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Abstract—In this paper, a novel droop control method for
three-phase grid-connected inverters is proposed to guarantee
closed-loop system stability and an inherent current-limiting
property without the need of a PLL. The inverter is connected
to the grid via a filter and a line. Based on the synchronously
rotating dq frame modelling and nonlinear ultimate boundedness
theory, it is analytically proven that the proposed control scheme
maintains the inverter current below a certain upper bound. This
current limitation is guaranteed independently of the grid, line
and filter parameters; thus increasing the controller robustness.
In addition, asymptotic stability of the desired equilibrium point
of the closed-loop system is guaranteed under different values of
the proposed controller gain. To verify the effectiveness of the
proposed nonlinear control strategy, extensive simulations are
realized using Matlab/Simulink, where both the stability and the
current-limiting property of the controller are validated.

Index Terms—Nonlinear control, current limitation, reference
frame, stability analysis, three-phase inverter, PLL-less imple-
mentation

I. INTRODUCTION

Due to the increase in the power demand with the techno-

logical advancements, the use of the renewable energy sources

in the power production becomes more and more important

to decrease the undesirable effects to the environment caused

by conventional power generation [1]–[4]. Renewable energy

sources can be both integrated into the traditional grid and

connected to distributed microgrids where they can operate

either in grid connected or in islanded mode [5], [6]. For the

integration of these renewable energy sources, three-phase in-

verters are being used and represent essential devices to control

the active and reactive power, support the grid by operating

similar to conventional synchronous generators through droop

control, and maintain the system states (e.g. current, voltage

and frequency) within a given range to ensure system stability

[7]–[9].

In grid-connected applications, the droop control method-

ology is used to control the power inverters and provide

grid voltage and frequency support by adjusting the real and

reactive power injected by the renewable sources [10]–[12].

The control of real and reactive power injected to the grid can

be accomplished separately by introducing additional terms

in the droop control structure to remove their coupling [13],

while virtual impedance methods can be added as well to

affect the inverter output or line impedance in order to enhance

the stability of the grid [14]. Depending on the type of the

output impedance, the droop expressions can take the form of

P−ω/Q−V (inductive impedance) and P−V/Q−ω (resistive

impedance) and they are used to support the local voltage

and frequency of the system at the point of common coupling

(PCC) [15], while a line is generally considered between the

PCC and the main grid.

Grid synchronization is one of the most critical issues

that needs to be considered in grid-connected applications to

maintain a stable and reliable operation of a grid-tied inverter

[16]. In this process, many methods such as Kalman Filter,

nonlinear least square, and phase locked loops (PLL) can be

used. Due to its easy implementation and simplicity, the most

commonly used method is the PLL. Although PLLs can be

very effective in balanced grid conditions, it has been shown

in the literature that they can lead to undesirable phenomena

and instability of the system in distorted grid conditions [17].

In order to overcome these problems, self-synchronization

algorithms have been recently proposed and can be embedded

in the droop control [18], [19].

To increase the reliability of the grid-connected inverter op-

eration and meet the requirements dictated by the grid authority

[5], [20], the relationship between the inverter and grid should

be managed by considering the protection and stability issues

[21], [22]. For instance, when injecting power to the grid, the

system states such as voltage, current and frequency should be

limited for stability and power balance purposes. Particularly,

current limitation is of major importance under grid faults or

sudden changes of the supply, demand or the desired reference

signal received from a supervisory control. To achieve current

limitation, PI controllers with limiters and saturation blocks

are often used [23]–[26]. However, these techniques can cause

the well-known integrator windup problem, and eventually

system instability. Even when anti-windup methods are used

to overcome this issue, they require information of the system

parameters to ensure rigorous closed-loop system stability,

which may not be available or may vary in a real applica-

tions [27], [28]. To this end, the bounded integral controller

[29] using nonlinear input-to-state stability theory has been

proposed to deal with the integrator windup problems and it

has been successfully implemented to limit the system current
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Fig. 1. Three-phase grid-connected inverter.

in both three-phase [30] and single-phase applications [31].

