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We study the scattering of monochromatic bosonic plane waves impinging upon a rotating black hole, in

the special case that the direction of incidence is aligned with the spin axis. We present accurate numerical

results for electromagnetic Kerr scattering cross sections for the first time, and give a unified picture of the

Kerr scattering for all massless bosonic fields.
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I. INTRODUCTION

Scattering is a ubiquitous phenomenon in physics across
all scales, from particle physics to the cosmic micro-
wave background. The recent observation of “chirps” from
binary mergers [1] has shown beyond a reasonable doubt
that black holes (BHs) are abundant [2] and that gravita-
tional waves propagate at the speed of light [3]. Of
foundational interest, therefore, is the scattering of funda-
mental fields in the strongly curved spacetime geometry
surrounding a BH.
The time-independent scattering of fields by BHs has been

studied since the late 1960s, with pioneering early contri-
butions from Matzner and co-workers [4–6], Mashhoon [7],
and Sanchez [8]. Recent years have seen advances in
calculating accurate scattering cross sections for rotating
(Kerr) BHs, overcoming technical difficulties associated
with the convergence of the partial-wave series. The mass-
less scalar field (s ¼ 0) case was addressed in Ref. [9], and
the gravitational wave case (s ¼ 2) was given in Ref. [10].
The purpose of this paper is twofold: to present accurate

numerical results for the scattering of the electromagnetic
field (s ¼ 1) by a rotating BH for the first time, and to give
a unified description of scattering for all massless boson
fields (s ¼ 0, 1 and 2), complementing Refs. [11] and [12],
for Schwarzschild and Reissner-Nordström scattering,
respectively, and Refs. [13] and [14], for Reissner-
Nordström and Kerr absorption, respectively.
We consider an idealized scenario, in which a planar

wave of frequency ω impinges upon a Kerr BH of mass M
and angular momentum J ¼ aM along a direction parallel
to its symmetry axis. This scenario is characterized by a

pair of dimensionless parameters, Mω≡GMω=c3 and

a=M. At low frequency Mω ≪ 1, the scattering cross
section is [15]

lim
Mω→0

�

1

M2

dσ

dΩ

�

¼ cos4sðθ=2Þ þ δs2sin
4sðθ=2Þ

sin4ðθ=2Þ ; ð1Þ

where δs2 ¼ 1 in the gravitational-wave case (s ¼ 2) and
zero otherwise. Partial polarization is generated at order
OðaωÞ by the spin of the BH [10]. The Rutherford-type

divergence in the forward direction, of dσ=dΩ ∼ 16M2=θ4,
persists at high frequencies, due to the long-range 1=r
potential of the Newtonian field. Of greater physical interest
is the scattering through large angles, θ ≳ π=2, which leads
to interference effects (orbiting and glories [5,9]) which are a
diagnostic of the strong-field region of spacetime that
harbors photon orbits, an ergoregion, and the event horizon.
The remainder of this paper is organized as follows. In

Sec. II, we briefly review the key equations for linear
perturbations in Kerr spacetime. In Sec. III, we provide
expressions for the differential scattering cross sections.
In Secs. IV and V, we outline the numerical methods and
the series reduction method, respectively, used to obtain the
results presented in Sec. VI. We conclude with final remarks
in Sec. VII. Throughout this paper we use natural units
(G ¼ c ¼ 1).

II. MASSLESS WAVES ON KERR BACKGROUND

In the Boyer-Lindquist coordinates ft; r; θ;φg the Kerr
metric reads

ds2 ¼ −
Δ

Σ
ðdt − asin2θdφÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ

Σ
½ðr2 þ a2Þdφ − adt�2; ð2Þ

with Σ≡r2þa2cos2θ and Δ≡ r2 − 2Mrþ a2. We restrict

our attention to the case a2 < M2, which corresponds to a
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rotating BH with two distinct horizons: an internal

(Cauchy) horizon located at r− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p

, and

an external (event) horizon at rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p

