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We employ the interaction distance to characterize the physics of a one-dimensional extended XXZ spin

model, whose phase diagram consists of both integrable and nonintegrable regimes, with various types of

ordering, e.g., a gapless Luttinger liquid and gapped crystalline phases. We numerically demonstrate that the

interaction distance successfully reveals the known behavior of the model in its integrable regime. As an

additional diagnostic tool, we introduce the notion of “integrability distance” and particularize it to the XXZ

model to quantity how far the ground state of the extended XXZ model is from being integrable. This distance

provides insight into the properties of the gapless Luttinger liquid phase in the presence of next-nearest-neighbor

spin interactions which break integrability.

DOI: 10.1103/PhysRevB.100.235128

I. INTRODUCTION

An efficient way for describing a many-body quantum sys-

tem is by identifying the effective degrees of freedom (DoF)

that encapsulate its dominant low-energy properties [1]. In a

similar vein to Fermi liquid theory, which applies to weakly

correlated systems where the effective DoF are “dressed”

versions of the original DoF, it would be desirable to have

general techniques to characterize the effect of interactions in

general (possibly strongly correlated models), without relying

on the specific physics or exact mathematical structure (e.g.,

integrability [2]) of the model. The interaction distance [3]

provides a systematic measure of the effect interactions can

have on a given quantum state of a generic many-body system.

In the case of a reduced density matrix (see Sec. II), the

interaction distance is determined solely from the entangle-

ment spectrum [4] of the given quantum state; intuitively, it

captures the long-distance behavior of a system by identifying

the quantum correlations between the emerging DoF. At the

same time, it includes information about the structure of the

DoF that are dressed by the interactions, thus revealing

the short-distance behavior of the model.

The interaction distance compares the correlations of a

system to those of chosen free particles, which we assume in

this paper to be fermions. Moreover, it identifies the optimal

free model closest to the interacting one, thus offering a

qualitative and quantitative analysis of the interacting system.

Free fermions are a subclass of integrable models that are

analytically tractable. Following Baxter’s construction of the

corner transfer matrix [5], Nishino [6] argued that the 1D

integrable models related to the classical eight-vertex model

have ground-state correlations that, in the thermodynamic

limit, can be exactly described by free fermions [5]. This sur-

prising result has been verified analytically and numerically

for several noncritical models [7–9]. This makes the fermionic

interaction distance an ideal tool for investigating integrable

models, especially away from the thermodynamic limit, where

Baxter’s results do not apply.

Beyond the interaction distance employed to investigate

the behavior of integrable models, it is of interest to also inves-

tigate near-integrable models. To characterize this more gen-

eral class of models, we introduce the notion of “integrability

distance”—a distance that measures how far the correlations

of the given state of a generic interacting system are from

the closest possible integrable model of the same size. This

measure allows us to identify in principle if a certain physical

model is “almost” integrable, thus potentially rendering it

amenable to some of the analytical tools of integrability.

We exemplify our approach using the extended XXZ

model—a nonintegrable model hosting a Luttinger liquid (LL)

phase [10,11]—that has been under intense investigation in

recent years. In the integrable limit, properties of the model

have been studied extensively via Bethe ansatz [12], leading

to exact results for correlation functions both analytically

[13] and numerically [14], and density matrix renormaliza-

tion group (DMRG) [15], either in finite [16] or infinite

systems [17,18]. In particular, properties of the gapless LL

phase have been tested via explicit calculations of equal-time

density response functions [19,20], the density of states at

zero temperature [21–23], and power-law decay of correlation

functions [24]. Furthermore, it was shown that the LL phase

remains stable to a small amount of integrability-breaking

next-nearest-neighbor interactions [25–27]. More recently,

extensive DMRG studies have mapped out the phase diagram

of the extended XXZ model [28], and LL physics has been

probed via quantum quenches [29,30].

Here, we demonstrate that a scaling analysis of the inter-

action distance successfully reproduces the asymptotic free-

fermion behavior of the extended XXZ model when restricted

to its gapped integrable regime. Moreover, we employ the

integrability distance in order to investigate the nonintegrable

version of the model at criticality. As the integrability distance

is too complex to determine in its full generality, we present a

physically motivated simplified procedure that is suitable for

describing the extended XXZ model. This distance measures

how faithfully the entanglement properties of the ground
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state of the (nonintegrable) extended XXZ model can be

represented by the LL, thus allowing for a quantitative under-

standing of the extended model at criticality and potentially

tractable analytic treatment.

The paper is organized as follows. In Sec. II, we pro-

vide a brief overview of interaction distance and discuss

the physical meaning of this quantity, in particular how it

can probe both short- and long-distance behavior of the

model. In Sec. III, we introduce the extended XXZ model

that we employ to demonstrate the diagnostic ability of the

interaction distance. Section IV analyzes the integrable XXZ

model in terms of the interaction distance. In this section,

we identify the asymptotically free behavior of the model in

its gapped region and perform a nonperturbative calculation

of the interaction distance for the gapless regime. Section V

presents the analysis of the extended XXZ model from the

perspective of the “integrability distance” that is introduced to

measure the closeness of the correlations in the ground state of

the extended model to the correlations in the integrable

regime. Our conclusions and outlook are presented in Sec. VI.

II. QUANTIFYING THE EFFECT OF INTERACTIONS

This section provides a self-contained overview of the in-

teraction distance, DF , that was originally introduced in Ref.

[3] (see also Ref. [31]). The interaction distance is the tool

we use in this paper to quantify the effect of interactions on a

quantum system. Intuitively, we expect a quantum system to

be “noninteracting” if we are able to express its Hamiltonian

in a quadratic form, in terms of some suitably defined creation

and annihilation operators. However, this requirement may be

too stringent for many purposes where the main focus is only

on the ground state of the system and a few low-lying excited

states. In such cases, we are motivated to redefine “freedom”

with respect to the given quantum state, or more precisely its

reduced density matrix being approximately expressible in a

quadratic form.

