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Abstract 9 

Accurate soil moisture information is critically important for hydrological modelling. Although 10 

remote sensing soil moisture measurement has become an important data source, it cannot be used 11 

directly in hydrological modelling. A novel study based on nonlinear techniques (a local linear 12 

regression (LLR) and two feedforward artificial neural networks (ANNs)) is carried out to estimate 13 

soil moisture deficit (SMD), using the Soil Moisture and Ocean Salinity (SMOS) multi-angle 14 

brightness temperatures (Tbs) with both horizontal (H) and vertical (V) polarisations. The gamma 15 

test is used for the first time to determine the optimum number of Tbs required to construct a 16 

reliable smooth model for SMD estimation, and the relationship between model input and output 17 

is achieved through error variance estimation. The simulated SMD time series in the study area is 18 

from the Xinanjiang hydrological model. The results have shown that LLR model is better at 19 

capturing the interrelations between SMD and Tbs than ANNs, with outstanding statistical 20 

performances obtained during both training (NSE = 0.88, r = 0.94, RMSE = 0.008 m) and testing 21 

phases (NSE = 0.85, r = 0.93, RMSE = 0.009 m). Nevertheless, both ANN training algorithms 22 

(radial BFGS and conjugate gradient) have performed well in estimating the SMD data and showed 23 
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excellent performances compared with those derived directly from the SMOS soil moisture 24 

products. This study has also demonstrated the informative capability of the gamma test in the 25 

input data selection for model development. These results provide interesting perspectives for data-26 

assimilation in flood-forecasting. 27 

Keywords: SMOS brightness temperature; soil moisture; local linear regression (LLR); artificial 28 

neural networks (ANNs); soil moisture deficit (SMD); hydrological modelling 29 

1. Introduction 30 

Although soil moisture comprises only 0.01% of the total amount of water on our planet, its 31 

existence plays an important role in influencing the water and energy exchanges at the land 32 

surface/atmosphere interface. There is abundant evidence that hydrological processes are 33 

significantly conditioned by a river catchment’s antecedent wetness state (Massari et al., 2014; 34 

Tramblay et al., 2012). In particular the surface soil wetness is an important variable in 35 

hydrological modelling because it controls key processes such as runoff and evapotranspiration, 36 

and is a vital parameter for flood modelling (Draper et al., 2011; Han et al., 2012) 37 

The Earth thermal emission at microwave bands depends essentially on the soil temperature and 38 

the soil water content (Al -Yaari et al., 2014; Rodríguez-Fernández et al., 2015). Recent research 39 

activities indicate rising interest in the operational monitoring of the global soil moisture remote 40 

sensing. In particular, the data acquired by lower microwave frequencies (e.g., L-band at 1.20-1.41 41 

GHz), both active and passive, have been utilised to provide detailed surface soil moisture 42 

fluctuations in recent years (Calvet et al., 2011). The launch of the Soil Moisture and Ocean 43 

Salinity (SMOS; (Kerr et al., 2001)) mission in November 2009 and the Soil Moisture 44 

Active/Passive mission (SMAP; (Entekhabi et al., 2010)) in January 2015 clearly demonstrates the 45 



significance and determination of an advanced global surface soil moisture monitoring system. 46 

SMOS is the first mission dedicated to monitoring direct surface soil moisture and sea surface 47 

salinity on a global scale (Kerr et al., 2010), and has a longer period of data record since its launch 48 

in 2009. Therefore, SMOS is chosen in this study. 49 

The SMOS soil moisture operational algorithm utilises a direct or forward model and an optimal 50 

estimation method: a radiative transfer model (e.g., LMEB model is used in the SMOS algorithm 51 

(Wigneron et al., 2007)) is applied to estimate L-band brightness temperatures (hereafter Tbs) for 52 

a set of physical parameters, soil composition, and moisture content and vegetation opacity 53 

(Rodríguez-Fernández et al., 2015). In order to estimate soil moisture, the simulated Tbs are 54 

compared with those measured by SMOS using an iterative process to minimise the difference 55 

between them. This approach then requires in-situ observation data for soil moisture evaluation 56 

(Al -Yaari et al., 2014; Al Bitar et al., 2012). However most areas do not have in-situ sensors 57 

because they are expensive to set up and impractical to maintain; and they are too sparse for 58 

catchment-scale studies (AlϋShrafany et al., 2013; Srivastava et al., 2013b; Srivastava et al., 59 

2013c; Walker et al., 2004; Wang and Qu, 2009). Since the presence of vegetation can reduce the 60 

brightness temperature sensitivity to soil moisture, in the aforementioned method decoupling the 61 

effects of soil and vegetation on brightness temperature can pose a major challenge for useful 62 

application under such circumstances.  63 

In order to retrieve accurate soil wetness information that can be directly used in a hydrological 64 

model and avoid aforementioned shortcomings, a data-driven model is desirable, which could 65 

effectively link the inputs to the desired output and is not computationally intensive. This can be 66 

achieved by building an inverse model that provides soil moisture information (i.e., soil moisture 67 

deficit (SMD) in this study, which is a key soil moisture variable in hydrological models (Zhuo et 68 



al., 2015a)) directly from a given set of satellite measured Tbs. Among the data-driven models, 69 

nonlinear regression models such as Local Linear Regression (LLR) and Artificial Neural 70 

Networks (ANNs) are widely recognised and used as efficient inverse models. Therefore both LLR 71 

and ANNs are used in this study. 72 

The foremost objective of this study is therefore to build an inverse model for the first time that 73 

can simulate the relevant hydrological SMD data directly from the SMOS brightness temperatures 74 

using various nonlinear modelling techniques. In this study, the SMD is estimated instead of the 75 

normal soil moisture because in hydrological modelling the excess runoff is closely linked with 76 

