
This is a repository copy of Automated Algebraic Reasoning for Collections and Local
Variables with Lenses.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/155413/

Version: Accepted Version

Proceedings Paper:
Foster, Simon David orcid.org/0000-0002-9889-9514 and Baxter, James (2020) Automated
Algebraic Reasoning for Collections and Local Variables with Lenses. In: 18th International
Conference on Relational and Algebraic Methods in Computer Science (RAMiCS 2020).
Lecture Notes in Computer Science . Springer

https://doi.org/10.1007/978-3-030-43520-2_7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Automated Algebraic Reasoning for
Collections and Local Variables with Lenses

Simon FosterORCiD and James Baxter

University of York
firstname.lastname@york.ac.uk

Abstract. Lenses are a useful algebraic structure for giving a unifying
semantics to program variables in a variety of store models. They support
efficient automated proof in the Isabelle/UTP verification framework. In
this paper, we expand our lens library with (1) dynamic lenses, that
support mutable indexed collections, such as arrays, and (2) symmetric
lenses, which allow partitioning of a state space into disjoint local and
global regions to support variable scopes. From this basis, we provide
an enriched program model in Isabelle/UTP for collection variables and
variable blocks. For the latter, we adopt an approach first used by Back
and von Wright, and derive weakest precondition and Hoare calculi. We
demonstrate several examples, including verification of insertion sort.

1 Introduction

The use of algebraic structures for derivation of verification tools using theo-
rem provers has been shown to be a successful and flexible approach [1–4]. It
allows us to precisely and abstractly characterise the formal semantics of a spec-
trum of languages utilising different computational paradigms, including hybrid
systems, concurrency, pointers, and probability. Once a suitable algebraic struc-
ture is fixed, a large array of axiomatic verification calculi can be generated,
including Hoare logic [1], differential dynamic logic [4], separation logic [2], and
rely-guarantee calculus [3]. This approach has significant advantages over con-
crete intermediate verification languages (IVLs) [5,6], since it allows us to unify
languages and verification calculi at the algebraic level, and so promotes reuse.

Nevertheless, the underlying algebras for program verification largely focus on
the point-free programming operators – those that do not explicitly characterise
program variables – such as sequential composition (#) and non-deterministic
choice (⊓). Kleene Algebra with Tests (KAT) [3, 7], for example, can charac-
terise every operator of imperative while-programs, but is not sufficient to fully
capture assignment, substitution, frames, and local variable blocks. Operators
that manipulate the store via variables have to be defined in the model rather
than the algebra [1, 3]. This technically hampers the reuse of theorems across
various languages. At the same time, an algebra of state should allow efficient
use of automated proof facilities, so as to support scalable verification tools.

Lenses [8–10] allow us to characterise variables as abstract algebraic ob-
jects, which can be composed and manipulated. They provide a generic foun-
dation for verification tools that can maximise proof automation in tools like

2 Simon Foster, James Baxter

Isabelle [11, 12]. Although originating from a different intellectual stream [8],
lenses are essentially Back and von Wright’s variable manipulation functions [13].
However, lenses are also equipped with several operators that allow us to com-
pose state space query operations in sequence and in parallel, for example.
Lenses are the foundation for state modelling in our verification framework,
Isabelle/UTP [10, 14, 15], which allows the use of UTP semantic models in de-
veloping program verification tools.

In previous work [10], we showed how lenses capture a variety of store mod-
els. In this paper, we extend our basic lens model in two ways. Firstly, we de-
velop support for indexed collections, which requires the development of dynamic
lenses. Secondly, we add support for local variables, for which we harness the
work of Hoffmann et al. on symmetric lenses [16] that allow us to partition the
state space into global and local variable scopes. This allows us to determine
whether a particular assignment can be moved outside of a block. From this
foundation, we adapt Back and von Wright’s block operators [13], and prove
Hoare logic theorems. Symmetric lenses allow us to unify a variety of variable
block approaches, including extensible records [17] and list-based stacks [18].