A. Interaction distance

We focus on lattice models of interacting fermions, de-

scribed by creation and annihilation operators, c
†
j , c j . The in-

teraction distance DF is defined as the trace distance between

the density matrix ρ of an arbitrary quantum system and the

closest density matrix corresponding to some free system σ ,

given by [3]

DF (ρ) = min
σ∈F

1
2
tr(

√

(ρ − σ )2). (1)

The minimization is performed over all free density matrices

σ , which belong to the manifold of Gaussian (free) fermion

states F . Specifically, we can write

σ =
1

Zσ

exp

⎛

⎝−β
∑

j

ǫ j f
†
j f j

⎞

⎠, (2)

where f j are some fermion operators, β denotes inverse

temperature, and Zσ is a normalization constant which ensures

tr σ = 1 (we also assume that ρ is normalized in the same

manner). Note that f j are not necessarily the same as the

original fermionic operators c j that appear in the Hamiltonian

describing the system. Moreover, we emphasize that the trace

distance is merely one convenient choice for the definition of

DF , and other choices like relative entropy [32] can equally

well be used.

Expressions Eqs. (1) and (2) can be used in formally the

same way in two very different physical contexts: ρ can

represent the Boltzmann-Gibbs density matrix of the system,

or it can be a reduced density matrix, which describes a

subsystem A for some (real space) partition of the total system

in A and its complement B. In the latter case, assuming that the

entire system is in a pure state |ψ〉, the reduced density matrix

ρA is defined as

ρA = trB|ψ〉〈ψ |, (3)

where trB denotes the partial trace over the DoF in B. In

general, the reduced density matrix ρA describes a mixed

state, with some effective temperature β = 1. The negative

logarithm of the eigenvalues of ρA, i.e., − ln ρk , is known

as the “entanglement spectrum” [4]. In the case of systems

with conformal invariance [33,34] or in topological phases of

matter [35], the entanglement spectrum inherits some char-

acteristics of the energy spectrum of the full system, e.g., it

reveals the energy excitations at the edge of a topologically

ordered system [4]. In this paper, we focus on the reduced

density matrix case of DF for reasons explained in Sec. II B.

We note that the definition of DF in Eq. (1) appears to

require a difficult minimization over all σ ∈ F . Nevertheless,

it has been shown that the minimum value can be computed

simply from the spectra of ρ and σ [3,36]. Taking this into

account, the interaction distance is equivalently given by the

simpler expression

DF (ρ) = min
{ǫ j}

1

2

∑

k

|e−βEk − e−βE f
k (ǫ)|, (4)

where we have introduced the notation e−βEk for the kth

eigenvalue of ρ, and the eigenvalues of σ are similarly given

in terms of

E f
k (ǫ) = E0 +

∑

j

ǫ jn
(k)
j . (5)

For every k in Eq. (5), there is a specific pattern of fermionic

populations n j’s that take values 0 or 1, and E0 guarantees the

normalization of σ .

The advantage of Eq. (4) is that the minimization is only

with respect to the single particle energies {ǫ j}, whose number

typically scales linearly with the total size of the system.

This is in contrast to the total number of eigenvalues, whose

number is exponential in the size of the system or subsystem,

depending on whether ρ is a thermal or reduced density

matrix. Thus, DF is a diagnostic tool that can be efficiently

computed numerically or analytically for any system when-

ever its energy or entanglement spectrum {Ek} is accessible.

B. Short- and long-distance behaviors

The interaction distance DF in Eq. (1) expresses the dis-

tinguishability [32] of the two density matrices, ρ and σ . It

has a geometric interpretation as the distance of the density

matrix ρ from the manifold F [31]. Importantly, the optimal

free state σ , i.e., the one with the smallest distance from
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FIG. 1. (a) The dressed degrees of freedom (orange) that ef-

fectively describe the behavior of the interacting system are much

smaller than the length, LA, of the subsystem. The low-lying entan-

glement spectrum is universal and describes the correlations (green

line) between such dressed DoF [4] on either side of the partition

(black dashed line). The orange part of the entanglement spectrum is

associated with the structure of the dressed DoF and it is expected to

be separated from the universal green part through an “entanglement

gap.” (b) The size of the dressed DoF is comparable to the length of

the subsystem, which means that partitioning the system would nec-

essarily “cut” through a DoF. In this case, the low-lying entanglement

spectrum also probes the internal structure of the dressed DoF.

ρ, does not need to be expressed in terms of the original

DoF, c j , that define the Hamiltonian. Moreover, in general,

the optimal free state may not be unique, although in many

cases it was indeed found to be [3,37]. When ρ is chosen

to be the reduced density matrix, DF measures the distance

of the entanglement spectrum, corresponding to the given

state |ψ〉 and the given partition, from the closest possible

free-fermion entanglement spectrum, {E f
k }, given by Eq. (5).

Loosely speaking, DF measures how much the part A of the

system “interacts” with part B [38–43].

An important characteristic of DF is that it explicitly de-

pends on the partition between A and B subsystems, which can

impact its behavior. In the majority of physical systems, the

low-energy physics can be described in terms of weakly inter-

acting DoF, which are expressible in terms of dressed original

DoF, Uc jU
†, where U is some unitary transformation. As

Uc jU
† is a canonical transformation, the resulting operators

are still fermionic, but with possibly different characteristics.

For example, they might have support on a larger region than

just one site j, depending on the action of U on them.

In cases that are amenable to mean-field theory, U can

be decomposed into linear transformations of c j operators.