.
On the Kerr background, massless waves are described

by the Teukolsky master equation [16], which, when the
field ϒs is not sourced by any energy distribution, reads

�ðr2 þ a2Þ2
Δ

− a2sin2θ

�

∂2ϒs

∂t2
þ 4Mar

Δ

∂2ϒs

∂t∂φ

þ
�

a2

Δ
−

1

sin2θ

�

∂2ϒs

∂φ2
− Δ

−s
∂

∂r

�

Δ
sþ1

∂ϒs

∂r

�

−
1

sin θ

∂

∂θ

�

sin θ
∂ϒs

∂θ

�

þ ðs2cot2θ − sÞϒs

− 2s

�

aðr −MÞ
Δ

þ i cos θ

sin2θ

�

∂ϒs

∂φ

− 2s

�

Mðr2 − a2Þ
Δ

− r − ia cos θ

�

∂ϒs

∂t
¼ 0; ð3Þ

with s being the spin weight of the field, and we have
s ¼ 0, �1=2, �1, �3=2, �2, for scalar, spinorial, electro-
magnetic, Rarita-Schwinger [17–19], and gravitational
perturbations, respectively.
In this paper we focus on bosonic waves; i.e., we choose

s ¼ 0, −1, and −2, noting the following: for scalar waves
ϒ0 ≡Φ, where Φ is the scalar field; for electromagnetic

waves ϒ−1 ≡ ϕ2ðr − ia cos θÞ2, where ϕ2 ≡ Fμνm̄
μnν

is a Maxwell scalar, Fμν is the Faraday tensor, and

nμ and m̄μ are legs of Kinnersley’s null tetrad [16]; for

gravitational waves (GWs) ϒ−2 ≡ ψ4ðr − ia cos θÞ4,
where ψ4 ¼ −Cαβμνn

αm̄βnμm̄ν is a Weyl scalar, and

Cαβμν is the Weyl tensor, which in vacuum coincides with

the Riemann tensor.
Using the standard ansatz [16,20–22]

ϒsωlmðt; r; θ;φÞ ¼ RsωlmðrÞSsωlmðθÞe−iðωt−mφÞ; ð4Þ

one can separate variables in the master equation [Eq. (3)],
obtaining the following pair of differential equations,

��

Δ
d2

dr2
þ ðsþ 1ÞΔ0 d

dr

�

þ VsωlmðrÞ
�

Rsωlm ¼ 0; ð5Þ

�

d2

dθ2
þ cot θ

d

dθ
þ AsωlmðθÞ

�

Ssωlm ¼ 0; ð6Þ

where

VsωlmðrÞ≡
1

Δ
½K2 − isΔ0K� − λsωlm þ 4isωr; ð7Þ

AsωlmðθÞ≡ 2aωðm − s cos θÞ − ðmþ s cos θÞ2
sin2 θ

þ λsωlm þ s − a2ω2 sin2 θ; ð8Þ

with K ≡ ðr2 þ a2Þω − am. The angular functions, S,
satisfying Eq. (6) are known in the literature as the spin-
weighted spheroidal functions (or harmonics), and the
quantities λsωlm are their eigenvalues. Hereafter, we refer
to Eq. (5) as the radial Teukolsky equation (RTE).

TABLE I. Numerical data for the scattering cross section dσ
dΩ

for the case a ¼ 0.99M, Mjωj ¼ 2. The digits in parentheses give an
estimate of the numerical error in the final significant figure quoted, found by comparing n ¼ 2 and n ¼ 3 iterations of the series
reduction method described in Sec. V, with lmax ¼ 60.