In order to illustrate these features, consider the insertion sort algorithm:

Example 1.1 (Insertion Sort).

function insertion-sort(arr : [int]array)
var i , j : nat •
for i := 1 to (length(arr)− 1)do

j := i #
while (0 < j ∧ arr [j] < arr [j − 1]) do
(arr [j − 1], arr [j]) := (arr [j], arr [j − 1]) # j := j − 1

od od

It introduces two local variables, i and j , that are used to index into the array.
The outer loop iterates through the list using i , and the inner loop inserts element
i in the correct position into arr [0...i − 1], using j to count down. To give this a
semantics, we need to (1) allow assignment to the indices of a collection, and (2)
extend the state space to add i and j as local variables. Our goal is to support
this abstract algorithmic presentation directly in our tool, through a shallow
embedding, and provide syntax-directed reasoning support.

Our approach reduces reasoning about programs to proving properties of the
state space. It is therefore applicable to any language semantics with an ex-
plicit state space model, including reactive [11] and hybrid languages [4,19]. The
approach is therefore abstract, but also maximises Isabelle’s proof automation.

The structure of this paper is as follows. After consideration of related work
in §2, we describe how lenses give an algebraic semantics to variables in §3. In §4
we give an overview of Isabelle/UTP. In §5, we consider how a state space can
be manipulated using lens operators. In §6 we describe dynamic lenses, which
are needed for collections, like arrays. In §7, we describe our algebraic character-
isation of symmetric lenses, and exhibit several models. In §8, we use symmetric
lenses to implement local variable blocks. In §9 we use all the aforementioned
results to verify insertion sort in Isabelle/UTP. Finally, in §10, we conclude.

Automated Algebraic Reasoning with Lenses 3

All definitions and theorems are mechanised in Isabelle/UTP, and are often

accompanied by an icon () linking to the corresponding repository artefact.

2 Related Work

Isabelle/UTP [10,14,15,20] is a semantic framework for verification tools based in
Hoare and He’s Unifying Theories of Programming (UTP) [21]. It is broadly com-
parable to IVLs like Boogie [5] and Why3 [6], but harnesses algebraic and deno-
tational semantic techniques, for application to languages of multiple paradigms.
The UTP relational program model is built as a shallow embedding [20] in Is-
abelle/HOL, and so we compare with similar techniques in this prover.

Simpl is an IVL developed by Schirmer in Isabelle/HOL [17,22]. It is used in
the AutoCorres verification platform [23] that was applied in the seL4 project1. It
uses state monads augmented with exceptions to model low-level code. Our aim
is to support the features and efficiency of Simpl, but using relational calculus
and algebra to characterise language features abstractly so that they can be
transferred between semantic models. Their work does not provide an algebraic
semantics for variables, which we provide by lenses, but their comprehensive
study of state space modelling techniques is a strong foundation for us [22].

Dongol et al. [24] characterise variables algebraically using Cylindric Kleene
Lattices, which extend Kleene algebra with Cylindrification to support quantifi-
cation. This, in turn, allows expression of both frames and local variable blocks.
Their work is largely complementary to ours, since we focus on the algebraic se-
mantics of the variables themselves. They use ordinals as indices into an implicit
state space, whereas we characterise the state space explicitly. Our use of lenses
also allows us to harness type checking and proof automation in Isabelle.

3 State Space Modelling with Lenses

Here, we review lenses [10], which give algebraic semantics to variables. Novelties
include the list-lens and a more precise presentation compared to previous work
[10]. We use the notation X : V =⇒ S when X is a lens that characterises a
V -shaped subregion of a state space S . For instance, in a state space A×B , we
can define two lenses: fstAB : A =⇒ A× B and sndA

B : B =⇒ A× B , that select
the respective components. As usual [8], we define lenses using two functions:

Definition 3.1. A lens is a quadruple X , (V ,S , get, put), where V and S are
non-empty sets called the view type and state space, respectively, and get : S → V

and put : S → V → S are total functions. We often subscript get and put with
the name of a lens. We define createX v , putX (εs • s ∈ S) v , which constructs

an arbitrary, but fixed, state using Hilbert’s choice (ε) and puts v into it.