In this case, the dressed DoF of the system are the initial

fermions, c j , while the linear transformation determines the

quantum correlations between them. However, more com-

plicated choices of U are also possible, which cannot be

expressed as linear transformations of the original DoF. Such

operators create more complicated types of fermionic DoF

that have nontrivial internal structure and may be supported

over a larger range of lattice sites; an example is sketched

in Fig. 1. In all cases, the correlations between such DoF

underpin the low-energy properties of the model. We note

that similar ideas have recently been used in the framework

of matrix product state methods to construct quasiparticle

excitations in various 1D models [44–46].

If the size of the subsystem A is much larger than the typi-

cal size ℓ of the dressed DoF (given by the spatial support of

the operator U acting on c j’s) as in Fig. 1(a), then the bottom

part of the entanglement spectrum captures the correlations

between the dressed DoF. The top part of the entanglement

spectrum encodes the structure of the dressed DoF isolated

from the bottom part by the existence of an “entanglement

gap” [4]. As seen from Eq. (4), the contributions from the top

part of the entanglement spectrum to the interaction distance

is exponentially suppressed. Hence, in this case, DF probes

the large distance behavior, i.e., the correlations between

dressed DoF.

If, on the other hand, ℓ is comparable with the size LA of

the subsystem A, this implies that the entanglement partition

will necessarily split the dressed DoF. Hence, the interaction

distance will probe the physics associated with their internal

structure, i.e., short-distance behavior. This is likely to happen

at critical points and second-order phase transitions, where

the size, ℓ, may diverge. As a result, the behavior of DF

in the two cases may be different, probing the long-distance

or the short-distance behavior of the system, depending on its

critical behavior or the size of the partition.

From the above discussion, it becomes apparent that DF

quantifies the nonlinear effect interactions may have on the

DoF of a system. This distinguishes the interaction distance

from other diagnostic tools such as two-point correlations,

where the linear and nonlinear contributions in general both

contribute. To illustrate this, note that for the XY spin model

(which is a special limit of the extended XXZ model, as

discussed below), the spin-spin correlation function is given

by [47]

〈Sz
0Sz

n〉 = −
1

4

(

2

nπ

)2

, (6)

which is valid for n-odd. At the same time, the XY model

can be easily diagonalized by performing the Fourier transfor-

mation, which maps it to free fermions in momentum space.

Consequently, we obtain DF = 0 for the XY model for any

choice of the partition. This example illustrates that DF only

captures the nonlinear part of the correlations between the

original DoF.

III. THE EXTENDED XXZ MODEL

To systematically investigate the effect interactions can

have on the low-energy spectrum, we employ a specific ex-

ample. The systems we have in mind are defined on a lattice,

e.g., a system of quantum spins with a local Hilbert space and

local (nearest-neighbor) hopping and interaction terms. For

concreteness, we focus on the extended XXZ spin-1/2 model,

described by the Hamiltonian

HXXZ = J
∑

j

(

Sx
j S

x
j+1 + S

y

j S
y

j+1

)

+ Jzz

∑

j

Sz
jS

z
j+1

+ J ′
zz

∑

j

Sz
jS

z
j+2, (7)

where Sα
j are the standard spin-1/2 operators on site j, J

is the hopping amplitude (we set J = 1), and we included
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interactions between nearest-neighbor spins (Jzz) as well as

between next-nearest neighbors (J ′
zz).

For a one-dimensional system like in Eq. (7), in the case

J ′
zz = 0, the effect of nearest-neighbor interactions can be

rigorously accounted for via integrability techniques [5,12]

(in particular, algebraic/coordinate Bethe ansatz) for arbitrary

values of Jzz. However, integrability is broken as soon as

we include interactions between next-nearest-neighbor spins

(J ′
zz), or by generalizing the model to higher dimensions. On

the other hand, techniques such as bosonization [48] are very

versatile at describing a large class of gapless systems that

behave as LLs. For the model in Eq. (7) in the absence of

J ′
zz term, the LL phase occurs for |Jzz| < 1 [49]. Numerical

studies using DMRG [28] have shown that the LL phase

survives in a finite range of J ′
zz > 0, and is surrounded by two

types of charge-density-wave phases and a bond-ordered (BO)

phase.

We also remind the reader that the one-dimensional model

in Eq. (7) can be directly recast via Jordan-Wigner transfor-

mation as a system of spinless fermions hopping on a lattice,

HXXZ =
J

2

∑

j

(c†
j c j+1 + H.c.)

+ Jzz

∑

j

(

n j −
1

2

)(

n j+1 −
1

2

)

+ J ′
zz

∑

j

(

n j −
1

2

)(

n j+2 −
1

2

)

, (8)

with nearest-neighbor and next-nearest-neighbor density-

density interactions (n j ≡ c
†
j c j). With antiferromagnetic Jzz >

0 (and J ′
zz = 0), Eq. (8) captures the low-energy physics of

the 1D Fermi-Hubbard model at large interaction U [50].

Thus, even in simple models like in Eqs. (7) or (8), we see

that the effects of interactions can be very complex, and lead

to a variety of behaviors (gapped or gapless, integrable or

nonintegrable, etc.). In the following, we employ the inter-

action distance and the new concept of integrability distance

to numerically investigate the low-energy properties of this

system. For smaller system sizes, we use periodic boundary

conditions and obtain the ground state numerically using exact

diagonalization, resolving the translation symmetry of the sys-

tem. Alternatively, to access larger system sizes, we assume

open boundary conditions and use DMRG method, imple-

mented in ITENSOR [51], to variationally obtain the ground

state of the system and its entanglement spectrum. Unless

specified otherwise, the entanglement spectrum is obtained

by partitioning the system in real space in two subsystems of

equal size. As we explained in Sec. II, from the knowledge of

the entanglement spectrum, we can efficiently evaluate DF .