s ¼ 1 s ¼ 2

θ s ¼ 0 aω > 0 aω < 0 aω > 0 aω < 0

20° 1.46ð3Þ × 103 1.3ð8Þ × 103 1.39ð8Þ × 103 1.43ð8Þ × 103 1.39ð8Þ × 103

30° 3.19ð1Þ × 102 3.11ð4Þ × 102 3.00ð5Þ × 102 2.849ð8Þ × 102 3.16ð2Þ × 102

40° 1.191ð1Þ × 102 1.132ð3Þ × 102 97.1(4) 98.6(4) 1.251ð5Þ × 102

50° 46.99(3) 52.67(2) 51.62(5) 62.3(1) 52.14(7)
60° 29.102(2) 23.19(5) 31.836(1) 32.05(2) 21.546(8)
70° 18.829(4) 19.913(2) 14.650(4) 15.163(5) 18.000(2)
80° 7.234(6) 13.37(3) 13.762(7) 15.518(5) 11.361(2)
90° 10.181(1) 7.802(3) 9.775(5) 4.378(2) 4.902(4)
100° 4.9600(3) 10.02(2) 4.5622(4) 9.900(3) 8.884(3)
110° 4.7089(1) 3.3011(1) 8.1650(8) 1.8505(1) 3.6259(1)
120° 6.45237(3) 8.427(2) 2.4888(2) 9.1383(3) 4.5424(4)
130° 1.5715(2) 1.6146(7) 5.5001(1) 1.1628(1) 6.6994(2)
140° 8.6490(4) 8.86690(4) 4.9005(1) 10.5102(1) 1.4553(1)
150° 0.95527(3) 0.8830(3) 2.5716(1) 11.7776(1) 12.34590(7)
160° 12.3040(8) 16.348(1) 12.5921(6) 1.77444(1) 6.6422(1)
170° 9.976(1) 5.1772(3) 7.4316(6) 0.014593(2) 0.09270(5)
180° 77.5562(2) 0 0 1.1515030ð2Þ × 10−3 2.8316040ð5Þ × 10−4
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The boundary conditions for the RTE are

Rsωlm ∼

�

Tsωlme
−{ω̃x

Δ
−s; x → −∞;

Isωlm
e−{ωx

r
þRsωlm

e{ωx

rð2sþ1Þ ; r → þ∞;
ð9Þ

where ω̃≡ ω − am=2Mrþ, and x is the tortoise coordinate
in Boyer-Lindquist coordinates, defined by [23]

x≡ rþ 1

rþ − r−
½ðr2þ þ a2Þ ln jr − rþj

−ðr2− þ a2Þ ln jr − r−j�: ð10Þ

III. SCATTERING CROSS SECTION

The differential scattering cross section can be expressed
as follows:

dσ

dΩ
¼ jfðθÞj2 þ jgðθÞj2: ð11Þ

Using the partial-wave method, the helicity-conserving fðθÞ
[9,10] and helicity-reversing gðθÞ [10] scattering ampli-
tudes can be written as

fðθÞ ¼

8

>

>

>

<

>

>

>

:

2π
{ω

P

∞
l¼0

S0ωl0ð0ÞS0ωl0ðθÞðe2{δ
ðs¼0Þ
0ωl0 − 1Þ; for s ¼ 0;

2π
{ω

P

∞
l¼1

S−1ωl1ð0ÞS−1ωl1ðθÞðe2{δ
ðs¼1Þ
−1ωl1 − 1Þ; for s ¼ 1;

π
{ω

P

P¼�1

P

∞
l¼2

S−2ωl2ð0ÞS−2ωl2ðθÞðe2{δ
ðs¼2Þ
−2ωl2P − 1Þ; for s ¼ 2;

ð12Þ

and

gðθÞ ¼
(

π
{ω

P

P¼�1

P

∞
l¼2

Pð−1ÞlS−2ωl2ð0ÞS−2ωl2ðπ − θÞðe2{δðs¼2Þ
−2ωl2P − 1Þ; for s ¼ 2;