For example, fstAB , (A,A × B , λ(x , y) • x , λ x ′ (x , y) • (x ′, y)), selects and
updates the first element of a pair, leaving the second element unchanged. Lenses

1 The seL4 microkernel verification project: http://sel4.systems.

4 Simon Foster, James Baxter

provide an intuitive and obvious way to model variables in a state space (cf. [13,
18]), which can be queried and updated using the two functions. Intuitively, we
can think of them as pointers to distinct regions of a memory store modelled
by S . As previously highlighted [10, 22], there are a variety of possible memory
models, and lenses provide a uniform algebraic interface for them.

Lenses provide the starting point for the UTP relational calculus [21], which
has a model for imperative programs, including operators like sequential compo-
sition (P # Q), conditional (P 2 b 3Q), and assignment (x := e). Assignment
is polymorphic over any lens x , provided that e matches its view type (see §4).

The behaviour of lenses is constrained by three intuitive axioms:

get (put s v) = v (L1) put (put s v ′) v = put s v (L2) put s (get s) = s (L3)

L1 states that a value put can be retrieved. L2 states that an earlier put is
overwritten by a later put. L3 states that retrieving a value and then putting
it back yields the original state. We distinguish total lenses, that obey all three
axioms, from partial lenses that obey only L1 and L2. The fst and snd lenses
are both total. A further example of a total lens is the total function lens:

fun-lensB (x : A) , (B ,A → B , λ f • f x , λ f v • f (x := v))

It points to the value associated with a particular domain element x . It is useful,
for instance, when the state space has type Name → Value, which associates a
named variable with a value in a given universe. The get function simply applies
f , and the put function updates the value associated with x . It is clear that this
lens obeys all three laws. We also define a relation called independence, X ⊲⊳ Y ,
that characterises when two lenses view disjoint regions of the state space:

X ⊲⊳ Y , ∀(s, u, v) •





putX (putY s v) u = putY (putX s u) v
∧ getX (putY s v) = getX s

∧ getY (putX s u) = getY s



 if SX = SY

It is defined only when the state spaces are the same: SX = SY . X and Y

are independent provided applications of put commute, and each get function is
unaffected by the corresponding put function. If X and Y are both total lenses,
then the second and third conjuncts can be omitted. X ⊲⊳ Y means that X and
Y do not interact, for example fun-lensB (i) ⊲⊳ fun-lensB (j), provided that i 6= j .

Partial lenses, which do not obey L3, are motivated by partial structures,
such as arrays and heaps. The cells of an array can be modelled using list lenses:

list-lensA(i : N) , (A, [A]list, λ xs • xs ! i , λ xs v • xs[i := v])

A lens list-lensA(i) : A =⇒ [A]list points to the ith element of an inductive list
of values drawn from A. The HOL operator xs ! i returns the ith element of xs,
or an arbitrary element of A if i ≥ #xs, where #xs is the length. The operator
xs[i := v] updates the ith element to take value v . If xs is not long enough to
hold v , it is first expanded by filling in the extra elements with arbitrary values.
Here, list-lens and fun-lens are both examples of lenses indexed by a set. As for
fun-lens, we have it that list-lensB (i) ⊲⊳ list-lensB (j) provided that i 6= j .

Automated Algebraic Reasoning with Lenses 5

Clearly, list-lens satisfies both L1 and L2: we can always place a value in the
ith component, potentially several times, and retrieve it. However, it does not
satisfy L3. When a list is too short (i ≥ #xs), list-lens(i) returns an arbitrary
value, which, if placed at i , alters the list structure and violates L3. Consequently,
whilst fun-lens is a total lens, list-lens is only partial, and the same follows for
data structures like partial functions. Nevertheless, as we shall see, partial lenses
are sufficient to support most of the laws we need for verification calculi.

A useful class of state space is induced by records. In Isabelle/UTP, we can
define a state type rec-typ , [x1 : A1 · · · xm : Am] for m fields, each with a given
type. Technically, it is isomorphic to a product type A1 × · · · × Am , but with
named lenses for manipulating each field. The alphabet command automates
the creation of these lenses, and generates theorems that xi ⊲⊳ xj for any i 6= j .