IV. QUANTIFYING INTERACTIONS IN THE

INTEGRABLE XXZ MODEL

Here we consider the integrable part of HXXZ with J ′
zz =

0. Our aim is to establish how well the interaction distance,

DF , can capture the behavior of the model known from its

analytical treatment.
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L=2400
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FIG. 2. The interaction distance, DF , in the antiferromagnetic

gapped phase of XXZ model with Jzz > 1, J ′
zz = 0, for various system

sizes L = 4k. The arrow denotes the decreasing trend of DF as the

system size is increased. Inset shows the finite-size scaling of DF for

the fixed value Jzz = 1.2 close to the transition.

A. Gapped antiferromagnetic phase of XXZ model

First, we turn our attention to the gapped phase of the in-

tegrable XXZ model, i.e., with Jzz > 1. In Refs. [7,52], it was

shown that the reduced density matrix of an infinite system,

bipartitioned into two semi-infinite lines, can be written as

ρA = exp

⎛

⎝−

∞
∑

j=0,1

ǫ j n̂ j

⎞

⎠, ǫ j = 2 j ln
(

Jzz +

√

J2
zz − 1

)

,

(9)

where n̂ j is the fermion number operator, and the sum either

starts from j = 0 or from j = 1. These two choices corre-

spond to the cases with or without spontaneous symmetry

breaking [52], i.e., for a doubly degenerate ground state the

sum starts with j = 0 (and all levels are twofold degenerate),

whereas for the symmetry breaking phase (single ground

state), the sum starts from j = 1. In both cases, the system

is evidently free as n̂ j are just free-fermion operators.

We now test the asymptotically emergent free-fermion

behavior dictated by Eqs. (9) by numerically calculating DF

for finite size systems. As explained in Sec. III, we use DMRG

with open boundary conditions to obtain the entanglement

spectrum of the ground state. Unless specified otherwise,

we use bond dimension between 400–800 to converge the

results. As explained in Ref. [53], the entanglement spectrum

is different depending on whether the size of the subsystem

is even or odd; in the rest of the paper, we focus on the cases

where L = 4k, i.e., the subsystem size, typically taken to be

half of the total system size, contains an even number of sites,

for which entropy is larger [53].

The interaction distance is shown in Fig. 2 for a range

of Jzz values in the gapped phase and different total system

sizes L. From this figure, we see that DF appears to remain

constant where Jzz is close to 1, but then starts to exponentially

decrease beyond some critical Jc
zz. The value of this Jc

zz drifts

to the left as the system size is increased, which suggests that

in the thermodynamic limit, DF will be zero for any Jzz > 1.

235128-4



INTERACTION DISTANCE IN THE EXTENDED XXZ … PHYSICAL REVIEW B 100, 235128 (2019)

However, our results also illustrate that one may need to go to

very large system sizes in order to start to see the free behavior

expected from results of Refs. [7,52]. We see below that this

behavior is due to the Berezinskii-Kosterlitz-Thouless (BKT)

nature of the phase transition at Jzz = 1 [54].

To test our previous interpretation of finite size scaling, in

the inset of Fig. 2 we pick Jzz = 1.2, which belongs to the

regime where DF ≈ const appears to hold, and then explicitly

perform scaling with respect to system size. We see that

in small enough systems, DF typically grows with system

size—this is the nonuniversal regime where the system is

not big enough to accommodate the dressed DoF due to

their large size ℓ. For system sizes greater than some critical

value Lc, which is itself a function of Jzz, DF has opposite

trend—it decays with system size toward the zero value in

an exponential fashion, as we expect from Refs. [7,52]. Thus,

we confirm that the integrable XXZ model for Jzz > 1 can be

asymptotically described by free fermions in agreement with

Eqs. (9). In other words, the interaction distance DF reduces to

zero as we increase the system size and the optimal free model

approaches the free description obtained through integrability

methods [7,52]. In particular, for values of Jzz � 1.5 and for

system sizes larger than L = 500, the interaction distance

tends to zero, saturating to the value 10−8 due to numerical

inaccuracies, while the trace distance between the correspond-

ing optimal free model obtained from the interaction distance

and the free model given by Eqs. (9) saturates to a value

below 10−6.

It is also useful to determine how many entanglement

levels are needed to faithfully determine DF . As seen from

Eqs. (1) and (2), the interaction distance depends exponen-

tially on the entanglement spectra. Hence, only a small num-

ber of entanglement levels is necessary to obtain DF with a

good accuracy. As an example, we consider the interaction

distance at Jzz = 2 and for L = 600 and verify that the asymp-

totic value is already achieved with 25 levels.

B. Gapless Luttinger phase

Next we move on to the gapless LL phase, which is realized

in the XXZ model with |Jzz| � 1. For this coupling regime,

the XXZ model can also be solved via bosonization [48] that

maps the low-energy behavior of the system to that of a system

of free bosons. Nevertheless, this does not necessitate that

the emerging DoF of the model are free bosons. This can be

directly verified, e.g., at Jzz = 0, where the XY model of free

fermions emerges, with entanglement spectrum that clearly

cannot be described by free bosons. Hence, we continue our

investigation in terms of the fermionic interaction distance,

DF , across the phase transition to the gapless regime of

the LL.

We want to find the behavior of DF across the phase

transition to the gapless regime of the LL. Similar to above,

we first scan the behavior of DF as a function of Jzz coupling

across the range 0 � Jzz � 2 shown in Fig. 3. First, we notice

that in the gapped phase Jzz > 1, the results clearly show

the drift of Jc
zz toward Jzz = 1, as discussed previously in

Fig. 2. On the other hand, for Jzz < 1 we are in the LL phase.

