)} .

If ⊤ denotes the predicate that holds of all states in S (or the set S itself),

we write γf instead of γf
⊤. We define the semantics of the evolution command

x′ = f &G [16] for any continuous f : S → S and G : S → B as

(x′ = f &G) = γf
G. (st-evl)



In the evolution command x′ = f &G, x′ is part of the traditional syntax
used for specifying systems of ODEs, while de facto only a vector field f is
specified. This explains why x does not appear in the right-hand side of (st-evl).
Defining the state transformer semantics of assignments is standard [16], though
we generalise using lenses. First, we use lenses to define state updates:

σ(x 7→ e) = λs. putx (σ s) (e s)

for x : A =⇒ S, e : S → A, and σ : S → S. Intuitively, this updates the
value of variable x in σ : S → S to the value given by “expression” e in state
s. For variables x and y, for example, the expression x/(2 + y) is modelled by
λs. getx s / (2 + gety s). We can also update n variables simultaneously:

[x1 7→ e1, x2 7→ e2, · · · , xn 7→ en] = id (x1 7→ e1)(x2 7→ e2) · · · (xn 7→ en),

where id is the identity function. State updates commute when assigning to
independent lenses; they cancel one another out, when made to the same lens.
We can then define a semantic analog of the substitution operator e[f/x] =
e◦ [x 7→ f ] that satisfies the standard laws [10]. Finally, we define the generalised
simultaneous assignment operator

〈σ〉 = λs. {σ(s)}. (st-assgn)

that applies σ : S → S as an assignment. With our state update function,
singleton assignment is a special case: (x := e) = 〈x 7→ e〉. These concepts allow
us to derive standard laws for assignments, as for instance in schematic KAT [1]:

x := x = skip,

x := e ; x := f = x := f [e/x],

x := e ; y := f = y := f ; x := e, if x ⊲⊳ y, x ♯ f, y ♯ e,

x := e ; if t then α else β = if t[e/x] then x := e ; α else x := e ; β.

Here, x ♯ e means that the semantic expression e does not depend in its val-
uation on lens x [10]. An assignment of x to itself is simply skip. Two assign-
ments to x result in a single assignment, with a semantic substitution applied.
Assignments to independent variables x and y commute provided that neither
assigned expression depends on the corresponding variable. Assignment can be
distributed through conditionals by a substitution to the condition. Such laws
can be applied recursively for symbolic evaluation of hybrid programs.

Lenses support various store models, including records and functions [10].
We provide models for vector spaces, executable and infinite Euclidean spaces:

vec-lensnk = (R,Rn, λs. vec-nth s k, λs v. vec-upd k v s), if k < n,

eucl-lensnk = (R, V, λs. eucl-nth s k, λs v. eucl-upd k v s), if k < n,

fun-lens
(A,B)
i = (B,A → B, (λf.fi), (λf v. f(i := v))).



The vector lens selects the kth element of an n dimension vector using vec-nth
and vec-upd from the HOL Analysis library [14], which provides an indexed type
for the space R

n. The Euclidean lens uses executable Euclidean spaces [18] that
provide a list representation of the vectors in the n-dimensional V via an ordered
basis and an inner product. The function lens selects range elements of a function
associated with a domain element i ∈ A. It can be used in particular with infinite
Euclidean spaces, N → R. All three satisfy the lens axioms above.

The development in this section has been formalised with Isabelle [15,8,9],
both for a state transformer and a relational semantics. An instance of the latter
for particular vector fields with unique solutions forms the standard semantics of
dL. By the direct connection to orbits or orbitals, the state transformer semantics
is arguably conceptually simpler and more elegant.

5 Differential Hoare Logic for Flows

In the state transformer semantics of Hoare triples, the Kleisli composition in
the left-hand side of p · α ≤ α · q ensures that p holds before executing α.
The right-hand side guarantees that q holds after its execution. Specifically for
evolution commands, and consistently with dL, q holds along the entire orbit of a
solution for f . We now complete the derivation of inference rules of dH by adding
Hoare-style rules for assignments and evolution commands in the concrete state
transformer semantics.