State types can also be extended: rec-typ2 , rec-typ + [y1 : B1 · · · yn : Bn],
which allows hierarchy. This approach is used in the IVL Impl [17] to represent
local variables, and here we adopt a similar approach. The lenses are polymor-
phic: xi : Ai =⇒ [α]rec-typ-ext, where the parameter α allows application of xi to
both rec-typ and extensions thereof, such as rec-typ2 with α ∼= Am+1 × · · ·×An .
This is important, as it means that the same lens name can be used in different
state spaces: xi can both have the type Ai =⇒ rec-typ and Ai =⇒ rec-typ2.

4 Relational Programs in Isabelle/UTP

In this section, we briefly introduce the foundations of Isabelle/UTP, which is a
shallow embedding of UTP [21] in Isabelle/HOL. UTP is based on a variant of
Tarski’s relational calculus [25] where each relation is “alphabetised”, meaning
it is parameterised by the set of variables to which it can refer. In Isabelle/UTP,
we instead opt to have relations parameterised by their state space type S , and
variables are then lenses viewing this type. We can therefore use the Isabelle type
system to ensure well-formedness: only relations and predicates with compatible
alphabets can be composed using the Boolean and relational connectives.

Expressions are total functions: [V ,S]expr , (S → V), for some state space S
and type V . Operators can be pointwise lifted and applied to them, for example,
if e, f : [N,S]expr, then e+ f denotes λ s : S • e s+ f s. If x and y are lenses, then
we can use them in expressions: x + y denotes λ s : S • getx s + gety s. We can
determine whether e depends on part of the state using the unrestriction [10]:

Definition 4.1. (x ♯ e) , (∀(s, v) • e (putx s v) = e s)

Lens x is unrestricted in e, written x ♯ e, when updating its value using put has
no effect on the valuation of e. This can occur, for example, when x is a variable
that e does not refer to. Unrestriction distributes through lifted functions [10].

Substitutions between two states spaces are modelled with functions, σ :
S1 → S2. A substitution can be updated using σ(x 7→ e). A heterogeneous sub-
stitution can be constructed using Lx1 7→ e1, · · · , xn 7→ enM, when xi : Ai =⇒ S2
and ei : [Ai ,S1]expr, which is a set of simultaneous updates. A homogeneous sub-
stitution, where S1 = S2, can be constructed similarly but using square brackets:

6 Simon Foster, James Baxter

[x 7→ e, · · ·]. The difference between these two is that the former gives arbitrary
values to unassigned variables, whereas the latter copies the original values.
Substitutions can also be composed function-wise, σ ◦ ρ, which corresponds to
applications of the updates in ρ followed by those in σ.

We can apply a substitution to an expression using σ † e , e ◦ σ, which
likewise composes the substitution and expression functions. Although this may
seem redundant, it is useful to distinguish a separate operator to enable be-
spoke rewrite laws in Isabelle. Then, we can obtain the traditional substitution
operator: p[e/x] , [x 7→ e] † p. Substitutions then obey a number of useful laws:

Theorem 4.2. If x and y are partial lenses, then the following laws hold:

σ(x 7→ e, y 7→ f) = σ(y 7→ f , x 7→ e) if x ⊲⊳ y (1)

σ(x 7→ e, x 7→ f) = σ(x 7→ f) (2)

σ(x 7→ v) ◦ ρ = (σ ◦ ρ)(x 7→ (σ † v)) (3)

σ(x 7→ e) † x = e (4)

σ(x 7→ v) † e = σ † e if x ♯ e (5)

Substitution updates commute when made to independent lenses (1), and can
cancel earlier ones (2). Substitutions can be composed, and (3) shows how to pull
out a variable update to the left-most substitution. These laws can be used to
show that [x 7→ u] ◦ [y 7→ v] is equivalent to [x 7→ u[v/y], y 7→ v], when x ⊲⊳ y .
Substitution application distributes through functions in the obvious way, and
can be applied to variable expressions (4). If x is unrestricted in an expression,
then any assignment to this variable can be dropped (5).