Intriguingly, we see that for Jzz < 0.4, DF exhibits a robust,

seemingly linear, growth with Jzz. Furthermore, the slope of

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2

J
zz

L=20

L=40

L=100

L=400

L=600

L=800

FIG. 3. The interaction distance, DF , as a function of Jzz span-

ning both gapped and gapless regimes. In the gapless regime for

small Jzz, DF exhibits a robust linear growth, DF ∝ Jzz. Data is

obtained by DMRG for a sequence of system sizes L indicated in

the legend.

the linear growth shows a weak dependence on system size L.

More precisely, the slope depends on the size of the subsystem

LA, which is fixed at LA = L/2 in Fig. 3.

A simple heuristic argument can explain the growth of

DF . Since DF is predominantly determined by the largest

eigenvalues of ρA or, equivalently, the lowest entanglement

energies, it is important to know the low-lying structure of the

entanglement spectrum in the LL phase. A general theorem

by Bisognano and Wichmann [55,56], applicable to systems

described by relativistic quantum field theory, establishes a

direct correspondence between the eigenvalues of ρA and the

energy eigenvalues of the Hamiltonian restricted to the sub-

system [57–59]. Thus, for |Jzz| < 1, the entanglement energies

are given by the actual energies of a LL Hamiltonian for open

boundary conditions. The Hamiltonian of a LL with open

boundary condition is given, e.g., in Eq. (129) of Ref. [54],

H =
∑

q>0

h̄v q a†
qaq +

h̄πv

2LK
(N̂ − N )2, (10)

where v is the velocity, K is the Luttinger parameter, L denotes

the system size, and N̂ is the total number operator. For

XXZ model, Bethe ansatz gives explicit expressions for v and

K [54],

v =
πvF

2

√

1 − J2
zz

arccos Jzz

,

(11)

K =
1

2 − 2
π

arccos Jzz

,

where vF = 1 for J = 1. Generally, K and v can be treated as

phenomenological parameters. Since the LL Hamiltonian has

a U(1) symmetry, the spectrum splits into different number

sectors with a parabolic envelope given by the second term

in the Hamiltonian. In addition, for fixed N , the first term

in the Hamiltonian gives the spectrum of bosons, with the

tower of states whose degeneracies are equal to the number
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FIG. 4. (a) Entanglement spectrum of the ground state of XXZ

model with Jzz = 0 (XY model) and Jzz = 0.2. Data is for system size

L = 24 obtained by exact diagonalization. Entanglement energies,

− ln ρk , are plotted as a function of the number of particles in A

subsystem. The four lowest levels (indicated by the dashed circle)

are responsible for the increase in DF with Jzz. Comparing the case

Jzz = 0 with that of Jzz = 0.2, we see that the symmetry of the four

levels around the middle point [cf. Eq. (5)] gets destroyed in the

presence of interactions, as the topmost level slightly comes down,

while the two degenerate ones move upward. (b) The linear growth of

DF as a function of Jzz obtained from DMRG is compared against the

analytic ansatz in Eq. (15), with ℓ0 ≈ 4.6 and system size L = 100.

of partitions of an integer, i.e., the degeneracies are 1, 1, 2, 3,

5, 7, etc.

The universality of the LL Hamiltonian implies that the

general structure of its energy levels directly translates into

the same structure of the entanglement energies for the sub-

system’s reduced density matrix. The analysis of the entangle-

ment spectrum from this point of view was performed in detail

in Ref. [60], and we reproduce an example in Fig. 4(a) for a

small XXZ periodic chain of L = 24 spins with Jzz = 0 and

Jzz = 0.2. The entanglement spectrum in Fig. 4(a) is plotted

as a function of 
NA, the relative number of particles in the

subsystem A compared to NA = N/2. The spectrum splits into

conformal towers corresponding to different particle numbers,


NA = 0,±1,±2, . . .. The behavior of DF as a function of

Jzz can be explained by considering the lowest four entangle-

ment energies, which have been indicated by a dashed circle

in Fig. 4(a). From the form of the Hamiltonian in Eq. (10)

(assuming Dirichlet boundary conditions), we see that these

entanglement energies are given by

E0 = e0,

E1 = E2 = e0

(

1 +
1

2K

)

, (12)

E3 = 2e0.

with e0 = π h̄v

L
, i.e., two of them are in the sector with half

the number of particles in A (
NA = 0), and two remaining

energies are in number sectors that differ by ±1. We have

compared these energy levels with the behavior of the levels

obtained numerically from the entanglement Hamiltonian and

we found excellent agreement.

From Eqs. (12), it is clear why DF increases: When K = 1

(XY model), the four levels are symmetric around the mid-

point (Emax + Emin )/2, thus describable by the free-fermion

modes as in Eq. (5) and DF = 0; in all other cases, we obtain

a set of four entanglement energies that are not symmetric

around the middle point and thus cannot be described by

Eq. (5). Hence, DF is not zero and can be precisely quantified.

For small Jzz, we can assume the corresponding free model

is just the XY model, for which the (unnormalized) reduced

density matrix eigenvalues are σ0 = 1, σ1 = σ2 = e−βent/2,

σ3 = e−βent . The interaction distance is then given by

DF =
1

2

3
∑

k=0

∣

∣

∣

∣

1

Z
e−βentEk −

1

Zσ

σk

∣

∣

∣

∣

, (13)

which can be evaluated using Eqs. (12). Note that the (inverse)

entanglement temperature βent should be set (for an open

system) according to [61]

βent =
2πLA

v ln(LA/ℓ0)
, (14)

where ℓ0 is a lattice regularization. The latter can be found,

e.g., from the bipartite fluctuation of magnetization [61]. Note

that the final result for DF involves products of the form

βentEk . Hence, it continues to carry a weak subsystem-size

dependence via the factor ln(LA/ℓ0) from the definition of

entanglement temperature.