The assignment axiom of Hoare logic needs no explanation. Our concrete
state transformer semantics allows us to derive it:

{P [e/x]} x := e {P}. (h-assgn)

Hence all we need to add to Hoare logic is a rule for evolution commands.
We restrict our attention to Lipschitz-continuous vector fields for which unique
solutions to IVPs are guaranteed by Picard-Lindelöf’s theorem [28]. These are
(local) flows ϕ : T → S → S and X = ϕs = λt. ϕ t s is the trajectory at s.

Guarded orbitals γf
G then specialise to guarded orbits

γf
G,U = {ϕs t | t ∈ U ∧ ∀τ ∈ ↓t. G (ϕs τ)} ,

where T is fixed by the Picard-Lindelöf theorem and U ⊆ T is a time domain
of interest, typically an interval [0, t] for some t ∈ T [16] where, by contrast
to the previous section ↓t = {t′ ∈ U | t′ ≤ t} is relativised to U . This gives
us the flexibility to consider dynamics over closed time intervals and it allows
us to focus on time intervals and IVPs starting at t = 0. Accordingly, (st-evl)
specialises to the following state transformer semantics for evolution commands.

(x′ = f &G) = γf
G,U . (st-evl-flow)

The following Hoare-style rule for evolution commands is then derivable.



Lemma 5.1. Let f : S → S be a Lipschitz continuous vector field on S ⊆ R
n

and ϕ : T → S → S its local flow with 0 ∈ T ⊆ R. Then, for U ⊆ T with 0 ∈ U
and G,Q : S → B,

{λs ∈ S.∀t ∈ U. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t)} x′ = f &G {Q}. (h-evl)

This finishes the derivation of rules for a Hoare logic dH for hybrid programs—
to our knowledge, the first Hoare logic of this kind. As usual, there is one rule
per programming construct, so that the recursive application of the rules of
propositional Hoare logic together with (h-assgn) and (h-evl) generates proof
obligations that are entirely about data-level relationships—the discrete and
continuous evolution of hybrid program stores.

The rule (h-evl) supports the following procedure for reasoning with an evo-
lution command x′ = f &G and set U in dH:

1. Check that f satisfies the conditions for Picard-Lindelöf’s theorem (f is
Lipschitz continuous and S ⊆ R

n is open).
2. Supply a (local) flow ϕ for f with open interval of existence T around 0.
3. Check that ϕs solves the IVP (f, s) for each s ∈ S; (ϕ′

s t = f (ϕs t), ϕs 0 = s,
and U ⊆ T ).

4. If successful, apply rule (h-evl).

Example 5.2 (Thermostat verification via solutions). A thermostat regulates the
temperature T of a room between bounds Tl ≤ T ≤ Th. Variable T0 stores an
initial temperature; ϑ indicates whether the heater is switched on or off. Within
time intervals of at most τ minutes, the thermostat resets time to 0, measures
the temperature, and turns the heater on or off dependent on the value obtained.
With 0 < Tl, Th < Tu, 0 < a, U = {0..τ} = [0, τ ] we define f , for c ∈ {0, Tu}, as

abbreviation f a c ≡ [T 7→s − (a ∗ (T − c)), T0 7→s 0 , ϑ 7→s 0 , t 7→s 1 ]

The notation x 7→s f x indicates that vector field f a c maps variable x to f x
for x ∈ {T, T0, ϑ, t}. Working with vec-lensnk or eucl-lensnk , we write ; instead of
· and use guard G to restrict evolutions between Tl and Th by setting

GTl Th a c =

(

t ≤ −
1

a
ln

(

c−∆c

c− T0

))

,

where ∆c = Tl if c = 0, and ∆c = Th if c = Tu. The hybrid program therm below
models the behaviour of the thermostat. To simplify notation, we separate into
a loop invariant (I), discrete control (ctrl), and continuous dynamics (dyn).