0; otherwise;
ð13Þ

where e2{δ
ðs¼0Þ
0ωl0 , e2{δ

ðs¼1Þ
−1ωl1 , and e2{δ

ðs¼2Þ
−2ωl2P are the phase shifts which can be computed by integrating the RTE, and θ denotes the

scattering angle. We point out that for GWs (s ¼ 2) there is a sum over parities ðP ¼ �1Þ.
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FIG. 1. Low-frequency electromagnetic Kerr scattering cross sections for on-axis incidence. We consider corotating (ωM > 0) and
counter-rotating (ωM < 0) polarized electromagnetic waves impinging upon a rapidly rotating (a ¼ 0.99M) BH.
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The phase shifts are given explicitly by

e2{δ
ðs¼0Þ
0ωl0 ¼ ð−1Þlþ1

R0ωl0

I0ωl0

; ð14aÞ

e2{δ
ðs¼1Þ
−1ωl1 ¼ ð−1Þlþ1

Bωl1

4ω2

R−1ωl1

I−1ωl1

; ð14bÞ

e2{δ
ðs¼2Þ
−2ωl2P ¼ ð−1Þlþ1

�

ReðCÞ þ 12iωMP

16ω4

�

R−2ωl2

I−2ωl2

; ð14cÞ

where B2

ωl1 ¼ λ2−1ωl1 þ 4aω − 4a2ω2 and ½ReðCÞ�2 ¼
½ðλ−2ωl2 þ 2Þ2 þ 4aω− 4a2ω2�ðλ2−2ωl2 þ 36aω− 36a2ω2Þþ
ð2λ−2ωl2 þ 3Þð96a2ω2 − 48aωÞ− 144a2ω2. Due to the
parity dependence in Eq. (14c), the helicity-reversing
amplitude gðθÞ is nonzero for GWs [10].

IV. NUMERICAL METHOD

From Eqs. (12) and (13) we note that we need to obtain
the spin-weighted spheroidal harmonics (and their eigen-
values) and the phase shifts [Eqs. (14a)–(14c)] in order to
use the formula given by Eq. (11). An additional problem
impeding the calculation of the scattering cross section is
the lack of convergence of the partial-wave series given
in Eq. (12).
We obtain the spin-weighted spheroidal harmonics and

their eigenvalues via spectral decomposition using the
description outlined in Refs. [10,14,24,25], in which

Ssωlm is written as a sum of spin-weighted spherical
harmonics,

Ssωjm ¼
X

∞

l¼lmin

bωjljsjYslm ð15Þ

where lmin ¼ maxðjsj; jmjÞ. In order to obtain the phase
shifts, we numerically integrate the RTE using the numeri-
cal schemes detailed in Ref. [14].
The long-ranged characteristic of the gravitational inter-

action leads to a divergence in the amplitude fðθÞ at θ ¼ 0

[9,10]. This physical divergence leads to a lack of con-
vergence in the series representation in Eq. (12) for any
value of θ. In order to improve the convergence properties
of the series, we develop and apply a series reduction
method, as described in Sec. V.
In a numerical calculation of dσ=dΩ, there are several

sources of numerical error, including (i) global truncation
error in the numerical integration of the RTE; (ii) fitting
error in matching the radial solutions to truncated series in
the asymptotic regimes (x → �∞) to obtain phase shifts;
(iii) numerical error in application of the series reduction
method; (iv) truncation error in terminating an infinite sum
at an appropriate lmax. We find that (i) and (ii) are not
significant, whereas (iii) and (iv) put a practical limit on the
numerical accuracy achieved. For comparison purposes,
sample data are given in Table I, along with an error
estimate found from the results of applying two and three
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FIG. 2. High-frequency Kerr scattering cross sections for on-axis incidence, showing corotating (aω > 0) and counter-rotating
(aω < 0) polarized electromagnetic waves impinging upon a rapidly rotating (a ¼ 0.99M) BH.
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iterations of the series reduction method (below) for
lmax ¼ 60. If required, more precise results could be
obtained by increasing lmax.