We define predicates, [S]pred , [bool,S]expr, relations, [S1,S2]rel , [S1 ×
S2]pred, and the usual operators over them. Predicates and relations are ordered
by refinement (⊑). We import theorems for structures like complete lattices,
quantales, and Kleene algebras [2, 3, 10]. With substitutions, it is easy to define
a generalised assignment operator, in the style of Back and von Wright [13]: 〈σ〉,
which lifts a substitution to a relation in the obvious way. This satisfies a useful
law, 〈σ〉 # 〈ρ〉 = 〈ρ ◦ σ〉, which allows us to combine sequential assignments.
Assignments can then be constructed with x := e , 〈[x 7→ e]〉, and combin-
ing with non-deterministic choice (⊓) we define non-deterministic assignment:
x := ∗ ,

d
v∈Vx

x := v . These definitions satisfy the laws of programming [26].

5 State Space Manipulation

Here, we show how to manipulate state spaces, and coerce variables and expres-
sions between them. We use two additional relations, that are defined using get

and put [10]: (1) X � Y : the view of lens X is contained within the view of Y ;
(2) X ≈ Y : the views of X and Y are isomorphic. These are both heterogeneous
operators that can relate lenses with different view types. Relation � forms a
preorder and ≈ is an equivalence relation. Ordering is needed because lenses can
characterise both variables and sets thereof. We compose lenses, thus combining
their respective views, using the pairing operator:

Automated Algebraic Reasoning with Lenses 7

Definition 5.1 (Lens Pairing).

X ⊕ Y ,

(

VX × VY ,SX , (λ s • (getX s, getY s)),
(λ s (u, v) • putX (putY s v) u)

)

when SX = SY ,X ⊲⊳ Y

Lens pairing combines two independent lenses with the same state space, creating
a lens whose view type is VX × VY . The get function pairs the results of the
get functions for X and Y , while its put function puts each element using the
respective put. Using this, a set of variables, {x , y , z} can be characterised by
a lens, for example, by the summation x ⊕ y ⊕ z . Moreover, we have it that
X � X ⊕ Y , since X ⊕ Y views more of the state space than X .

We define two basic total lenses: 1S , (S ,S , λ s • s, λ s v • v) whose view
and state space are identical, and 0S , ({∅},S , λ s • ∅, λ s v • s), whose view
type is unitary. Intuitively, 1 characterises the entirety of S , and 0 characterises
none of it, and cannot distinguish any states. Consequently, we have 0 � X and
X � 1, since these are the least and most distinguishing lenses, respectively.

For variable blocks, we need expansion and contraction of the state space, for
both lenses and expressions. For lenses, we define the composition and quotient:

Definition 5.2 (Lens Composition and Quotient).

X ; Y ,

(

VX ,SY , getX ◦ getY ,
(λ s v • putY s (putX (getY s) v))

)

when SX = VY

X /Y ,

(

VX ,VY , getX ◦ createY ,
(λ s v • getY (putX (createY s) v))

)

when SX = SY

X ; Y has been previously defined [8]. It selects a subregion V1, characterised by
X : V1 =⇒ V2, of a larger region V2, characterised by Y : V2 =⇒ S . Intuitively,
Y denotes a sub-space of S , X is a variable of this sub-space, and so X ; Y � Y .
We sometimes write obj:attr for the composition attr ; obj .

We believe the quotient operator, X /Y is novel2. Provided that X : V1 =⇒
S is constructed by composition of Y : V2 =⇒ S and Z : V1 =⇒ V2, we have it
that X /Y = Z . The get function first creates an arbitrary state and populates
the V2 region with the incoming state. It then uses the getX function to obtain
the V1 element. The assumption is that all the information needed to construct
a V1 can be obtained from V2. The put function creates an S element, uses putX
to update this with v : V1, and finally applies getY to obtain a V2 element.
Again, the assumption is that putX will only manipulate data within V1.

Lens quotient gives rise to some useful, and intuitive, properties.

Theorem 5.3. (X ; Y) /Y = X (X /X) = 1 X /1 = X

The first identity gives the intuition of quotient: it removes the second element
of a composition. The second identity shows that if we remove a lens from itself,
then only a residual 1 remains. The third identity shows that removal of 1 has
no effect, because of course X ; 1 = X .