abbreviation I Tl Th ≡ U(Tl ≤ T ∧ T ≤ Th ∧ (ϑ = 0 ∨ ϑ = 1 ))

abbreviation ctrl Tl Th ≡
(t ::= 0 ); (T0 ::= T );
(IF (ϑ = 0 ∧ T0 ≤ Tl + 1 ) THEN (ϑ ::= 1 ) ELSE
IF (ϑ = 1 ∧ T0 ≥ Th − 1 ) THEN (ϑ ::= 0 ) ELSE skip)



abbreviation dyn Tl Th a Tu τ ≡
IF (ϑ = 0 ) THEN x´= f a 0 & G Tl Th a 0 on {0 ..τ} UNIV @ 0
ELSE x´= f a Tu & G Tl Th a Tu on {0 ..τ} UNIV @ 0

abbreviation therm Tl Th a Tu τ ≡
LOOP (ctrl Tl Th; dyn Tl Th a Tu τ) INV (I Tl Th)

The correctness specification and verification of the thermostat with dH is then

lemma thermostat-flow :
assumes 0 < a and 0 ≤ τ and 0 < Tl and Th < Tu

shows {I Tl Th} therm Tl Th a Tu τ {I Tl Th}
apply(hyb-hoare U(I Tl Th ∧ t=0 ∧ T 0 = T ))
prefer 4 prefer 8 using local-flow-therm assms apply force+
using assms therm-dyn-up therm-dyn-down by rel-auto ′

The first line uses tactic hyb-hoare to blast away the structure of therm using dH.
To apply hyb-hoare, the program must be an iteration of the composition of two
programs—usually control and dynamics. The tactic requires lifting the store to
an Isabelle/UTP expression [10], which is denoted by the U operator. Lemma
local-flow-therm, whose proof captures the procedure described above, supplies
the flow for f a c: ϕa c τ = (−e−a·τ (c− T ) + c, τ + t, T0, ϑ)

⊤, for all τ ∈ R. The
remaining proof obligations are inequalities of transcendental functions. They
are discharged automatically using auxiliary lemmas. ⊓⊔

6 Differential Hoare Logic for Invariants

Alternatively, dH supports reasoning with invariants for evolution commands
instead of supplying flows to (h-evl). The approach has been developed in [16].
Our invariants generalise the differential invariants of dL [26] and the invariant
sets of dynamical systems and (semi)group theory [28].

A predicate I : S → B is an invariant of the continuous vector field f : S → S
and guard G : S → B along T ⊆ R if

⋃

P γf
G I ⊆ I.

The operation
⋃

◦P is the Kleisli extension (−)† in the powerset monad. Hence

we could simply write (γf
G)

† I ⊆ I. The definition of invariance unfolds to

∀s. I s → (∀X ∈ Sols f T s.∀t ∈ T. (∀τ ∈ ↓t. G (X τ)) → I (X t)).

For G = ⊤ we call I an invariant of f along T . Intuitively, invariants can be
seen as sets of orbits. They are compatible with the invariants from Section 3.

Proposition 6.1. Let f : S → S be continuous, G : S → B and T ⊆ R. Then I
is an invariant for f and G along T if and only if {I}x′ = f &G {I}.



Hence we can use a variant of (h-inv) for verification condition generation:

P ≤ I ∧ {I}x′ = f &G {I} ∧ (I ·G) ≤ Q → {P}x′ = f &G {Q}. (h-invg)

The following lemma leads to a procedure.

Lemma 6.2 ([16]). Let f : S → S be a continuous vector field, µ, ν : S → R

differentiable and T ⊆ R an interval such that 0 ∈ T .

1. If (µ◦X)′ = (ν◦X)′ for all X ∈ Sols f T s, then {µ = ν}x′ = f &G {µ = ν},
2. if (µ ◦X)′ t ≤ (ν ◦X)′ t when t > 0, and (µ ◦X)′ t ≥ (ν ◦X)′ t when t < 0,

for all X ∈ Sols f T s, then {µ < ν}x′ = f &G {µ < ν}
3. if {µ < ν}x′ = f &G {µ < ν} and {µ > ν}x′ = f &G {µ > ν}, then

{µ 6= ν}x′ = f &G {µ 6= ν} (and conversely if 0 is the least element in T ),
4. {µ 6≤ ν}x′ = f &G {µ 6≤ ν} if and only if {µ > ν}x′ = f &G {µ > ν}.