Using the expressions in Eqs. (13), (14), and (11), and

expanding to first order in Jzz, we obtain

DF = Jzz

3π cosh
(

π2
/

ln LA

ℓ0

)

8 ln LA

ℓ0
cosh4

(

π2
/(

2 ln LA

ℓ0

)) + O
(

J2
zz

)

. (15)

Using, e.g., ℓ0 ≈ 4.6, this formula gives a good agreement

against the DF growth calculated in DMRG for a system of

L = 100 sites, as shown in Fig. 4(b). Hence, it is possible to

faithfully determine the behavior of DF from a small number

of lowest eigenvalues even if the system is in the gapless

regime. We note that, unlike the gapped phase which was

studied in Refs. [7,52], we are unaware of analytical results

for the entanglement spectrum in the LL phase in the limit of

an infinite system.

Finally, it is interesting to analyze what happens when our

simple toy model in Eqs. (12) is pushed beyond its validity

when system size L becomes very large. In this case, the

structure of the entanglement spectrum will change, with an

increasing number of entanglement levels becoming degen-

erate with each other. This is because of weak logarithmic

dependence of entanglement temperature on the subsystem

size, as noted above. Thus, based on our simple toy model,

we may expect that there is a crossover between the linear

increase of DF to a decay in much larger system sizes. Such

a result would be in agreement with the expectation from

Baxter’s analysis that any integrable system in the critical or

noncritical regime is faithfully described by free fermions.

A full numerical verification of this result is currently out

of our reach: The large system sizes required to approach

the thermodynamic limit make the accurate evaluation of DF

formidable. An investigation with dedicated numerical recipes

for the accurate evaluation of interaction distance for large

system sizes will be carried out in a future work.
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FIG. 5. The interaction distance, DF , plotted on a logarithmic

scale as a function of subsystem size LA, on the integrable line

J ′
zz = 0 for various Jzz. Total size of the chain is fixed at L = 400

sites, with an additional data point at L = 100 Jzz = 2. We see that

in the entire Luttinger liquid phase (Jzz � 1), there is no decay

of DF with subsystem size LA. On the other hand, in the gapped

antiferromagnetic phase, DF decays exponentially with LA, with an

exponent that depends on Jzz. This decay reflects the exponential

localization of fermionic dressed DoF, that does not change with

system size.

C. Probing the structure of dressed DoF

From the previous analysis we have seen that the XXZ

model has DF → 0 as L → ∞, for Jzz > 1. This reflects

the fact that the dressed DoF of the model tend to behave

like free fermions even for finite but large system sizes,

extending the infinite size result of Eqs. (9). Note that the

internal structure of the dressed DoF is generated from the

interactions due to a nontrivial rotation Uc jU
†. Nevertheless,

for large enough system sizes and partitions LA, the fermionic

dressed DoF fit well within the region of the partition LA and

its complement, as shown in Fig. 1(a). Then the interaction

distance measures the free particle correlations giving DF ≈

0, as shown in Fig. 2. When LA becomes small compared to

the size, ℓ, of the dressed DoF, then the lowest part of the

resulting entanglement spectrum will be influenced by the

structure of the dressed DoF, as shown in Fig. 1(b). The part

of the entanglement spectrum that corresponds to the internal

structure of the quasiparticles does not necessarily correspond

to free correlations as the structure of U comes from the

presence of interactions. This is precisely the information

about the dressed DoF that can be captured by DF .

We can quantitatively extract the size of the dressed DoF

of the XXZ model by examining the dependence of DF on the

subsystem size, LA, for various choices Jzz in the gapped and

gapless regions. In this analysis, we keep the total size of the

system fixed at L = 400. This size is large enough to be in the

proper scaling regime, giving DF → 0 for many choices of

Jzz � 1.5. In Fig. 5, we vary the location of the partition for

fixed system size. We see that there is an exponential increase

in DF when the subsystem size is reduced down to LA ∼

20, then it goes identically to zero DF = 0 for LA = 1, as

calculated analytically [3]. This increase can be explained in

2 4 6 8

10
0

10
1

Correlation length

Correlation length fit w/ [a, b] = 0.19,3.39

Dressed DoF

Dressed Dof fit w/ [a, b] = 0.21,3.14

FIG. 6. Numerically determined size ℓ of the dressed DoF and

correlation length ξ as a function of Jzz. Both data points are fit

according to Eq. (19), with the critical value Jc
zz = 1. Both ℓ and the

ξ diverge with roughly the same functional form and ℓ ∼ ξ .

terms of Fig. 1 that depicts localized dressed DoF. Assuming

that the profile of the dressed DoF is exponential, we expect

the scaling behavior of DF to be given by

DF ∝ exp(−LA/ℓ). (16)

From this relation, we can extract the size ℓ of the dressed

DoF as a function of Jzz, as shown in Fig. 6. We compare

its divergence with the divergence of the correlation length

ξ as the system approaches the critical point at Jc
zz = 1. The

correlation length is extracted from the spin-spin correlations,

G(r) =
〈

Sz
jS

z
j+r

〉

−
〈

Sz
j

〉〈

Sz
j+r

〉

, (17)

using an exponential fit with a polynomial prefactor [62]:

G(r) ∼
1

r2
e−r/ξ . (18)

It was recently pointed out [63] that using a simple expo-

nential instead of the correct Ornstein-Zernike ansatz as in

Eq. (18) would result in large errors for the estimated ξ .

From the fit to Eq. (18), we find divergence of the correlation

length as Jzz approaches the critical point, as shown in Fig. 6.