In addition, we need to expand and contract the state space of expressions:

2 The similarly named quotient lens of Foster et al. [9] is a rather different concept.

8 Simon Foster, James Baxter

Definition 5.4. We fix X : S1 =⇒ S2, expressions e : [A,S1]expr and f :
[B ,S2]expr, and define: e ↑X , e ◦ getX and f ↓X , f ◦ createX

Here, X is a lens that describes how S1 is embedded into a larger space S2. The
first operator, e ↑X , extends the state space of e to be S2, and the second, f ↓X ,
restricts it to be S1. These operators coerce an expression to have a different type,
for use in a context with a different state space. They satisfy several theorems.

Theorem 5.5 (State Space Extension and Restriction).

(f e1 · · · en) ↑A = f (e1 ↑A · · · en ↑A)

x ↑A = A:x

A ⊲⊳ B ⇒ B ♯ (e ↑A)

(f e1 · · · en) ↓A = f (e1 ↓A · · · en ↓A)

x ↓A = x /A

(e ↑A) ↓A = e

Both extension and restriction distribute through function application in the
obvious way. Extension of a lens expression entails a lens composition, and re-
striction entails a lens quotient. If we extend an expression’s state space, e ↑A,
then the resulting expression does not depend on a lens B that is independent of
A. The reason is that the original state space of e is characterised by A. Finally,
we have it that restriction is the inverse of extension. The converse theorem does
not hold, because restricting a state space may result in a loss of information.

We can define e◭ , e ↑ fst, e
◭
, e ↓ fst, and e◮ , a ↑ snd, that characterise

relational preconditions and postconditions. Specifically, e◭ lifts an expression on
S to one on S × S , thus turning a predicate into a relation. We can characterise
initial and final variables, x◭ and x◮, in the style of notations like Z. We can
also define weakest preconditions, P wp b , (P # b◭)

◭
, and also the Hoare triple,

{ p }Q { r } , (p◭ ⇒ q◮) ⊑ Q . These definitions admit, as theorems, the usual
laws [27, 28]. For example, we have the assignment law, { p[v/x]} x := v { p },

for any lens x , and the more general {σ † p } 〈σ〉{ p }.

6 Dynamic and Collection Lenses

In this section we give semantics to the notation x [i], which refers to the ith
element of a collection x . We model x with a lens that points to a collection, such
as a list, and i with an index expression. The generality of the lens axioms means
that we can define x [i] itself to be a type of lens, which we call the collection lens.
Consequently, we can manipulate it like any other lens, employing the theorems
of §4. In order to define this, we first need to define dynamic lenses:

Definition 6.1. We fix sets A and B that denote elements and collections, and
a set I of indices. We assume a family of I -indexed lenses F : I → (A =⇒ B)

and an expression e : B → I . A dynamic lens is defined as follows:

dyn-lensF e , (A,B , λ s • getF(e s) s, λ s v • putF(e s) s v)

Automated Algebraic Reasoning with Lenses 9

Intuitively, a dynamic lens points to the eth element of the indexed lens F .
Since e is an expression, it can change value, and consequently the current index
depends on the state space. The get and put function both instantiate the indexed
lens with e applied to the current state, and then apply its respective get and
put function. From this definition, we can prove the following closure theorem:

Theorem 6.2. We assume that, for all i : I , e does not refer to F i , that is
(F i) ♯ e, and F i is a partial or total lens. We can then show that dyn-lensF e

is a partial or total lens, respectively.