Condition (1) follows from the well known fact that two continuously dif-
ferentiable functions are equal if they intersect at some point and have the
same derivatives. Rules (h-invg), (h-inv-mult), (h-inv-plus), Proposition 6.1 and
Lemma 6.2 yield the following procedure for verifying {P}x′ = f &G {Q}:

1. Check whether candidate predicate I is an invariant for f along T :
(a) transform I into negation normal form;
(b) reduce complex I (with (h-inv-mult), (h-inv-plus) and Lemma 6.2 (3,4);
(c) if I is atomic, apply Lemma 6.2 (1) and (2);
(if successful, {I}x′ = f &G {I} holds by Proposition 6.1),

2. if successful, prove P ≤ I and (I ·G) ≤ Q to apply rule (h-invg).

Example 6.3 (Water tank verification via invariants). A controller turns a water
pump on and off to keep the water level h in a tank within bounds hl ≤ h ≤ hh.
Variable h0 stores an initial water level; π indicates whether the pump is on or
off. The rate of change of the water-level is linear with slope k ∈ {−co, ci − co}
(assuming ci > co). The vector field f for this behaviour and its invariant dI are

abbreviation f k ≡ [π 7→s 0 , h 7→s k , h0 7→s 0 , t 7→s 1 ]

abbreviation dI hl hh k ≡
U(h = k · t + h0 ∧ 0 ≤ t ∧ hl ≤ h0 ∧ h0 ≤ hh ∧ (π = 0 ∨ π = 1 ))

Program tank-dinv for the controller is given by guard G hx k with hx ∈ {hl, hh}
that restricts evolutions beyond hx, loop invariant I, control and dynamics:

abbreviation G hx k ≡ U(t ≤ (hx − h0)/k)

abbreviation I hl hh ≡ U(hl ≤ h ∧ h ≤ hh ∧ (π = 0 ∨ π = 1 ))

abbreviation dyn ci co hl hh τ ≡ IF (π = 0 ) THEN
x´= f (ci−co) & G hh (ci−co) on {0 ..τ} UNIV @ 0 DINV (dI hl hh (ci−co))

ELSE x´= f (−co) & G hl (−co) on {0 ..τ} UNIV @ 0 DINV (dI hl hh (−co))



abbreviation ctrl hl hh ≡
(t ::=0 );(h0 ::= h);
(IF (π = 0 ∧ h0 ≤ hl + 1 ) THEN (π ::= 1 ) ELSE
(IF (π = 1 ∧ h0 ≥ hh − 1 ) THEN (π ::= 0 ) ELSE skip))

abbreviation tank-dinv ci co hl hh τ ≡
LOOP (ctrl hl hh; dyn ci co hl hh τ) INV (I hl hh)

We distinguish DINV and INV to structure specifications. The correctness spec-
ification and verification of the water tank with dH then proceeds as follows:

lemma tank-diff-inv : 0 ≤ τ =⇒ diff-invariant (dI hl hh k) (f k) {0 ..τ} UNIV 0 Guard
〈proof〉

lemma tank-inv :
assumes 0 ≤ τ and 0 < co and co < ci
shows {I hl hh} tank-dinv ci co hl hh τ {I hl hh}
apply(hyb-hoare U(I hl hh ∧ t = 0 ∧ h0 = h))
prefer 4 prefer 7 using tank-diff-inv assms apply force+
using assms tank-inv-arith1 tank-inv-arith2 by rel-auto ′

Tactic hyb-hoare blasts away the control structure. The second proof line uses
Lemma tank-diff-inv to check that dI is an invariant for any guard (Guard is
a universally quantified variable in Lemma tank-diff-inv), using the procedure
outlined. Auxiliary lemmas discharge the remaining proof obligations. ⊓⊔

7 Differential Refinement Calculi

A refinement Kleene algebra with tests (rKAT) [3] is a KAT (K,B) expanded by
an operation [−,−] : B ×B → K that satisfies, for all α ∈ K and p, q ∈ B,

{p}α {q} ↔ α ≤ [p, q].

The element [p, q] of K corresponds to Morgan’s specification statement [25]. It
satisfies {p} [p, q] {q} and {p}α {q} → α ≤ [p, q], which makes [p, q] the greatest
element of K that satisfies the Hoare triple with precondition p and postcondi-
tion q. Indeed, in StaS and for S ⊆ R

n, [P,Q] =
⋃

{f : S → P S | {P} f {Q}}.
Variants of Morgan’s laws [25] of a propositional refinement calculus—once more
ignoring assignments—are then derivable in rKAT [3].