The divergence takes the form characteristic of the BKT

transition [54],

f (Jzz ) = a exp

⎛

⎝

b
√

∣

∣Jzz − Jc
zz

∣

∣

⎞

⎠, (19)

with constant a and b. Surprisingly, as we observe in Fig. 6,

ℓ also diverges with Jzz in a similar fashion to ξ . This signals

that in the present case they both depend on the energy gap of

the system according to

ℓ ∼ ξ ∼ E−1
gap (20)

within the gapped phase. The fitting parameters are [a, b] =

[0.19, 3.39], [0.21, 3.14] for ξ and ℓ, respectively, when fit to

the critical point at Jc
zz = 1. The value of b for ξ and ℓ are
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found to be within 3% and 10% of the asymptotic Bethe ansatz

result [26].

The exponential profile in DF shows that the effective DoF

are dressed by interactions with an exponential tail. As Jzz is

tuned away from Jc
zz in the gapped phase, the dressed DoF

move toward a single particle picture, with Jzz → ∞ trivially

free. Indeed, at that point one would find the interaction

distance identically zero DF = 0 for all choices of cut as

it is possible, via a Jordan-Wigner transformation, to map

the interacting Hamiltonian to one that is quadratic in its

fermionic operators. Thus, the dressed DoF size ℓ is also

trivially zero at this point. Within the LL phase, we see in

Fig. 5 no exponential profile attached to DF as the partition

is changed. So it is not possible to extract a meaningful, finite

size ℓ due to the critical nature of this phase.

V. QUANTIFYING INTERACTIONS IN THE

NONINTEGRABLE REGIME

Our previous analysis on the XXZ model complements the

rigorously established results in the literature, obtained either

by Bethe ansatz or bosonization techniques, and calibrates

DF on an integrable model. Now we investigate the effect of

next-nearest-neighbor interactions, J ′
zz �= 0, which break the

integrability of the model.

A. Interaction distance of the extended XXZ model

Previous numerical studies of the extended XXZ model

using DMRG [28] have mapped out its phase diagram as

a function of Jzz and J ′
zz. It was established that the phase

diagram consists of four phases: the LL phase, two types

of charge-density wave (CDW1, CDW2) phases, and a BO

phase.

In Fig. 7, we map out the phase diagram Jzz-J
′
zz based

on the value of DF in the ground state. Although the phase

diagram in Fig. 7 is obtained for a rather small system size

(L = 20, with periodic boundary conditions), its structure is

broadly consistent with phase boundaries found in Ref. [28],

indicated by dashed lines. In particular, the structure of DF

clearly reveals the presence of at least four different phases.

The LL phase is dominated by the larger values of DF as

it corresponds to a gapless phase, compared to the gapped

charge-density-wave phases. Indeed, when the energy gap is

small then the corresponding ground state is more susceptible

to the presence of interactions and DF is large. However, this

is not true near the origin of the phase diagram where we see a

semicircular lobe with small values of DF . On the integrable

line J ′
zz = 0, this lobe corresponds to the regime of linear

increase of DF that we discussed in Fig. 3, and we expect

that a similar behavior persists when a small amount of J ′
zz is

added.

Beside the LL phase, there are also three ordered phases in

the phase diagram in Fig. 7. The crystalline phases CDW1

and CDW2 have a simple interpretation in the classical

(“atomic”) limit when the XY term in the Hamiltonian

is completely switched off. In that limit, CDW1 is adia-

batically connected to the degenerate Néel product states,

101010 . . . and 010101 . . ., while CDW2 has a doubled unit

cell, 110011001100 . . . (and translated copies). Finally, the

FIG. 7. Interaction distance DF (color scale) across the 2D phase

diagram Jzz-J
′
zz for system size L = 20 with periodic boundary con-

ditions, obtained by exact diagonalization. Dashed lines are approxi-

mate phase boundaries reproduced from Ref. [28], which separate the

following phases: gapless Luttinger liquid phase (LL), two types of

charge density wave phases (CDW1 and CDW2), and a bond ordered

phase (BO).

BO phase [64] is defined by the finite value of the order

parameter, 〈 1
L

∑

i(−1)i(c†
i ci+1 + h.c.)〉. All these phases, be-

ing weakly correlated, are expected to have relatively low

values of DF , as indeed confirmed by Fig. 7.

We now investigate the scaling behavior of DF as we

change the partition size LA. From Eq. (16), we can extract

size ℓ of the dressed DoF as we did for the integrable XXZ

model. Figure 8 shows that size ℓ behaves similarly to the

correlation length ξ as it approaches the phase transition from

the charge-density-wave phase to the LL phase. Both ℓ and ξ

have a scaling behavior consistent with BKT phase transition

[26]; however, there is a small deviation between their values

in comparison to the integrable XXZ case.

B. Integrability distance

Finally, we are interested in the gapless LL phase of the

extended XXZ model. As we have seen in Fig. 7, in small

system sizes DF has a nonmonotonic behavior in this phase,

which motivates us to search for a more robust diagnostic. The

form of the extended XXZ Hamiltonian and our analysis so far

suggest we introduce the following “distance,” instead of DF ,

to quantitatively investigate the LL phase:

DXXZ(ρ) = min
−1�Jzz�1

1
2
tr
√

(ρ − σ (Jzz ))2 . (21)

Here ρ is the reduced density matrix of the extended XXZ

model and the minimization is over σ (Jzz ) which represents

the reduced density matrix of the XXZ ground state at −1 �

Jzz � 1 (J ′
zz = 0). Unlike the definition of DF in Eq. (1), note

that σ (Jzz ) is not necessarily a free-fermion density matrix,

but that of the integrable XXZ model. Furthermore, we have

used quotes in the name distance because DXXZ characterizes

correlations in a single quantum state, rather than the spectral
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] = 0.4, 1.31, 2.33

FIG. 8. Numerically determined size ℓ of the dressed DoF and

correlation length ξ as a function of Jzz for the line J ′
zz = 3 − Jzz, i.e.,

approaching the LL-CDW1 phase transition from within the gapped

phase in Fig. 7. Data points are fit using the ansatz in Eq. (19), with

the critical value extracted as Jc
zz = 2.33. Both ℓ and the ξ diverge

with the same functional form signaling that the phase transition LL-

CDW1 in the extended model is also of BKT type.

properties of the entire Hamiltonian (although the two should

be linked in some way). In general, a more appropriate quan-

tity would be the integrability distance, DI , defined as

DI (ρ) = min
σ∈I

1
2
tr

√

(ρ − σ )2, (22)

where the minimization is performed over the set of all inte-

grable models, I. Several difficulties arise with this distance

as explained below. For our immediate purposes, given the

form of the extended XXZ Hamiltonian, it seems natural to

measure how far it is from the XXZ model in the Luttinger

phase and hence to restrict our attention to DXXZ.