SMD, but not directly with the normal soil moisture (i.e., the volumetric soil moisture). The SMD 77 

refers to the amount of water needed to bring the soil moisture back to field capacity. Since SMD 78 

is directly relevant to hydrology, it is the main purpose of this study. SMOS is the first radiometer 79 

in space with full-polarisation and multangular capabilities (Rodríguez-Fernández et al., 2015). 80 

Hence, a dedicated retrieval scheme has to be studied. An LLR model and two ANN models are 81 

trained and tested for their valuation in SMD retrieval. The modelled SMD values using different 82 

techniques are then compared against the Xinanjiang simulated SMD as the target. Furthermore, a 83 

well-proven and widely applied computing algorithm called the gamma test (GT) is employed to 84 

find the optimal combination of data inputs for SMD calculation. Noori et al. (2011) and Remesan 85 

et al. (2008) applied the GT data selection method in hydrological studies, for daily solar radiation 86 

estimation and monthly streamflow prediction, and both reported positive performances. In 87 

contrast to the conventional allocation method of the training and the testing data, the M-test is 88 

adopted to find the optimal training dataset which has sufficient information for training any 89 

regression models. This will avoid wasting time and effort in allocating excessive training data or 90 

using inadequate training data. Therefore, no predefined training and testing data will be specified 91 



at the early stage of the study. Finally, the SMD estimates from the aforementioned nonlinear 92 

methods are compared with those directly derived from the SMOS soil moisture products (i.e., two 93 

different SMOS products are used: one is from the SMOS Barcelona Expert Centre (SMOS-BEC) 94 

(SMOS-BEC, 2015) and the other is from the Centre Aval de Traitement des Données SMOS 95 

(SMOS-CATDS) (Jacquette et al., 2010)). 96 

2. Study area and data 97 

Pontiac is a medium-sized catchment (1500 km2) in the Vermilion River, located in the central 98 

Illinois area of the U.S. The catchment’s topography is flat and mainly used for cultivation purpose 99 

as illustrated in Fig. 1b (Bartholomé and Belward, 2005; Hansen, 1998). Based on the Global Soil 100 

Regions map (USDA, 2005), its soil is predominately Mollisols. The catchment is dominated 101 

mainly by hot summer continental climate (Peel et al., 2007). The layout of the Pontiac catchment 102 

is shown in Fig. 1a along with the location of its flow gauge, river network, and the North American 103 

Land Data Assimilation Systems Phase 2 (NLDAS-2) grid points (i.e., the marked grid points are 104 

located at the central of each 0.125o x 0.125 o NLDAS-2 grids). The spatial variations of an 105 

extracted SMOS Tb dataset (H polarisation) at an incidence angle of 32.5 o is shown in Fig. 1c (it 106 

has been transformed into NLDAS-2 grid spacing at 0.125o for easier analysis). It can be seen from 107 

this retrieved image, the central catchment area has lower Tb values (i.e., relatively wetter soil), 108 

while the western upper and lower parts show slightly higher Tb values (i.e., relatively drier soil). 109 

This could partially be explained by the location of the river network as indicated in Fig. 1a: the 110 

majority of the water concentrates at the central area (i.e., the mainstream) and then flows to the 111 

catchment outlet (so the soil can be replenished with water more easily); whereas the soil around 112 

the small substream areas has less water availability and tends to be drier. It should be noted that 113 



soil moisture does not solely correlate with the variation of brightness temperature but also with 114 

other factors such as vegetation cover, local soil properties, and surface roughness. 115 

The Xinanjiang (XAJ) model’s hydrological forcing is obtained from the NLDAS-2 (Mitchell et 116 

al., 2004). The datasets comprise precipitation (Daly et al., 1994) and potential evapotranspiration 117 

at the 0.125o spatial resolution and daily temporal resolution (converted from hourly resolution). 118 

Both datasets have been transformed into the catchment-scale using the weighted average method 119 

to operate the lumped XAJ model. Readers are referred to Xia et al. (2012) and Zhuo et al. (2015c) 120 

for a full description of the NLDAS-2 data products. The observed daily flow data for this study 121 

is provided by the U.S. Geological Survey. The observations cover a total period of 24-months 122 

from January 2010 to December 2011. The reason for using these two-year data is due to the 123 

discontinuity of flow observations in the selected catchment. 124 

2.1 SMOS data 125 

SMOS retrieves the thermal emission from the Earth at the frequency of 1.4 GHz in both 126 

polarisations and for incidence angles from 0o to 60 o. It is dedicated to providing global surface 127 

soil moisture information at an accuracy of 0.04 m3/m3 (Kerr et al., 2012). SMOS has a Y-shaped 128 

antenna structure, which comprises 69 small antennas (a diameter of 16.5 cm) and 4.5-m long arms 129 

to perform interferometry and synthesise an aperture of ~ 7.5 m (McMullan et al., 2008; 130 

Rodríguez-Fernández et al., 2015). The projection of the synthesised beam on the Earth surface is 131 

generally presented as an ellipse whose axis ratio and orientation depend on the observed point 132 

position (Rodríguez-Fernández et al., 2015). The retrieved observations have a spatial resolution 133 

of 35-50 km (Kerr et al., 2010). SMOS follows a sun-synchronous polar orbit with a global 134 



coverage at the equator crossing the times of 6:00 A.M. at the local solar time (LST) (ascending) 135 

and 6:00 P.M. (LST, descending). 136 

In order to estimate SMD from SMOS Tbs, the Level-3 brightness temperature data from the 137 