1 ≤ [p, p], (r-skip)

[p′, q′] ≤ [p, q], if p ≤ p′ and q′ ≤ q, (r-cons)

[p, r] · [r, q] ≤ [p, q], (r-seq)

if t then [t · p, q] else [¬t · p, q] ≤ [p, q], (r-cond)

while t do [t · p, p] ≤ [p,¬t · p]. (r-while)



We have also derived α ≤ [0, 1] and [1, 0] ≤ α, but do not use them in proofs.
For invariants and loops, we obtain the additional refinement laws

[i, i] ≤ [p, q], if p ≤ i ≤ q, (r-inv)

loop [i, i] ≤ [i, i]. (r-loop)

In StaS, moreover, the following assignments laws are derivable [3].

(x := e) ≤ [Q[e/x], Q] , (r-assgn)

(x := e) · [Q,Q] ≤ [Q[e/x], Q], (r-assgnl)

[Q,Q[e/x]] · (x := e) ≤ [Q,Q]. (r-assgnf)

The second and third law are known as leading and following law. They introduce
an assignment before and after a block of code.

Finally, we obtain the following refinement laws for evolution commands.

Lemma 7.1. Let f : S → S be a Lipschitz continuous vector field on S ⊆ R
n

and ϕ : T → S → S its local flow with 0 ∈ T ⊆ R. Then, for U ⊆ T with 0 ∈ U
and G,Q : S → B,

(x′ = f &G) ≤ [λs.∀t ∈ U. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t), Q], (r-evl)

(x′ = f &G) · [Q,Q] ≤ [λs.∀t ∈ U. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t), Q], (r-evll)

[Q, λs.∀t ∈ U. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t)] · (x
′ = f &G) ≤ [Q,Q]. (r-evlr)

The laws in this section form the differential refinement calculus dR. They
suffice for constructing hybrid programs from initial specification statements
by step-wise refinement incrementally and compositionally. A more powerful
variant based on predicate transformers à la Back and von Wright [4] has been
developed in [16]; yet applications remain to be explored. A previous approach
to refinement in dL [23] is quite different to the two standard calculi mentioned
(see Conclusion).

Example 7.2 (Thermostat refinement via solutions). We now construct program
therm from Example 5.2 by step-wise refinement using the rules of dR.

lemma R-therm-down:
assumes a > 0 and 0 ≤ τ and 0 < T l and Th < Tu

shows [ϑ = 0 ∧ I T l Th ∧ t = 0 ∧ T 0 = T , I T l Th] ≥
(x´= f a 0 & G T l Th a 0 on {0 ..τ} UNIV @ 0 )
apply(rule local-flow .R-g-ode-ivl [OF local-flow-therm])
using therm-dyn-down[OF assms(1 ,3 ), of - Th] assms by rel-auto ′

lemma R-therm-up:
assumes a > 0 and 0 ≤ τ and 0 < T l and Th < Tu

shows [¬ ϑ = 0 ∧ I T l Th ∧ t = 0 ∧ T 0 = T , I T l Th] ≥
(x´= f a Tu & G T l Th a Tu on {0 ..τ} UNIV @ 0 )
apply(rule local-flow .R-g-ode-ivl [OF local-flow-therm])
using therm-dyn-up[OF assms(1 ) - - assms(4 ), of T l] assms by rel-auto ′



lemma R-therm-time: [I T l Th, I T l Th ∧ t = 0] ≥ (t ::= 0 )
by (rule R-assign-law , pred-simp)

lemma R-therm-temp: [I T l Th ∧ t = 0 , I T l Th ∧ t = 0 ∧ T 0 = T] ≥ (T 0 ::= T )
by (rule R-assign-law , pred-simp)

lemma R-thermostat-flow :
assumes a > 0 and 0 ≤ τ and 0 < T l and Th < Tu

shows [I T l Th, I T l Th] ≥ therm T l Th a Tu τ
by (refinement ;(rule R-therm-time)? ,(rule R-therm-temp)? ,(rule R-assign-law)? ,