Nevertheless, asymptotic stability of the closed-loop system to

a desired equilibrium point has not been proven yet for a three-

phase inverter connected to the PCC, while a PLL is often

required for the implementation that reduces system reliability.

In this paper, a novel nonlinear current-limiting droop con-

troller for a three-phase inverter connected to the grid through

a filter and a distribution line is proposed without the need

of a PLL. The proposed controller supports the voltage and

frequency of the PCC and inherently limits the current of

the inverter using only local measurements of the PCC in-

dependently from unrealistic values of the reference power.

The desired current limitation is mathematically proven using

nonlinear ultimate boundedness theory and closed-loop asymp-

totic stability is examined using small-signal model analysis.

The system is modelled using the synchronous rotating (dq)

frame, and for the stability analysis, a global-to-local axis

transformation is used to investigate asymptotic convergence

to a desired equilibrium point [32]. To verify the theoretical

analysis and the effectiveness of the novel control design,

detailed simulation results are presented for a three-phase grid-

connected inverter.

The rest of the paper is arranged as follows. In Section II, the

system dynamics are given and the main problem is defined.

In Section III, the design process of the nonlinear current-

limiting controller is explained in detail. In Section IV, the

current-limiting property and the closed-loop system stability

are examined. In Section V, simulation results are provided,

and in Section VI, the conclusions of the paper are presented.

II. PROBLEM DEFINITION AND SYSTEM DYNAMICS

The system under consideration is a three-phase inverter

connected to a point of common coupling (PCC) through

a filter, as demonstrated in Fig. 1. The filter resistance and

inductance are described as Rf and Lf , respectively, whereas

the line between the PCC and the main grid has a resistance Rg

and inductance Lg . The inverter dc input voltage is expressed

as Vdc, and the three-phase grid voltages are given as





Va

Vb

Vc



 =





Vmcos (ωgt)
Vmcos (ωgt− 120o)
Vmcos (ωgt+ 120o)



 ,

with Vm and ωg being the grid voltage amplitude and fre-

quency, respectively.

In order to realize the system analysis, an algebraic axis
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Fig. 2. Axis transformation.

transformation [32] is used to align the grid and inverter

voltages as shown in Fig. 2. The algebraic transformation is

given below [32]:
[

a
b

]

=

[

cos (δ) −sin (δ)
sin (δ) cos (δ)

] [

a′

b′

]

. (1)

In this context, (1) is referred as global-to-local transforma-

tion, where δ represents the rotation angle. If the rotation is

counterclockwise then δ > 0, and if it is clockwise, as in

the proposed system, then δ < 0. For the clockwise case, the

rotation matrix (1) (after δ is replaced with −δ) becomes
[

cos (δ) sin (δ)
−sin (δ) cos (δ)

]

, (2)

where δ = θ − θg , which represents the difference between

the inverter and grid angles. Assuming that the PCC voltage

is aligned on the dg axis of the global dq reference frame and

neglecting the small voltage drop and phase shifting caused by

the line, i.e. V ′
gd = Vm and V ′

gq = 0, then by using the inverse

of the rotation matrix (1), the inverter side equivalence of the

PCC voltages can be found as
[

Vgd

Vgq

]

=

[

Vmcos (δ)
−Vmsin (δ)

]

. (3)

As a result, the three-phase dynamics in the local dq reference

frame are expressed as

Lf

dId
dt

= −RfId + ωLfIq − Vgd + Vd (4)

Lf

dIq
dt

= −RfIq − ωLfId − Vgq + Vq (5)

where Id, Iq and Vd, Vq represent the dq frame inverter currents

and voltages. Active power (P ) and reactive power (Q) can be

calculated as in [32]

P =
3

2
(VgdId + VgqIq) , Q =

3

2
(VgqId − VgdIq) . (6)

It is clear from (3) and (6) that the P and Q expressions include

nonlinear terms, and any control method that controls the real

and reactive power injected by the inverter, such as the droop

control method, will result in a nonlinear closed-loop system.