CATDS is used (Jacquette et al., 2010). This daily global brightness temperature data contains 138 

SMOS Tbs in the reference frame of 0.25o EASE grid (Brodzik and Knowles, 2002) on the Earth 139 

surface. It provides Tbs measurements acquired at all incidence angles in a given day (averaged in 140 

5o -width angle bins) which have been transformed into the ground polarisation reference frame 141 

(i.e., H, and V polarisations). Hence, the quantity of the input data can be as high as 24 (12 angle 142 

bins per polarisation), with the centre of the first angle bin at 2.5o in both polarisations (Rodriguez-143 

Fernandez et al., 2014). In this catchment, the only angle range that gives the most available record 144 

of data is from 27.5o to 57.5o (i.e., 7 for H and 7 for V polarisation), which is therefore chosen for 145 

the model development. In order to better understand the sensitivity of SMOS Tbs to the SMD, the 146 

Pearson correlation coefficients (r) are calculated and illustrated in Fig. 2. It can be seen that the 147 

correlation decreases for H polarisation when the incidence angle rises (from r = ~ 0.55 to r = ~ 148 

0.45); whereas the correlation for V polarisation is more stable and fluctuates around 0.6 - 0.65. 149 

This phenomenon agrees with the general trend of the theoretical effect of H-V polarisations at 150 

different incidence angles (Wei et al., 2014).  151 

Additionally, the Level-3 soil moisture products from the CATDS (SMOS-CATDS) and the BEC 152 

(SMOS-BEC) are also obtained for a comparison study. The main difference between these two 153 

products is that they are made from different data inputs. The SMOS-BEC utilises the Level-2 Soil 154 

Moisture User Data Product (UDP) generated by ESA as its Level-3 data inputs, while SMOS-155 

CATDS goes in a rather unusual way by using brightness temperature products in the Fourier 156 

domain (L1B) as input for the Level-3 processor. The detailed comparison between these two 157 



products is beyond the scope of this paper, and the interested readers are referred to Elsa et al. 158 

(2013) and SMOS-BEC (2015) for full descriptions. All acquired SMOS products cover the period 159 

between January 2010 and December 2011 and have been converted into a catchment-scale dataset 160 

by the weighted average method. Furthermore, they have been re-scaled by mapping the mean to 161 

zero and the standard deviation to 0.5. This normalisation step is able to equalise the relative 162 

numerical difference among the input variables and better aid the GT feature selection routine 163 

(Remesan et al., 2008). It is noted that the re-scaled data is only for the GT routine and the M-test, 164 

and normal data are used for SMD estimation.  165 

3. Methodology 166 

3.1 XAJ model 167 

The XAJ model developed by Zhao (1980, 1992) and Zhao and Liu (1995) is a widely used 168 

conceptual rainfall-runoff model. The model has been proven in many publications to be effective 169 

for both operational and offline simulation purposes in humid, semi-humid regions (Chen et al., 170 

2013; Shi et al., 2011; Zhao, 1992; Zhao and Liu, 1995; Zhuo et al., 2015b; Zhuo et al., 2015c) as 171 

well as dry areas (Gan et al., 1997) around the world. The main hypothesis used in the model 172 

development is the runoff generation on repletion of its storage capacity, which means that runoff 173 

is not generated until the soil water reaches the field capacity (Zhao, 1992). In this study, the XAJ 174 

model is used for SMD estimation through an improved soil moisture accounting scheme (Zhuo 175 

and Han, 2016a,b). Further details on calibration and validation of the XAJ model and the SMD 176 

are discussed by Zhuo et al. (2015a) and Zhuo et al. (2016). 177 

3.2 Gamma test and M-test 178 



An appropriate selection of the incidence angles of the SMOS observations is important to ensure 179 

the best SMD estimation. In this study, a well-developed GT algorithm (Koncar, 1997; Stefánsson 180 

et al., 1997) is adopted because it has been proven to be efficient in selecting model inputs (Durrant, 181 

2001; Jaafar and Han, 2011; Noori et al., 2011; Remesan et al., 2008; Tsui et al., 2002). It is a 182 

near-neighbour data analysis routine which allows efficient estimation of the minimum mean-183 

squared error (MSE) that can be achieved when modelling the input-output data using nonlinear 184 

models. This calculation is called the gamma statistics and represented as ī. The inspiration of GT 185 

came from the Delta test (Pi and Peterson, 1994). Only a brief introduction on GT is provided here 186 

and the interested readers are referred to the aforementioned papers for further explanations. For 187 

simplicity a case is introduced where a set of data samples is given in the form of: 188 

{  ii yx , , Mi 1 }          (1) 189 

where the input vectors m
i Rx  are confined to a closed bounded set mRC , and without loss of 190 

generality, the outputs Ryi   are scalars. The vectors x comprise predictively useful information 191 

that controls the output y. The only assumption made is that the underlying relationship of the 192 

system is from the following equation: 193 

rxxfy m  )( 1           (2) 194 

where f is a smooth function and r is an indeterminable variable that is regarded as noise. Without 195 

loss of generality, the mean of the r distribution is assumed to be zero (because any constant bias 196 

has been considered in the unknown function f) and that the variance of the noise Var(r) is bounded. 197 