(rule R-therm-up[OF assms])? , (rule R-therm-down[OF assms])? ) rel-auto ′

The refinement tactic pushes the refinement specification through the pro-
gram structure until the only remaining proof obligations are atomic refinements.
We only refine the atomic programs needed to complete proofs automatically;
those for the first two assignment and the evolution commands. ⊓⊔

Example 7.3 (Water tank refinement via invariants). Alternatively we may use
differential invariants with dR to refine tank-dinv from Example 6.3. This time
we supply a single structured proof to show another style of refinement. We
abbreviate long expressions with schematic variables.

lemma R-tank-inv :
assumes 0 ≤ τ and 0 < co and co < ci
shows [I hl hh, I hl hh] ≥ tank-dinv ci co hl hh τ

proof−
have [I hl hh, I hl hh] ≥
LOOP ((t ::= 0 );[I hl hh ∧ t = 0 , I hl hh]) INV I h l hh (is - ≥ ?R1 )
by (refinement , rel-auto ′)

moreover have ?R1 ≥ LOOP
((t ::= 0 );(h0 ::= h);[I hl hh ∧ t = 0 ∧ h0 = h, I hl hh]) INV I hl hh (is - ≥ ?R2 )
by (refinement , rel-auto ′)

moreover have ?R2 ≥
LOOP (ctrl hl hh;[I hl hh ∧ t = 0 ∧ h0 = h, I hl hh]) INV I hl hh (is - ≥ ?R3 )
by (simp only : mult .assoc, refinement ; (force)? , (rule R-assign-law)? ) rel-auto ′

moreover have ?R3 ≥ LOOP (ctrl hl hh; dyn ci co hl hh τ) INV I h l hh

apply(simp only : mult .assoc, refinement ; (simp)? )
prefer 4 using tank-diff-inv assms apply force+

using tank-inv-arith1 tank-inv-arith2 assms by rel-auto ′

ultimately show [I hl hh, I hl hh] ≥ tank-dinv ci co hl hh τ
by auto

qed

The proof incrementally refines the specification of tank-dinv using the laws of
dR. As in Example 7.2, after refining the first two assignments, tactic refinement
completes the construction of ctrl. After that, the invariant is supplied via lemma
tank-diff-inv from Example 6.3 to construct dyn. The final program is then
constructed by transitivity of ≤. A more detailed derivation is also possible. ⊓⊔



8 Evolution Commands for Flows

Finally, we present variants of dH and dR that start directly from flows ϕ :
T → S → S instead of vector fields. This avoids checking the conditions of the
Picard-Lindelöf theorem and simplifies verification proofs considerably. Instead
of x′ = f &G, we now use the command evolϕG in hybrid programs and define

(evolϕG) = λs. γϕs

G s

with respect to the guarded orbit of ϕs along T in s. It then remains to derive
a Hoare-style axiom and a refinement law for such evolution commands.

Lemma 8.1. Let ϕ : T → S → S, where S is a set and T a preorder. Then, for
G,P,Q : S → B,

{λs ∈ S.∀t ∈ T. (∀τ ∈ ↓t. G (ϕs τ)) → P (ϕs t)} evolϕG {P}, (h-evlfl)

evolϕG ≤ [λs.∀t ∈ T. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t), Q], (r-evlf)

(evolϕG) · [Q,Q] ≤ [λs.∀t ∈ T. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t), Q], (r-evlfl)

[Q, λs.∀t ∈ T. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t)] · (evolϕG) ≤ [Q,Q]. (r-evlfr)

Example 8.2 (Bouncing ball via Hoare logic and refinement). A ball falls down
from height h ≥ 0, with x denoting its position, v its velocity and g its acceler-
ation. Its kinematics is modelled by the flow

abbreviation ϕ g τ ≡ [x 7→s g · τ ˆ 2/2 + v · τ + x , v 7→s g · τ + v ]

The ball bounces back elastically from the ground. This is modelled by a discrete
control that checks for x = 0 and then flips the velocity. Guard G = (x ≥ 0) ex-
cludes any motion below the ground. This is modelled by the hybrid program [26]

abbreviation bb-evol g h T ≡
LOOP (EVOL (ϕ g) (x ≥ 0 ) T ; (IF (x = 0 ) THEN (v ::= −v) ELSE skip))
INV (0 ≤ x ∧ 2 · g · x = 2 · g · h + v · v)