In practice, we evaluate DXXZ numerically by precomput-

ing σ (Jzz ) for a dense set of values Jzz distributed in the

interval [−1, 1]. Then, for every value of the parameters

(Jzz, J ′
zz ), we obtain the ground state of the system, find its

reduced density matrix ρ, and identify which of the precom-

puted σ (J∗
zz ) minimizes the trace distance in Eq. (22). This

gives us two bits of information: (i) we obtain the optimal

LL coupling J∗
zz on the integrable line or, equivalently, the

effective Luttinger parameter K∗ given by Eq. (11) [48],

which best approximates the ground state at a non-integrable

point (Jzz, J ′
zz ); and (ii) we also obtain information about the

quality of the approximation from the minimal achieved trace

distance between ρ and σ (J∗
zz ). If this minimal trace is not

close to zero, the approximation is poor, and the description

in terms of an integrable LL is not useful. Compared with the

results, e.g., of Ref. [19] for the effective value of the Luttinger

parameter K∗ along the cut J ′
zz = 2Jzz − 2.5, we found that the

optimal integrable model has K∗ that is in good agreement,

with at most a 6% deviation.

In Fig. 9, we evaluate DXXZ for the extended XXZ

model by varying both interactions, Jzz and J ′
zz. Figure 9(a)

shows the optimal integrable Luttinger coupling J∗
zz for each

FIG. 9. Integrability distance DXXZ across the two-dimensional

phase diagram Jzz-J
′
zz. Data is obtained by exact diagonalization for

system size L = 20. Panel (a) shows the optimal integrable Luttinger

coupling J∗
zz for each point (Jzz, J ′

zz ) in the phase diagram, with the

corresponding minimal trace distance shown in panel (b). We see

that the trace distance is small only in the diagonal strip of the phase

diagram, which is consistent with the region identified as the LL

phase in Ref. [28].

point (Jzz, J ′
zz ) in the phase diagram, with the corresponding

minimal trace distance shown in Fig. 9(b). Indeed, from J∗
zz,

the parameters K and v in Eq. (11) can be fully determined

that give the Hamiltonian of the LL, Eq. (10), that best approx-

imates the model at that point in the phase diagram. We see

that the trace distance is small only in the diagonal strip of the

phase diagram, which is consistent with the region identified

as the LL phase in Ref. [28]. Outside of this region, our

optimal model is not accurate. Interestingly, along the phase

boundary of the LL-CDW1 transition, we find that the optimal

model is J∗
zz = 1. This is consistent with the literature [28]

which found that the Luttinger parameter K along the entire

phase boundary assumes the value K∗ = 1
2

(which translates

to our J∗
zz = 1).
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VI. CONCLUSIONS AND OUTLOOK

In this paper, we qualitatively and quantitatively investi-

gated the behavior of the extended XXZ model, focusing on

the effect of interactions on different phases. This model has

an integrable line that we probed with the interaction distance,

DF . In the gapped regime, we investigated the behavior of

its effective DoF, dressed by the interactions, that naturally

emerge through the scaling analysis of the interaction dis-

tance. Hence, the interaction distance can efficiently describe

the short- and long-distance behavior of the model. Moreover,

we provided analytical arguments about the behavior of the

interaction distance, DF , in the gapless LL regime of the

integrable XXZ model.

Outside the integrable line, a large part of the phase dia-

gram of the extended XXZ model is expected to be described

by the LL. The investigation of this property motivates the

introduction of the concept of integrability distance, DI as in

Eq. (22). Similar to the interaction distance, ρ in Eq. (22) can

represent the Boltzmann-Gibbs density matrix of the system

or it can be the reduced density matrix of any eigenstate

of the system, when it is bipartitioned. In this way, ρ can

systematically probe all the relevant properties of integrable

systems such as their energy spectrum and their quantum

correlations. Moreover, DI could be directly expressed with

respect to the eigenvalues of ρ and σ . Nevertheless, two fun-

damental difficulties arise when working with Eq. (22). One

is that, unlike the free-fermion density matrices, the general

structure for σ of integrable systems is not known. Another

is that the set I of all possible integrable models one can

envisage is not completely understood. In practice, one could

simply list all the models that are known to be integrable up to

now and run over this set. Due to the formidable complexity

of varying over the whole space I of integrable models, we

leave the investigation of the integrability distance, Eq. (22),

to future work. Identifying the general structure of σ for (at

least some) integrable models would be an important step.

It would allow us to evaluate DI in full generality and thus

help to quantitatively demonstrate how close nonintegrable

but physically relevant models are to mathematically idealized

integrable examples. In view of these points, in our case, we

restricted our attention to DXXZ to quantitatively demonstrate

that the extended XXZ model can be faithfully described by

the LL with good accuracy. That being said, using DI , one

could well imagine that at those points in the parameter space

Jzz-J
′
zz, where DXXZ is not small, the extended XXZ model is

in fact “closer to” another integrable model.

In compliance with EPSRC policy framework on research

data, this publication is a theoretical work that does not require

supporting research data.
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