The intuition is that F i must satisfy the lens axioms, for all indexes, and the
index expression e should not itself refer to the F i , to avoid self references. From
this definition, we can now define collection lenses:

Definition 6.3 (Collection Lenses). We fix F : I → (A =⇒ B), a lens
indexed by the set I . Then, given a lens x : B =⇒ S , for some state space S ,
and an index expression e : S → I , a collection lens is defined as follows:

x [e] , dyn-lens (λ i : I • F i ; x) e

The collection lens, x [e], is a dynamic lens where the underlying indexed lens
F is applied after selection of the collection location in the lens x . It is clear
that Theorem 6.2 can be applied here too, provided that x is also a total lens.
The intuition of the collection lens is perhaps clearer if we consider a concrete
example where F = fun-lens. In this case, we can prove the following identity:

(x [i] := e) = (x := x (i := e))

An assignment to x [i] frames the remainder of the state, and thus x takes its
original value with the i index updated. We can also derive the identity:

(x [i] := e # x [j] := f) = (x [j] := f # x [i] := e)

whenever i 6= j , x [i] ♯ f , and x [j] ♯ e, by using the generalised assignment laws.
In Isabelle/UTP, we make F an overloaded polymorphic constant that asso-

ciates a suitable indexed lens to a collection type. In many situations, x [e] is a
partial lens, since it is only meaningful when x is a collection where the key e is
defined. For example, the assignment (arr [j − 1], arr [j]) := (arr [j], arr [j − 1]) in
Example 1.1 is meaningful only when j < #arr . Thus, when verifying programs
with collection lenses, it is necessary to guard them with definedness predicates.

7 Symmetric Lenses

Symmetric lenses [16] stand in contrast to the lenses that were introduced in §3,
which are “asymmetric” because, once a view has been extracted from a source,
it is not possible to reconstruct the source from the view alone [16]. Symmetric
lenses are effectively lenses of type V ×C =⇒ S , where C is the “complement”

10 Simon Foster, James Baxter

of V with respect to S – the remainder of S once V is removed. In general, it
is not possible to compute the complement of an asymmetric lens. Symmetric
lenses thus capture the notion of partitioning the state into disjoint regions.
These regions are represented by two lenses, which we refer to as the view and
the coview, and for a given symmetric lens X , we write VX and CX to represent
them. Such a partitioning of the state space is fundamental to framing of certain
variables, and allows us to distinguish the global and local store.

To characterise symmetric lenses, we must capture both the disjointness of
the view and coview, and the fact that, taken together, they cover the state
space. Coverage is captured by first combining the view and coview into a pairing
VX ⊕ CX , and requiring that this covers the state space. Such a definition is
provided for by the concept of bijective lenses, defined below.

Definition 7.1. A partial bijective lens satisfies L1, and also put s v = put s ′ v .
A (total) bijective lens satisfies L1, and also put s (get s ′) = s ′.

For total bijective lenses, we require that getting the view of s ′ and putting it into
s replaces the whole of s with s ′. For a partial lens, get may return an incorrect
value for states outside its domain, so a partial bijective lens is characterised by
put s v = put s ′ v . This captures the property that put replaces the state space,
without constraining get. A bijective lens fulfils all the axioms of a partial or
total lens, but it is sufficient to require L1, so the overall definition of a bijective
lens is as shown above. We can now define symmetric lenses:

Definition 7.2. A (partial) symmetric lens X , (V, C) over a state space S is
a pair of (partial) total lenses, V : V1 =⇒ S and C : V2 =⇒ S such that (1)
V ⊲⊳ C, and (2) V⊕C is a (partial) bijective lens. We denote the set of symmetric

lenses between V1 × V2 and S with the notation [V1,V2] ⇐⇒ [S].

As an example of a symmetric lens, consider X , (fstA, sndB). These lenses are
clearly independent, and fstA ⊕ sndB provides a view of the entire product, so
it is a bijective lens. Thus, X is a (total) symmetric lens.

A more interesting example is the list symmetric lens, the view and coview
of which are the head and tail of a list. Formally, they are the head lens, hdA :
A =⇒ [A]list, and the tail lens, tlA : [A]list =⇒ [A]list. The head lens is defined
in terms of the list lens: hdA , list-lensA(0). The tail lens is defined as tlA ,

([A]list, [A]list, tl , λ xs v • hd xsav). It gets the tail of the list, and puts xs as the
tail of the new list, preserving the old head. These lenses are independent, since
they operate on different parts of a list. The head lens, as an instance of the list
lens, is a partial lens, since it is not defined for an empty list. The list symmetric
lens is thus an example of a partial symmetric lens, since putting a list head and
tail replaces the whole list. We note that the tail lens has the same view and
source types. This is an important property for allowing variable blocks based
on such symmetric lenses to be recursed on [18], as we discuss in §8.