Its loop invariant conjoins the guardG with a variant of energy conservation. The
correctness specification and proof with dH and dR are then straightforward.

lemma bouncing-ball-dyn:
assumes g < 0 and h ≥ 0
shows {x = h ∧ v = 0} bb-evol g h T {0 ≤ x ∧ x ≤ h}
apply(hyb-hoare U(0 ≤ x ∧ 2 · g · x = 2 · g · h + v · v))
using assms by (rel-auto ′ simp: bb-real-arith)

lemma R-bouncing-ball-dyn:
assumes g < 0 and h ≥ 0
shows [x = h ∧ v = 0 , 0 ≤ x ∧ x ≤ h] ≥ bb-evol g h T
apply(refinement ; (rule R-bb-assign[OF assms])? )
using assms by (rel-auto ′ simp: bb-real-arith)



In the refinement proof, the tactic leaves only the refinement for the assignment
v ::= −v. This is supplied via lemma R-bb-assign and the remaining obligations
are discharged with the same arithmetical facts. ⊓⊔

9 Conclusion

We have contributed new methods and Isabelle components to an open mod-
ular semantic framework for verifying hybrid systems that so far focussed on
predicate transformer semantics [16]; more specifically a Hoare logic dH and
a Morgan-style refinement calculus dR for hybrid programs, more generic state
spaces modelled by lenses, improved Isabelle syntax for correctness specifications
and hybrid programs, and increased proof automation via the tactics hyb-hoare
and refinement. These components support three workflows based on certifying
solutions to Lipschitz-continuous vector fields, reasoning with invariant sets for
continuous vector fields, and working directly with flows without certification.

Compared to the standard dL toolchain, dH and dR emphasise a natural
mathematical style of semantic reasoning about dynamical systems, with mini-
mal conceptual overhead relative to standard Hoare logics and refinement calculi.
dH, in particular, is only used for automated verification condition generation.
The modular approach with algebras and a shallow embedding has simplified the
construction of these verification components and made it incremental relative
to extant ones. Our framework is not only open to use any proof method and
mathematical approach supported by Isabelle, it should also allow adding new
methods, for instance based on discrete dynamical systems, hybrid automata or
duration calculi [22,7], or integrate CAS’s for finding solutions.

The relevance of dH and dR to hybrid systems verification is further evi-
denced by the fact that such approaches are not new: A hybrid Hoare logic has
been proposed by Liu et al. [22] for a duration calculus based on hybrid CSP.
It is conceptually very different from dH and dL. A differential refinement logic
based on dL has been developed as part of Loos’ PhD work [23]. It uses a proof
system with inference rules for reasoning about inequalities between KAT expres-
sions, which are interpreted as refinements between hybrid programs. According
to the authors, it differs substantially from the standard approaches [4,25] in
that local instead of global refinement relations can be used. Nevertheless their
refinement logic has the same expressivity as dL [23], which is essentially a
predicate transformer calculus for hybrid programs [16] and thus a refinement
calculus à la Back and von Wright. Ultimately, this suggests that Loos’ logic is
more expressive than our Morgan-style calculus, but the relative merits of the
two approaches remain to be explored. The proof theory of dL has already been
deeply embedded in proof assistants [5], yet with a focus on soundness proofs for
its inference rules and a mechanisation of its idiosyncratic substitution calculus,
but not as prima facie verification components.

The expressivity and complexity gap between Hoare logic and predicate
transformer semantics is apparent within algebra. The weakest liberal precondi-



tion operator cannot be expressed in KAT [27]. The equational theory of KAT,
which captures propositional Hoare logic, is PSPACE complete [21], that of
modal Kleene algebra, which yields predicate transformers, in EXPTIME [24].

Finally, while KAT and rKAT are convenient starting points for building pro-
gram construction and verification components for hybrid programs, the sim-
ple and more general setting of Hoare semigroups [27] would support develop-
ing hybrid Hoare logics for total program correctness—where balls may bounce
forever—or even for multirelational semantics [12,11], which are relevant needed
for differential game logic [26]. This is left for future work.
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