The domain of a potential model is now restricted to the class of smooth functions which have 198 



bounded first partial derivatives. The ī is an estimate of the model’s output variance that cannot 199 

be accounted for by a smooth data model. 200 

The GT is based on  kiN , , which are the kth ( pk 1 ) nearest neighbours )1(],[ pkx kiN  for 201 

each vector xi ( Mi 1 ). p is a fixed integer. GT is calculated from the Delta function of the input 202 

vectors: 203 
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where ],[ kiNy is the corresponding output value with ],[ kiNx . To compute ī a least-squared 207 

regression line for the p points ( )(kM , )(kM ) is built as in the following equation: 208 

  A            (5)  209 

where ī is the intercept on the vertical axis (i.e., į = 0), as can be explained as: 210 

)()( rVarkM   in probability as 0)( kM       (6) 211 

This gives an estimation of the optimal MSE value achievable utilising a modelling method for 212 

unknown smooth functions. The derived gradient A is also a useful indicator in showing 213 

information on the complexity of the system under investigation (the larger the A value the more 214 

complexity the model is required). The merit of GT is that it can provide valuable guidance about 215 

the system regardless of the subsequent modelling technique choice. A formal mathematical proof 216 



of the GT can be found in Evans and Jones (2002). In practice, the GT can be carried out through 217 

the winGammaTM software (Durrant, 2001).  218 

A general practice in nonlinear modelling (e.g., LLR and ANNs) is to divide the dataset into two 219 

parts, i.e., training and testing. However many studies hastily adopted the size of their training 220 

dataset without proper examination, and this could result in unsatisfactory modelling performance. 221 

Therefore in order to determine the best training data size that can give a stable and reliable ī 222 

statistics, an M-test is carried out. The M-test is accomplished by computing the ī for increasing 223 

M value (indicating the effect of the training data size) and through analysing the resulting graph 224 

to determine whether the ī approaches a stable asymptote (this way is easier than defining a 225 

complex algorithm). Such a procedure is useful in avoiding wasteful model-fitting attempts when 226 

the MSE from the training phase is already smaller than the Var(r), and hence preventing the 227 

overfitting problem.  228 

3.3 Nonlinear models 229 

The modern statistical approach to nonlinear model building has led to techniques such as LLR, 230 

support vector machines, principal component analysis, feedforward ANNs, and radial basis 231 

function networks. In this study, the LLR and the ANNs are used. Only brief theoretical 232 

backgrounds relevant to the study are explained. 233 

3.3.1 Local linear regression (LLR) 234 

LLR is a widely researched nonparametric regression methodology that has been applied in low-235 

dimensional forecasting and smoothing problems (Liu et al., 2011; Pinson et al., 2008; Remesan 236 

et al., 2008; Sun et al., 2003). However to our knowledge it has rarely been used in soil moisture 237 

estimation, especially those simulated from the remote sensing technology. The advantages of 238 



LLR are that it can locally provide reliable statistical modelling based on a small amount of data 239 

sample, is less computationally demanding, and is able to give accurate estimations in regions of 240 

high data density in the input space. Furthermore, LLR can make an initial prediction with only 241 

three data points, and any newly updated data are used for further predictions. LLR performs local 242 

linear regression through the pmax nearest points to a query point, to give a linear model in the 243 

locality of the query point. This process is repeated across the training data to produce a piecewise 244 

linear model. One of the methods of choosing pmax is called influence statistics and is explained 245 

below (Durrant, 2001; Remesan et al., 2008). 246 

Given a neighbourhood of pmax points, the following linear matrix equation needs to be calculated 247 

yXm            (7) 248 

where X is a dp max  matrix of the pmax input points in d dimensions, xi ( max1 pi  ) are the 249 

nearest neighbour points, y is a column vector at the length pmax of the associated outputs, and m is 250 

a column vector of parameters that has to be determined to provide the best mapping solution from 251 

X to y, such that 252 
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The rank of the matrix X is the number of linearly independent rows, which affects the existence 254 

or uniqueness of the solutions for m. 255 



If the matrix X is square and non-singular then the unique solution to Equation (7) is yXm 1 . 256 

However if X is not square or singular, Equation (7) needs to be modified and m is determined by 257 

minimising the following equation: 258 

2
yXm            (9) 259 

as has been proved by Penrose (1955), the distinct solution to this problem is:  260 

yXm #            (10) 261 

where X# is a pseudo-inverse matrix (Penrose, 1955; Penrose, 1956). 262 

One of the various methods available to organise the input training data is the k-dimensional tree 263 

(k-d tree), with a time complexity in the order O (M log M). A k-d tree is a space partitioning data 264 

structure for organising points in a k-dimensional space so that the LLR algorithm can be 265 

implemented using the least number of direct evaluations (Remesan et al., 2008). 266 

3.3.2 Artificial neural networks (ANNs) 267 

ANNs are models that learn from a training data set mimicking the human-learning ability (Zurada, 268 

1992). They are able to identify noisy data and approximate multivariate nonlinear relations among 269 

the variables (Ahmad et al., 2010). They have been widely used in many disciplines, including 270 

water resources and hydrology research such as for river level forecasting, rainfall runoff 271 

modelling, daily evaporation estimation, rainfall forecasting and groundwater modelling 272 

(Dehghani et al., 2014; Han et al., 2007; Ireland et al., 2015; Islam et al., 2012; Srivastava et al., 273 

2013a; Tehrany et al., 2014). Multilayer feedforward neural networks (NNs) are universal 274 

approximators (Hornik et al., 1989) and explored in this study to determine their effectiveness in 275 

relating a number of inputs to the SMD. Specifically, an ANN can exploit the synergy of different 276 



input variables due to its truly multivariate nature and its nonlinear capabilities (Aires et al., 2011). 277 