Therefore, nonlinear control theory should be considered to

prove key system features, such as current limitation, and

guarantee a reliable operation. To this end, the main aim of

this paper is to design a nonlinear controller which limits the

system current even when there is excessive power demand,

and ensure the system stability at all times.



III. PROPOSED NONLINEAR CURRENT-LIMITING

CONTROLLER

The main focus of this paper is to design a nonlinear con-

troller which limits the inverter injected current, and realizes

the desired power droop functions without the need of a PLL.

For this purpose, the local inverter voltages (Vd and Vq), which

represent the control inputs of the system are proposed to take

the form

Vd = Vgd + Ed − rvId − ωLfIq (7)

Vq = Vgq − rvIq + ωLfId (8)

where Ed and rv act as a controllable virtual voltage used

as a controller state, and a constant virtual resistance used

to limit the current, respectively. Motivated by the recently

proposed bounded integral controller [29], the Ed dynamics

of the proposed nonlinear controller are defined as

Ėd = cd
[

(E
∗
− Vrms)− n(Q−Qset)

]

Edq
2 (9)

˙Edq = −cd
EdEdq

Emax
2

[

(E
∗
− Vrms)− n(Q−Qset)

]

−

(

Ed
2

Emax
2 + Edq

2 − 1

)

Edq (10)

where Edq is the additional controller state to create a two-

dimensional plane with Ed as in [29], while cd and Emax

are positive constants related to the dynamics of the bounded

integral controller. The initial conditions of the controller states

are selected as Ed0 = 0 and Edq0 = 1. The proposed

control dynamics has been suitably designed to guarantee that

the controller states remain bounded in the ranges Ed ∈
[−Emax, Emax] and Edq ∈ [0, 1]. For the proof of the

boundedness, the reader is referred to [19], [29], [30]. Note

that if the expression (E
∗
− Vrms) − n(Q − Qset) becomes

zero at the steady-state in the proposed controller then the

Q ∼ V droop control is realized. E∗ is the nominal RMS

grid voltage, Vrms is the inverter RMS voltage calculated as

Vrms =

√

V 2

gd
+V 2

gq

2 = Vm√
2

, Qset is the reactive power reference

value and n is the reactive power droop coefficient. Finally,

the P ∼ ω droop is accomplished independently from the

controller dynamics (9) and (10) and employed through the

expression

ω = ω∗ −m (P − Pset) (11)

where ω is the inverter angular frequency which is used in

the dq transformation, ω∗ is the nominal angular frequency,

m is the active power droop coefficient, and Pset is the active

power reference value. Note that since only the local variables

are used in the power calculation and the controller dynamics,

then the proposed design does not require any information after

the PCC. Additionally, before connecting to the grid, there is

Ed = Ed0 = 0, Id = Iq = 0 and hence from (7) and (8)

there is Vd = Vgd and Vq = Vgq which can be equivalently

implemented using the abc quantities without a PLL. Hence, a

PLL is not needed neither before nor after the grid connection.

abc/dq

abc/dqIabc
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Fig. 3. Implementation of the system.

IV. CURRENT-LIMITING PROPERTY AND CLOSED-LOOP

STABILITY ANALYSIS

A. Current-limiting property

The closed-loop system can be obtained by replacing the

proposed controller dynamics (7) and (8) in the inverter

dynamics (4) and (5) as

Lf

dId
dt

= −(Rf + rv)Id + Ed (12)

Lf

dIq
dt

= −(Rf + rv)Iq (13)

From (13), it becomes clear that if initially Iq(0) = 0 then

Iq(t) = 0, ∀t ≥ 0. Hence, in order to guarantee the desired

current limitation, it is sufficient to prove using nonlinear

control theory that only the d-axis current (Id) will be limited

at all times below a given value Imax. For this purpose, if

the energy stored in the filter inductor is used as a candidate

Lyapunov function

V =
1

2
LfI

2
d , (14)

the time derivative of (14) can be calculated using (12) as

V̇ = −(Rf + rv)I
2
d + EdId

≤ −(Rf + rv)I
2
d+ | Ed || Id | . (15)