V. SERIES REDUCTION

The scheme described in this section is inspired
by a method developed for numerical computations of

Coulombian scattering [26], which has been successfully
employed to compute BHs scattering cross sections [10].
First, let us note that one can rewrite the partial-wave

series fðθÞ [Eq. (12)] and gðθÞ [Eq. (13)] in the following
generic form:

FðθÞ ¼
X

þ∞

l¼jsj
FlωSsωljsjðθÞ: ð16Þ

Using the spin-weighted spheroidal harmonics spectral
decomposition, onecan show that the sumover spin-weighted
spheroidal harmonics [Eq. (16)] can be rewritten as

FðθÞ ¼
X

þ∞

j¼jsj
FjYsjjsjðθÞ; ð17Þ

where we have defined Fj ≡
Pþ∞

l¼jsj Flωbωjljsj, with bωjljsj
being the spectral decomposition coefficients of Eq. (15).
The series reduction technique involves defining a new

series

FðθÞ ¼ ð1 − cos θÞ−n
X

þ∞

j¼jsj
F
ðnÞ
j YsjjsjðθÞ; ð18Þ

which has more amenable convergence properties. Noting

that Fj ¼ F
ð0Þ
j , the coefficients F

ðnÞ
j can be obtained from

the following recurrence relations:

160° 180°

0
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35

θ

FIG. 3. Electromagnetic scattering for jωjM ¼ 4 and
a ¼ 0.99M. The dotted blue line shows the analytical approxi-
mation to the glory, Eq. (23), with s ¼ 1, bg ¼ 5.0925M, and

dbg=dθ ¼ −0.2209M [10]. The lines show the cross sections of

the corotating (black) and counter-rotating (red) polarizations
obtained by our numerical method.
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FIG. 4. Long-wavelength (ωM < 1) Kerr scattering cross sections for on-axis incidence, showing both circular polarizations that are
corotating (ω > 0) and counter-rotating (ω < 0) with the spin of a rapidly rotating (a ¼ 0.99M) BH.
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F
ðnþ1Þ
j ¼ ð1−XsjjsjÞFðnÞ

j − ½Ysðj−1ÞjsjF
ðnÞ
j−1 þZsðjþ1ÞjsjF

ðnÞ
jþ1

�;
ð19Þ

where

Ysjm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjþ 1Þ2 −m2

ð2jþ 1Þð2jþ 3Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjþ 1Þ2 − s2

ðjþ 1Þ2

s

; ð20Þ

Zsjm ¼
�

ffiffiffiffiffiffiffiffiffi

j2−s2

j2

q ffiffiffiffiffiffiffiffiffiffi

j2−m2

4j2−1

q

; for j ≠ 0;

0; for j ¼ 0;
ð21Þ

Xsjm ¼
�

− ms
jðjþ1Þ ; for j ≠ 0 and s ≠ 0;

0; for j ¼ 0 or s ¼ 0:
ð22Þ

The recurrence relations given by Eq. (19) are obtained
using the properties of the spin-weighted spherical har-
monics. We compute the scattering amplitudes fðθÞ and
gðθÞ with the help of Eq. (18), with the typical choice of
n ¼ 2. Moreover, we truncate our series at finite values lmax

and jmax, depending on the value of the coupling ωM.

VI. NUMERICAL RESULTS

Figure 1 shows the scattering cross section for low-
frequency (0.2 ≤ jωjM ≤ 0.8) electromagnetic waves
(s ¼ 1) impinging upon a rapidly rotating Kerr BH

(a ¼ 0.99M). Corotating (aω > 0) and counter-rotating
(aω < 0) waves are scattered in a different way, due to
the coupling between the helicity of the field and the
rotation of the BH. Thus, a partial polarization is gen-
erated in an unpolarized beam by the frame-dragging
of spacetime. In the backward direction (θ ¼ 180°), the
cross section is zero for both co- and counter-rotating
polarizations.
Figure 2 exhibits the scattering cross section for

high-frequency electromagnetic waves, demonstrating the
existence of orbiting oscillations. The semiclassical inter-
pretation is that these oscillations arise due to constructive
or destructive interference between a pair of rays which
scatter through θ and 2π − θ. The angular width of the
orbiting oscillation diminishes in inverse proportion to the
frequency, as expected. We note that the co- and counter-
rotating oscillations have subtly different angular widths.
The cross section in the vicinity of the axis shows a

bright spot (s ¼ 0) or ring (s > 0) known as a glory, which
arises from interference between a one-parameter family of
rays that originate from an annulus centered on the axis.
Matzner et al. [5] derived the approximation

dσ

dΩ
≈ 2πMωb2g

�

�

�

�

db

dθ

�

�

�

�

θ¼π

J2
2sðωbg sin θÞ; ð23Þ

where bg is the impact parameter for the ray scattered

through 180° and J2sð·Þ is a Bessel function. Equation (23)