The supervised ANN is the most widely applied ANN, where the inputs are presented to the ANN 278 

along with the targeted output. For each neuron in the hidden layers, the input vector (including a 279 

unity element, the bias) is multiplied by a vector of weights using a scalar product. Although the 280 

most commonly used learning algorithm in ANN is the backpropagation algorithm (fitted with 281 

gradient descent and gradient descent with momentum), it is often time-consuming for a practical 282 

point of view as it requires low learning rates for stable learning. Whereas algorithms such as 283 

conjugate gradient, quasi-Newton, and Levenberg-Marquardt provide alternative ways which are 284 

faster yet efficient. Two-hidden-layers have been thought as the most effective ANN architecture 285 

(Jones, 2004), therefore, it is used in this study. For each input vector containing a combination of 286 

SMOS Tbs, there is an associated target containing an SMD value. The output of the ANN is 287 

compared with the desired value, and the weights are adjusted by minimising a cost function (i.e., 288 

MSE). The minimisation has been achieved by the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 289 

neural network training algorithm (Fletcher, 2013), and the conjugate gradient training algorithm 290 

(Bishop, 1995). The BFGS algorithm is a variable metric or quasi-Newton method, where the 291 

quadratic error function evaluated at w near to the minimum w* is considered as the following 292 

equation: 293 

*)(*)(
2

1
*)()( wwHwwwEwE T         (11) 294 

By differentiating Equation (11), the location of the minimum w* can be calculated as: 295 

0*)()(  wwHwEg          (12) 296 

The minimum w* can therefore be calculated as: 297 



gHww 1*            (13) 298 

where the vector –H-1g is the Newton direction and when validated at any w on a quadratic error 299 

surface, it will direct to the minimum of the error function w*. 300 

For the conjugate gradient training algorithm, to achieve consecutive conjugate search directions, 301 

the gradient )(wEg  of the error surface at the next point must be a minimum in the current 302 

search direction dj, which is achieved when: 303 

01  jj Hdd            (14) 304 

where H is the Hessian matrix appraised at the point wj+1. This direction search method is called 305 

conjugate. Full mathematical descriptions of the two training algorithms used in this study can be 306 

found in the aforementioned literature. 307 

4. Results 308 

In this study, four performance indicators are used: Pearson product moment correlation 309 

coefficient (r), Mean squared error (MSE), Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 310 

1970), and Root Mean Square Error (RMSE). 311 

4.1 Time series plots of XAJ SMD and SMOS soil moisture observations 312 

We have selected the days on which both the SMOS-BEC and the SMOS-CATDS have available 313 

soil moisture data. This selection is to make a fair judgement between the two products because 314 

during the same time period SMOS-CATDS has more available data than SMOS-BEC. The time 315 

series plots of the XAJ SMD and the two soil moisture products are presented in Fig. 3. It can be 316 

seen that the SMD demonstrates a high variability with seasons, with nadir (lower SMD indicates 317 

wetter soil) often occurring in winter where evapotranspiration demand is the lowest. On the other 318 



hand during the summer season, the hot temperature and increased evapotranspiration lead to an 319 

overall drier surface soil (i.e., high SMD). For the two satellite soil moisture products, it is clear 320 

to observe that they are slightly discriminated from each other. In order for a better visualisation, 321 

two enlarged time series plots (i.e., during a winter period and a summer period, respectively) are 322 

presented in Fig. 4. Interestingly during the winter period (Fig. 4a) when the soil is frozen, SMOS-323 

BEC observations are significantly less available than the SMOS-CATDS’s. In order to appraise 324 

the hydrological values of the SMOS-CATDS frozen soil moisture data, the correlation coefficient 325 

is calculated against the XAJ SMD (r = -0.76). This high correlation value indicates that even 326 

under the frozen condition, some of the satellite retrieved Tbs data are still useful for soil moisture 327 

estimation. Due to the limited availability of the SMOS-BEC data during the winter season, its 328 

correlation is not calculated here. During the summer period (Fig. 4b), data availability for both 329 

products is higher than in the winter period, and their soil moisture values are closer to each other. 330 

It can be seen from both products in the two enlarged plots that the summer soil (averagely around 331 

0.15 m3/m3) is generally drier than the winter soil (averagely around 0.25 m3/m3), which agrees 332 

with the XAJ SMD fluctuations. The results of SMD estimation directly from the two SMOS soil 333 

moisture products are presented in the later section of the paper. 334 

4.2 SMD estimation using SMOS brightness temperature as input 335 

4.2.1 Input data selection 336 

As discussed in Section 3.2, an appropriate selection of incidence angles of the SMOS brightness 337 

temperature observations is necessary to ensure the best SMD retrieval. In this study, data selection 338 

is carried out by using a full embedding (embedding means a selection of inputs from all the 339 

possible inputs) calculation with the gamma (ī) from the GT as a metric. This approach tests every 340 

combination of data inputs to determine which combination yields the smallest absolute gamma 341 



value. If there are m scalar inputs then there are 12 m  possible embeddings (i.e., 16383 342 

embeddings in this case).  Although this method is more time consuming, it is more comprehensive. 343 

The full embedding result is demonstrated by a histogram plot in Fig. 5, which shows the frequency 344 

of embeddings with a given gamma statistic. It can be seen that the histogram tends to be a 345 

Gaussian distribution, indicating that the choice of embedding is largely driven by statistical 346 

variations in the data (Jones, 1998). The best inputs combination is from the embedding that gives 347 

the lowest gamma value, which is the combination of H polarisation at the incidence angles of 348 

32.50o, 37.50o, 47.50o, 52.50o, 57.50o and V polarisation at the incidence angles of 27.50o, 32.50o, 349 