Since Ed ∈ [−Emax, Emax] from the boundedness of the

controller states, then (15) can be written as,

V̇ ≤ −(Rf + rv)I
2
d + Emax | Id | (16)

Thus,

V̇ ≤ −RfI
2
d , ∀ | Id |≥

Emax

rv
(17)

According to theorem 4.18 [33], it is proven that the solution

Id(t) of (12) is ultimately bounded. Principally, if initially the

system current is chosen such that | Id(0) |≤
Emax

rv
, then from

the ultimate boundedness theory [33], it can be resulted that

| Id |≤
Emax

rv
, ∀t ≥ 0. (18)

In order to limit the current Id below a maximum value Imax,

then the controller parameters Emax and rv can be chosen to

meet the expression

Emax = rvImax. (19)



If (19) is replaced in (18), it is verified that

| Id |≤ Imax, ∀t ≥ 0, (20)

which confirms the desired current-limiting property.

From the above ultimate boundedness proof, it is clear that the

limitation of the inverter current is guaranteed independently

of the system variables, such as the grid frequency and voltage,

or the parameters of the filter or the line. In addition, the

current-limiting property is guaranteed during the entire grid-

connected inverter operation, even during transients. In contrast

to the existing approaches in the literature that use additional

saturation units and might suffer from integrator windup and

instability [24], [25], here the proposed controller introduces

an inherent anti-windup property due to the bounded integral

control structure, thus facilitating the stability analysis of the

closed-loop system which follows in the next section.

B. Small-signal stability analysis

Although the current-limiting property is proven analytically

in the previous section using nonlinear systems theory, the

asymptotic stability of the closed-loop to a desired equi-

librium point has not been examined, yet. Therefore, this

section emphasizes on evaluating the asymptotic performance

of the proposed controller using small-signal stability analysis

for a three-phase grid-connected inverter equipped with the

proposed current-limiting droop controller. After adding the

controller states (9) and (10) into the system and considering

δ̇ = ω − ωg = ∆ω, the state vector of the closed-loop

system becomes x = [Id Ed δ Iq Edq]
T . Consider an

equilibrium point xe = [Ide Ede δe Iqe Edqe]
T , where

Ede ∈ (−Emax, Emax) and Edqe ∈ (0, 1]. Then the Jacobian

matrix of the closed-loop system can be constructed as in

(21). As can be understood from (13) and the system Jacobian

matrix (21) that the q axis current Iq is controlled to be 0 and

results in a negative eigenvalue −
(Rf+rv)

Lf
. Similarly, the term

−2E2
dqe is always negative, since Edqe is considered to be in

the range Edqe ∈ (0, 1]. To this end, the equilibrium point xe

of the closed-loop system will be asymptotically stable, if the

eigenvalues of the matrix JT (22) have negative real parts.

J =







JT 03x1 03x1

01x3 −
(Rf+rv)

Lf
0

C1x3 0 −2E2
dqe






(21)

CT =











−
3cdEdeEdqeVmsin(δe)

2E2
max

−2EdeEdqe

E2
max

−
3cdEdeEdqeVmcos(δe)ide

2E2
max











JT =







−
(Rf+rv)

Lf

1
Lf

0

Asin (δe) 0 Acos (δe) ide

−Bcos (δe) 0 Bsin (δe) ide






(22)

In the matrix JT , the terms A and B are given as
3
2VmcdnEdqe

2 and 3
2mVm, respectively. In order to calculate
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the equilibrium point values of Ide, Ede, δe and Edqe, the

equations (9), (10), (11), and (12) can be used. In Fig. 4, a

root locus analysis is realized by changing the controller gain

cd between 0.1 and 50 using the system parameters in Table

I. Contrary to [34] which assumes the equilibrium points are

constant while changing the droop coefficients, the controller

gain cd changes only the convergence rate of the system states

to the equilibrium points. As it can be easily observed, the

closed-loop system stability is guaranteed for any value of the

controller gain in the given range verifying the effectiveness of

the proposed controller to both limit the inverter current and

regulate the system at the desired equilibrium point.