20° 40° 60° 80° 100° 120° 140° 160° 180°
0

50

100

150

θ

20° 40° 60° 80° 100° 120° 140° 160° 180°
0

50

100

150

θ

20° 40° 60° 80° 100° 120° 140° 160° 180°
0

50

100

150

θ

20° 40° 60° 80° 100° 120° 140° 160° 180°
0

50

100

150

θ

FIG. 5. Short-wavelength (ωM ≥ 1) Kerr scattering cross sections for on-axis incidence. We consider scalar (s ¼ 0), electromagnetic
(s ¼ 1), and gravitational (s ¼ 2) plane waves impinging on-axis upon a rapidly rotating (a ¼ 0.99M) BH.
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is valid for any spin s, but it does not distinguish between
the co- and counter-rotating polarizations. In Fig. 3 we
compare our numerical results with the approximation (23).
We see that the two polarizations reach maxima at slightly
different scattering angles, with the counter-rotating polari-
zation slightly closer to the axis than the corotating
polarization. Although Eq. (23) is a robust approximation,
it does not include this effect.
Figures 4 and 5 show the scattering cross sections for

massless fields of spin s ¼ 0, 1, and 2, corresponding to
scalar (s ¼ 0), electromagnetic (s ¼ 1), and gravitational
(s ¼ 2) waves impinging along the rotation axis of a
rapidly rotating BH (a ¼ 0.99M). Figure 4 examines the
long-wavelength regime (0.2 ≤ jωjM ≤ 0.8). For cases
s > 0, the cross sections depend on the circular polarization
of the wave, with the corotating (Mω > 0) and counter-
rotating polarizations (Mω < 0) scattering differently. For
EM waves, the cross section is zero in the backward
direction (θ ¼ 180°) as the parallel transport of spin leads to
destructive interference here. For scalar waves, there is a
nonzero backward-scattered flux. For GWs, a nonzero
backward flux arises from the helicity-reversing term

jgj2 in Eq. (11). At low frequencies, g is enhanced for
the corotating polarization by superradiance [10].
In Fig. 5, we compare the on-axis Kerr scattering cross

sections for short-wavelength (1.0 ≤ jωjM ≤ 4.0) massless
bosonic waves (s ¼ 0, 1, and 2). For s ¼ 0, the cross

sections present a glory maximum in the backward direc-
tion. For higher-spin waves (s > 0), the backward-scattered
flux is zero in the electromagnetic case (s ¼ 1) and
negligible in the gravitational case (s ¼ 2) above the
superradiance threshold of ω > am=ð2MrþÞ with m ¼ 2.
The angular width of the spiral scattering oscillations of
corotating polarizations are wider than counter-rotating
ones, again leading to the generation of a net polarization.
Finally, in Fig. 6 we compare the numerical and

analytical [computed through Eq. (1)] results for the on-
axis Kerr scattering cross section of long-wavelength waves
(jωjM ¼ 0.001), in the scalar (top panel), electromagnetic
(bottom left panel), and gravitational (bottom right panel)
cases. We obtain an excellent agreement between the
numerical and analytical results.