37.50o, 42.50o, 57.50o. Although Fig. 2 shows that incidence angle 27.50o at H polarisation is more 350 

correlated with the SMD, it may contain some duplicated features with other angles (called 351 

redundancy) and is therefore excluded. There is a similar reason for those angles that also have a 352 

high correlation with the SMD, but are not selected after the full embedding test. The gamma 353 

statistic given by this combination is ī = 0.048, and the gradient utilised to calculate the gamma 354 

statistic is 0.51 (A) which roughly indicate that the output SMD is a relatively simple function of 355 

the ten Tbs inputs. A model with low ī and low A is considered to be the best scenario for 356 

modelling. Therefore using the selected ten brightness temperature data solely should be efficient 357 

in modelling the SMD variations. 358 

The quantity of the training data to predict the desirable output is again analysed by the M-test, 359 

which is useful in deciding whether there is sufficient data to provide an asymptotic gamma 360 

estimate and subsequently a reliable model. The results of the M-test are presented in Fig. 6. To 361 

select the most suitable training-data length, a trade-off between the best gamma and standard error 362 

results, and the longest testing-data length is made. As a result, the 356 data length produces the 363 

best trade-off result. The corresponding gamma and standard error are 0.061 and 0.0062, 364 



respectively. The small values of both statistics illustrate that the gamma test is relatively accurate. 365 

The results of the aforementioned tests give a clear image that it is possible to build a nonlinear 366 

predictive model utilising 356 data points. 367 

4.2.2 SMD estimation using LLR model 368 

After selection of the input data, the LLR model is trained (between the 1st-356th data points) and 369 

tested (between the 357th-434th data points) on the simulated SMD data from XAJ. It is important 370 

to choose the optimal number of nearest neighbours (pmax) in LLR so that the best model 371 

performance can be achieved. This has been identified by the trial and error method. The procedure 372 

is carried out by repeating the training and testing processes for another four times over different 373 

training-testing data combinations using the 4-fold cross-validation (i.e., shifting the data by 108 374 

each time) so that there is a total of five training-testing data combinations (including the training-375 

testing data combination obtained from the M-test). In this way, all the data are tested at least once 376 

instead of just using the original testing data. The trial and error results (not normalised) are 377 

presented in Table 1. It is observed that the MSE varies with different pmax values and divided 378 

groups, indicating that both factors are important in controlling the LLR modelling performance. 379 

The generally low MSE values observed in group 1 clearly reveal the usefulness of the M-test. It 380 

is still difficult to judge the most appropriate pmax value based on those individual case results. 381 

Therefore, it is necessary to average them so that a smooth trial and error curve can be obtained 382 

(Fig. 7). The close MSE values between the testing and the training demonstrate that the LLR 383 

model is quite stable in simulating the SMD values from the selected Tbs inputs. The LLR model 384 

with pmax at three generally gives the lowest MSE value and is therefore implemented hereafter.  385 

The performance of the LLR technique is measured by three global statistics (NSE, r, and RMSE). 386 

Fig. 8 shows the scatter plots of the LLR computed and the XAJ simulated SMD during the training 387 



and testing periods. LLR shows a rather satisfactory performance (NSE = 0.88, r = 0.94, RMSE = 388 

0.008 m) during the training phase in estimating the SMD. The majority of the data points are 389 

saturated around the 45o line (dotted line) indicating that the model is well trained. Points far above 390 

the bisector line signify over-estimation whereas points far below the dotted line mean under-391 

estimation. The training outcome illustrates the degree to which the LLR model explains SMD 392 

variation as a function of the ten Tbs inputs, while the effectiveness of the model is judged during 393 

the testing phase. It is clear to see that the LLR model performs very well during the testing phase 394 

(NSE = 0.85, r = 0.93, RMSE = 0.009 m). A large number of saturated data points around the dotted 395 

line signifies that there is a surprisingly excellent match between the modelled SMD and the XAJ 396 

SMD. The used LLR algorithm has been double checked by disrupting the SMD target in the 397 

testing datasets and changing the input file, and its performance remains the same. Therefore, it is 398 

believed that LLR model is rather suitable for estimating SMD from Tbs. Fig. 9 shows that the 399 

median of the XAJ simulated SMD is higher than the LLR modelled. Nevertheless, the LLR model 400 

performs well for both low and high SMD values as the 5/25% and 75/95% percentiles of the XAJ 401 

and the model estimated SMD match well. 402 

4.2.3 SMD estimation using ANN models 403 

The LLR model is then compared with two ANN models (i.e., the BFGS training algorithm ANN 404 

and the conjugate gradient training algorithm ANN, respectively). The feedforward network used 405 

in this work has two hidden layers. Various tests have been done to determine the optimal ANN 406 

architecture. In the ANN conjugate gradient model, above 5 neurons in the hidden layer, the results 407 

do not improve anymore, therefore 10-5-5-1 ANN structure is adopted. For the ANN BFGS model, 408 

the feedforward 10-8-8-1 ANN is found to be the most suitable. The size of the sufficient training 409 

dataset has been determined as 356 through the M-test, and the target MSE has been identified as 410 



0.061 (normalised) to avoid the potential overtraining problem. Scatter plots of the two ANN 411 

models during the training and testing phases are illustrated in Fig. 10, and their statistical 412 

performances are indicated accordingly in the figure. It is seen in the statistics summary table 413 