TABLE I
SIMULATION PARAMETERS OF THE SYSTEM

Parameters Values Parameters Values

Lf , Lg 2.2mH Smax 3300VA

Rf , Rg 0.5Ω rv 5Ω

n 0.0167 m 9.52x10−4

ω∗ 2π50 Vdc 700V

Emax 27.5 Imax 5A

cd 15 E∗ 220V

V. SIMULATION RESULTS

In order to validate the performance of the proposed con-

troller, a three-phase inverter connected to the grid through a

filter and a line (Fig. 1) is simulated using the Matlab/Simulink

software. The implementation diagram of the proposed con-

troller is provided in Fig. 3 and the simulation parameters are

given in Table I. The main aims in this section are:

• To verify the desired droop control operation and conver-

gence to the desired equilibrium points under changes of

the real and reactive power references,

• To illustrate that the inverter currents can never exceed the

defined upper limit even under extreme power demands.

During the operation, droop control is implemented for both

active and reactive power. Initially, the accurate active power

regulation is achieved since ωg = ω∗, while the Q− V droop

is enabled for the reactive power as explained in the controller

design. At the time instant t = 0, P is set to 1000W and

Q is set to 1000Var. However, even if P is regulated exactly
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at Pset as expected when ωg = ω∗, Q is regulated to a lower

value that can be calculated using E∗−Vrms

n
+Qset. The change

in the RMS voltage of the system is given in Fig. 5 where

the difference between the rated voltage E∗ and Vrms can

be clearly observed. At t = 2s, Pset is increased to 2000W

and at t = 5s, it drops to 1500W. It is clear from the Fig.

6 that P follows the exact Pset values as expected. At the

time instant t = 8s, the reactive power reference is set to

an extreme value which is 2200Var to check the effectiveness

of the designed controller. Since the droop mode is enabled,

the expected steady-state value for Q can be calculated as

2020Var. However, it cannot go beyond 1828Var as can be

seen from Fig. 6, due to the inherent current-limiting property

of the proposed controller. At this point, the current Id attempts

to exceed its maximum value Imax = 5A, but the controller

limits the current to protect the inverter as rigorously proven

using ultimate boundedness theory and as seen in Fig. 7. At

t = 12s, Qset is decreased to 1500Var, and after some transient

the reactive power is regulated to 1350Var as shown in Fig.

6. To test the P ∼ −ω droop operation, the grid frequency is

decreased by 0.03Hz at t = 16s and restored at t = 17s. The

active power then changes to 1700W and is restored back to

1500W after 1s as shown in Fig. 6 to compensate the change

in the grid frequency.

Since P and Q are coupled due to their expressions (6), there

are some fluctuations when either of them changes. However,

this does not affect the current-limiting property as shown in

Fig. 7, according to the rigorous mathematical proof. Thus,

the capability of the proposed droop controller has been tested

for different power reference values and it has been validated

that, even under unrealistic power demand, both the closed-

loop stability and the current-limiting property are maintained

at all times.

In order to confirm the theoretical analysis, the time domain

response of the controller states Ed and Edq is given in Fig. 8.

It can be clearly seen that the controller states remain on the

defined limits during the entire operation. When the reactive

power demand increases to an high value, then Ed and Edq

tend to Emax and 0, respectively, to ensure that the inverter

current Id remains lower than Imax.

VI. CONCLUSIONS

In this paper, a new nonlinear PLL-less current-limiting

controller is proposed for a three-phase grid-connected inverter.
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The controller is proposed using the synchronously rotating

(dq) frame of the inverter. Voltage support and frequency

support are realized at the PCC point by including the droop

dynamics into the nonlinear controller dynamics. Considering

the nonlinear dynamics of the system, the current-limiting

property is proven for the injected inverter current using

nonlinear ultimate boundedness theory. In addition, closed-

loop system stability is guaranteed for different values of

the controller gains. The proposed controller performance and

its stability properties are confirmed via detailed simulation

results.
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