VII. CONCLUDING REMARKS

We have developed and applied a numerical method to
compute the scattering cross section of a Kerr BH for scalar,
electromagnetic, and gravitational plane waves, in the
special case of on-axis incidence. We found that the
scattering cross sections share key features with the static
case of spherically symmetric BHs, namely, a forward
divergence, spiral scattering oscillations, and a backward
glory. A key difference for the Kerr case, however, is
that a rotating BH can distinguish between the co- and
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FIG. 6. Comparison between numerical and analytical results for the Kerr scattering cross section in the long-wavelength
(jωjM ¼ 0.001) regime for the case a ¼ 0.99M.
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counter-rotating circular polarizations of the incident wave
[14]. This is a subtle effect that is not accounted for in
geometrical optics at leading order.
For nonzero spin waves (s > 0), we have shown that a

Kerr BH scatters the two polarizations differently, support-
ing the interpretation of a coupling between the frame-
dragging of spacetime and the field helicity. As pointed out
in Ref. [10], this coupling has the effect of inducing a partial
polarization in an initially unpolarized beam. A conse-
quence of this, manifest in e.g., Figs. 1 and 2, is that the
net polarization will vary as one varies the scattering angle.
The semiclassical approximation (23) gives a robust

estimate of the glory effect, but it does not account for this
coupling between helicity and black hole spin. It seems
likely that a more refined approximation could be obtained
via the complex angular momentum method; see Sec. IV in
Refs. [27] and [28] for results in the Schwarzschild case.
Suppose that one could observe a rotating BH illumi-

nated by broadband radiation at a characteristic frequency
of ωM ∼ 1. While it is not feasible for a solar-system-based
observer to significantly change the observing angle θ, it is
feasible to observe the system at several wavelengths.
Then, the orbiting phenomenon would lead to regular
oscillations in the observed flux with wavelength; and
moreover, the frame-dragging of the BH would generate
regular oscillations in the polarization state, from predomi-
nantly left-handed to predominantly right-handed, and
back again.

The results presented here are restricted to the special
case of a wave that impinges along the direction of the Kerr
rotation axis. In the generic off-axis case, the amplitudes
(12) and (13) are found from a double sum, taken over j and
m (azimuthal) modes, which is divergent. In Ref. [9], scalar
field (s ¼ 0) cross sections were calculated by subtracting a
Newtonian-type series from this double sum. To treat the
higher-spin cases, we propose instead adapting the series
reduction method to the off-axis case.

ACKNOWLEDGMENTS

We thank Tom Stratton for helpful comments and
discussions. The authors would like to thank Conselho
Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) and Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior (CAPES)—Finance Code 001, from
Brazil, for partial financial support. This research has also
received funding from the European Union’s Horizon 2020
research and innovation programme under the H2020-
MSCA-RISE-2017 Grant No. FunFiCO-777740. L. L.
acknowledges the School of Mathematics and Statistics
of the University of Sheffield for the kind hospitality while
part of this work was undertaken. S. D. acknowledges
additional financial support from the Science and
Technology Facilities Council (STFC) under Grant
No. ST/P000800/1. The authors thank the anonymous
referee for valuable comments and suggestions.

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Observation of Gravitational Waves from a Binary

Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).
[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), GWTC-1: A Gravitational-Wave Transient Catalog

of Compact Binary Mergers Observed by LIGO and Virgo

during the First and Second Observing Runs, Phys. Rev. X

9, 031040 (2019).
[3] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), GW170817: Observation of Gravitational Waves

from a Binary Neutron Star Inspiral, Phys. Rev. Lett.

119, 161101 (2017).
[4] Richard AMatzner, Scattering of massless scalar waves by a

Schwarzschild “singularity”, J. Math. Phys. (N.Y.) 9, 163

(1968).
[5] R. A. Matzner, C. DeWitte-Morette, B. Nelson, and T.-R.

Zhang, Glory scattering by black holes, Phys. Rev. D 31,

1869 (1985).
[6] J. A. H. Futterman, F. A. Handler, and R. A. Matzner,

Scattering from Black Holes (Cambridge University Press,

Cambridge, England, 1988).