(Table 2), that the SMDs estimated by ANNs are inferior to the estimates by the LLR model for 414 

both the training and testing parts. Box plots comparing the spread of the ANN estimated SMDs 415 

with the XAJ simulated are also shown in Fig. 9. The plot indicates that both ANN models do not 416 

capture the extreme low SMD values well (the 5% whiskers), but they perform acceptably in 417 

estimating extreme high SMD values (the upper 95% whiskers). In addition, both ANN models 418 

are comparatively poorer in modelling high SMD values (75% percentile) than LLR. The ANN-419 

BFGS is able to simulate low SMD well (25% percentile), while the ANN-conjugate shows less 420 

capability in this aspect. On the other hand, the ANN-conjugate’s simulation is able to produce the 421 

closest mean SMD value to the XAJ’s, while the ANN-BFGS’s mean is more deviated. Generally, 422 

the statistics results of the study indicate that the SMD predictive capability by the ANN-conjugate 423 

is stronger than the ANN-BFGS.  424 

4.3 SMD estimation using SMOS soil moisture as input 425 

To further evaluate the proposed method, a comparison study is carried out to derive the SMD 426 

directly from the two SMOS soil moisture products. LLR model is adopted for this purpose 427 

because this is a mono-variable regression problem (i.e., to derive from one of the SMOS soil 428 

moisture products into the SMD). If ANN is used it will have only one input node which makes 429 

the ANN model ineffective. The quantities of the training and the testing data are again analysed 430 

by the M-test. The M-test results show that the most suitable training data period for the SMOS-431 

BEC and the SMOS-CATDS is 1st-216th and 1st-220th, respectively, and the rest of the data are 432 

used as the testing dataset. The optimal number of Pmax in LLR model is found to be 13 in both 433 



data input cases. The SMD estimation results are illustrated in Fig. 11. The goodness of fit is 434 

indicated by NSE, r, and RMSE statistics. The statistical performances between the two cases are 435 

close to each other, indicating there is no significant difference between the two soil moisture 436 

products. The poor results during both the training and the testing phases reveal that those soil 437 

moisture products generated using the in-situ soil moisture networks and the numerical weather 438 

modelling outputs as the evaluating target are not hydrologically suitable. Although both ANN 439 

models are not capable of surpassing the LLR technique, their SMD estimations are still much 440 

better than those derived from the SMOS soil moisture directly (as shown in Table 2). Therefore, 441 

the proposed method using the SMOS multi-angle brightness temperatures is a more efficient way. 442 

5. Discussion and conclusions 443 

This paper describes a novel approach for the first time to estimate hydrological SMD directly 444 

from the SMOS multi-angle brightness temperatures with both the H and V polarisations using 445 

nonlinear modelling techniques. A well-proven gamma test is also employed to further improve 446 

the input data feature selection process. The use of LLR and ANNs with the BFGS NN training 447 

algorithm and the conjugate gradient training algorithm have been presented in this study. Both 448 

the radial BFGS ANN training algorithm and the conjugate gradient training algorithm perform 449 

well in estimating the SMD data, yet both fail to achieve the highest possible results. On the other 450 

hand, the training and testing results demonstrate that the LLR model is surprisingly good at 451 

capturing the interrelations between SMD and Tbs over ANNs. All the SMD values estimated from 452 

the proposed nonlinear methods achieve outstanding accuracies compared with those derived from 453 

the standard SMOS soil moisture products (both from the SMOS-BEC and the SMOS-CATDS). 454 

The results from the LLR model are quite puzzling due to a large number of data points perfectly 455 

matching with the predicted SMD values, in both the training phase and the testing phase. One 456 



obvious suspicion is the model overfits the training data, however this has been excluded using the 457 

combination of the training data and the testing data because an over-trained model cannot perform 458 

well in the testing phase. Our explanation is such a phenomenon is caused by two nearby points 459 

which have identical or almost the same SMD values. This happens if the distance between them 460 

is very small, and is more likely to happen with LLR model which is local in comparison with 461 

other global models such as ANN. A local model breaks the whole data points into local groups. 462 

For a special case when pmax=1, a value to be estimated at a certain point will be totally decided 463 

by its nearest neighbour. If its nearest neighbour is close enough a zero error could be achieved. 464 

However if the local data points are very sparse then its nearest neighbour will be quite far away, 465 

and the estimated value will have a large error. This explains why there are so many points on the 466 

perfectly matched line, while there are still many data points off it. The overall results indicate that 467 

the LLR technique has a huge potential to provide hydrologists with valuable information on the 468 

application of satellite brightness temperature for SMD estimation, which has not been explored 469 

before. The current study could form the basis for efficient satellite data assimilation into real-time 470 

flood forecasting systems. The LLR model evaluated in this paper is numerically very efficient 471 

and is capable of retrieving SMD fast enough to be assimilated into such systems.  472 

In this study the ‘ground truth’ is based on the SMD simulation from the XAJ model. One may 473 

argue that a hydrological model’s soil moisture state variable has no physical meaning and its 474 

purpose is purely to facilitate a model’s flow simulation, hence it has no direct connection with 475 

the real-field soil moisture. Moreover, as Keith Beven states in Beven (2012) there are many 476 

models with different parameter values which could produce equally good flow simulations (called 477 

the equifinality effect) because those models are all optimised with the same flow simulation. As 478 

a result, models with similar flow simulation accuracy could have very distinct values in their soil 479 



moisture state variables. To explore this argument, we have carried out some numerical 480 

experiments to demonstrate that although the absolute SMD values could vary greatly between 481 

different model parameter sets, their response patterns to soil moisture changes are almost identical 482 

because they are driven by the same precipitation and evapotranspiration processes with the 483 

identical physical response mechanisms. Therefore, the SMD pattern is the true reflection of the 484 

soil moisture changes in the real field, and this justifies the usage of SMD derived from the 485 

hydrological model as the ‘ground truth’ for assessing soil moisture data quality. However, the 486 

SMD and the real-field soil moisture represent different aspects of the soil moisture condition. A 487 

regression formula is needed to convert the satellite observations into hydrological SMD as shown 488 

in Fig. 8 and 10 (to derive hydrological SMD from the SMOS raw data using ANN and LLR) and 489 

Fig. 11 (to convert from the SMOS soil moisture product into hydrological SMD). To make a fair 490 

comparison, the regression formulas with the similar complexity are used in both cases. 491 

The accuracy of the SMD estimation is largely dependent on the relationship of the training dataset 492 

with the target output. The presence of erroneous values and under/over estimation in the training 493 

dataset hampers the model performance. Although larger training data sizes generally yield better 494 

results, it is challenging to decide what size is large enough, especially when the analysed data 495 

period is short.  At the moment, the rule of two-third data for training and one-third data for testing 496 

is still popular albeit such a method lacks consideration of the data characteristics. In addition, 497 

there is no commonly recognised method for input data feature selection and quality check, which 498 

has hampered many modelling developments. This is because some input data sets carry duplicated 499 

features (high redundancy), which can make the model over-complicated (over-fitting). Also, if 500 

the inherent errors in the input data exceed the model’s capability, it is rather difficult for the model 501 

to perform well, even the model itself is good enough. This study demonstrates the informative 502 



capability of the GT and the M-test in the input data selection for nonlinear model constructions. 503 

It is hoped that this approach could be generalised to benefit various research areas including 504 

hydrology, meteorology and where input data feature selection is needed.   505 

The mismatch between the satellite footprint and catchment scale is an important issue that should 506 

be considered in the hydrological application of soil moisture products. In this study, the chosen 507 

catchment has a compatible size with the satellite footprint, therefore the mismatch is not an issue 508 

in this case. The effect of larger or smaller catchments should be explored in future studies. Since 509 

the adopted LLR model is data based, the optimal model could change for various soil type, 510 

catchment size, land cover and climate regions. The proposed scheme has to be applied to 511 

individual catchments with their own model development for SMD estimation. With more studies 512 

using the proposed method, it could be feasible to build a look-up table in which users can search 513 

for the model structure and parameters so that it can be utilised in ungauged catchments as well. 514 

Finally, it should be noted that the SMD produced from this paper cannot be directly used in 515 

agricultural management or other disciplines because there is no universal soil moisture product 516 

for all purposes. Nevertheless, for any specific application field, the proposed method can be easily 517 

adopted to it by changing the targeted soil moisture (e.g., to change SMD to volumetric soil 518 

moisture to be used in agriculture). 519 
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Table 1. Trial and error results of finding the best number of nearest neighbours (pmax) in the LLR model.  

 
group 1  group 2  group 3  group 4  group 5  mean 

pmax training testing  training testing  training testing  training testing  training testing  training testing 

1 8.1E-05 1.3E-04  1.4E-04 1.4E-04  1.0E-04 8.4E-05  8.4E-05 1.1E-04  1.1E-04 7.3E-05  1.0E-04 1.1E-04 

2 7.6E-05 1.1E-04  1.2E-04 1.4E-04  6.4E-05 9.0E-05  6.8E-05 5.6E-05  8.9E-05 7.0E-05  8.3E-05 9.3E-05 

3 7.1E-05 7.6E-05  1.0E-04 1.1E-04  6.0E-05 9.2E-05  6.9E-05 1.0E-04  1.0E-04 6.7E-05  8.1E-05 9.0E-05 

4 6.1E-05 8.6E-05  9.6E-05 1.1E-04  7.5E-05 1.1E-04  7.8E-05 1.4E-04  1.1E-04 6.4E-05  8.3E-05 1.0E-04 

5 7.3E-05 7.9E-05  1.1E-04 1.0E-04  1.1E-04 1.1E-04  9.3E-05 1.6E-04  1.2E-04 8.8E-05  1.0E-04 1.1E-04 

6 6.7E-05 1.0E-04  1.2E-04 1.4E-04  1.4E-04 6.8E-05  1.3E-04 2.0E-04  1.2E-04 9.2E-05  1.2E-04 1.2E-04 

(Note: The performance is measured by the mean squared error (MSE is in the unit of m2). The datasets (i.e., 434 in total) have been divided into five groups so that all of 

them can be tested at least once. Group 1 comprises the training data of 1-356, and testing data of 357-434 from the M-test; group 2 comprises the training data of 1-326, and 

testing data of 327-434; group 3 comprises the training data of 109-434, and testing data of 1-108; group 4 comprises the training data of 1-107, 216-434, and testing data of 

108-215; group 5 comprises the training data of 1-216,326-434, and testing data of 217-325. The mean MSE results are used to determine the optimal pmax value in LLR 

model.)



Table 2. Summary of the model performances.   
 Training  Testing 
 NSE r RMSE(m)  NSE r RMSE(m) 
LLR 0.88 0.94 8.0E-3  0.85 0.93 9.0E-3 
ANN- conjugate 0.74 0.86 1.2E-2  0.64 0.81 1.4E-2 
ANN- BFGS 0.77 0.88 1.2E-2  0.60 0.79 1.4E-2 
SMOS-BEC 0.55 0.74 1.5E-2  0.34 0.60 1.8E-2 
SMOS-CATDS 0.53 0.73 1.5E-2  0.35 0.61 1.8E-2 
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