[7] B. Mashhoon, Electromagnetic scattering from a black

hole and the glory effect, Phys. Rev. D 10, 1059

(1974).
[8] N. G. Sanchez, Elastic scattering of waves by a black hole,

Phys. Rev. D 18, 1798 (1978).
[9] K. Glampedakis and N. Andersson, Scattering of scalar

waves by rotating black holes, Classical Quantum Gravity

18, 1939 (2001).
[10] S. R. Dolan, Scattering and absorption of gravitational plane

waves by rotating black holes, Classical Quantum Gravity

25, 235002 (2008).
[11] L. C. B. Crispino, S. R. Dolan, and E. S. Oliveira, Electro-

magnetic Wave Scattering by Schwarzschild Black Holes,

Phys. Rev. Lett. 102, 231103 (2009).
[12] L. C. B. Crispino, S. R. Dolan, A. Higuchi, and E. S. de

Oliveira, Scattering from charged black holes and super-

gravity, Phys. Rev. D 92, 084056 (2015).
[13] E. S. Oliveira, L. C. B. Crispino, and A. Higuchi, Equality

between gravitational and electromagnetic absorption cross

sections of extreme Reissner-Nordström black holes, Phys.

Rev. D 84, 084048 (2011).

LEITE, DOLAN, and CRISPINO PHYS. REV. D 100, 084025 (2019)

084025-8



[14] L. C. S. Leite, S. R. Dolan, and L. C. B. Crispino, Absorp-
tion of electromagnetic and gravitational waves by Kerr
black holes, Phys. Lett. B 774, 130 (2017).

[15] S. R. Dolan, Scattering of long-wavelength gravitational
waves, Phys. Rev. D 77, 044004 (2008).

[16] S. A. Teukolsky, Rotating Black Holes: Separable Wave
Equations for Gravitational and Electromagnetic Perturba-
tions, Phys. Rev. Lett. 29, 1114 (1972).

[17] R. Gueven, Black holes have no superhair, Phys. Rev. D 22,
2327 (1980).

[18] N. Kamran, Separation of variables for the Rarita-
Schwinger equation on all type D vacuum backgrounds,
J. Math. Phys. (N.Y.) 26, 1740 (1985).

[19] G. F. Torres del Castillo and G. Silva-Ortigoza, Rarita-
Schwinger fields in the Kerr geometry, Phys. Rev. D 42,
4082 (1990).

[20] S. A Teukolsky, Perturbations of a rotating black hole. I.
Fundamental equations for gravitational, electromagnetic,
and neutrino-field perturbations, Astrophys. J. 185, 635
(1973).

[21] W. H. Press and S. A. Teukolsky, Perturbations of a rotating
black hole. II. Dynamical stability of the Kerr metric,
Astrophys. J. 185, 649 (1973).

[22] S. A. Teukolsky and W. H. Press, Perturbations of a rotating
black hole. III-Interaction of the hole with gravitational and
electromagnetic radiation, Astrophys. J. 193, 443 (1974).

[23] A. C. Ottewill and E. Winstanley, The renormalized stress
tensor in Kerr space-time: General results, Phys. Rev. D 62,
084018 (2000).

[24] S. A. Hughes, The evolution of circular, nonequatorial orbits
of Kerr black holes due to gravitational wave emission,
Phys. Rev. D 61, 084004 (2000); Erratum, Phys. Rev. D 90,
109904(E) (2014).

[25] G. B. Cook and M. Zalutskiy, Gravitational perturbations of
the Kerr geometry: High-accuracy study, Phys. Rev. D 90,
124021 (2014).

[26] D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, Phase-
shift calculation of high-energy electron scattering, Phys.
Rev. 95, 500 (1954).

[27] A. Folacci and M. O. El Hadj, Regge pole description
of scattering of scalar and electromagnetic waves by a
Schwarzschild black hole, Phys. Rev. D 99, 104079
(2019).

[28] A. Folacci and M. O. El Hadj, Regge pole description of
scattering of gravitational waves by a Schwarzschild black
hole, Phys. Rev. D 100, 064009 (2019).

SCATTERING OF MASSLESS BOSONIC FIELDS BY KERR … PHYS. REV. D 100, 084025 (2019)

084025-9