Another symmetric lens is induced by record state spaces, each of which in-
duces two regions: the base region, which consists of the defined fields (x0 · · · xm),
and the extension region, with any additional fields (y0 · · · yn). These can be char-
acterised by base : rec-typ =⇒ [α]rec-typ-ext and more : α =⇒ [α]rec-typ-ext,

Automated Algebraic Reasoning with Lenses 11

where base ⊲⊳ more and base ⊕ more is a bijective lens. Consequently, for a
record we define all , (base,more), which forms a total symmetric lens. More-
over, we have it that xi � base, for 0 ≤ i ≤ m, and yj � more, for 0 ≤ j ≤ n.

The polymorphic nature of a record lens means that type coercions can be
handled easily, as the following theorem shows.

Theorem 7.3. xi ; base = xi and xi /base = xi whenever xi � base

Composition and quotient using the base lens corresponds to moving it into and
out of an extended state space. Since xi : Vi =⇒ [α]rec-typ-ext is polymorphic,
such a coercion yields the same lens but with a different type. These laws are
important for when moving a global variable into a local scope in §8.

8 Variables Blocks

Having defined symmetric lenses, and demonstrated several models, we now
use these to characterise local variable blocks. The basic idea is to implement
operators analogous to begin and end from Back and von Wright [13, §5.6], that
grow and shrink the state space with additional variables.

Here, however, we fix a symmetric lens X : [S2,C] ⇐⇒ [S1] to give a concrete
semantics to scope expansion and contraction. Intuitively, S2 is the global state
space, S1 extends S2 with local variables, and C is the complement of S2 wrt. S1.
Then we have it that VX characterises the global state region of S1, and CX the
local state region. The symmetric lens allows us to distinguish global and local
variables, so that we can determine whether an assignment can be moved outside
a block or not. Unlike [13], where types are implicit, we have to explicitly handle
type coercion when a variable and expression moves between state spaces.

We give the following program that swaps two variables as a running example:

Example 8.1. swap(x , y : int) , var z : int • (z := y # y := x # x := z)

It creates a third variable, z , and then uses this as a temporary store in which
to place the value of y . We show how this can be modelled and verified in
Isabelle/UTP, with the aim of supporting the larger insertion sort example in
§9. We first define substitutions that extend and contract the state space.

Definition 8.2 (Extension and Contraction Substitutions).

extX , LVX 7→ v, CX 7→ εv • v ∈ V2M conX , Lv 7→ VX M

Here, extX : S2 → S1 and conX : S1 → S2 are heterogeneous substitutions.
Extension assigns the original state (v : S2) to the view lens (VX), and assigns
an arbitrary but fixed element of C to the coview lens. Effectively this extends
the state space, retaining the values for the global variables, and assigning an
arbitrary value to the local ones. Contraction, conversely, assigns the view lens
to the entire state lens, leading to the loss of the local state. Extension and
contraction satisfy the theorem below:

12 Simon Foster, James Baxter

Theorem 8.3. Any symmetric lens X satisfies conX ◦ extX = idS2

Specifically, if we extend a state space and then contract it, we always get the
original state space back. The converse of this law does not hold since contracting
a state space, of course, loses the local state stored in the coview. Moreover, the
law only follows for total symmetric lenses since extending and then contract-
ing using a partial lens can alter the state. It is now straightforward to define
relations that open and close a block using the substitutions:

Definition 8.4 (Blocks). openX , 〈extX 〉 # CX := ∗ closeX , 〈conX 〉

Here, openX : [S2,S1]rel first extends the state space and then non-determinstically
assigns a value to the coview, replacing the arbitrary but fixed value. Also, closeX

simply contracts the state space. We prove a useful law:

Theorem 8.5. Any symmetric lens X satisfies openX # closeX = II.

Aside from being an important property of variable blocks, this law allows us to
introduce a local variable block at any point in a program, which can facilitate
step-wise refinement. We now prove three algebraic laws for variable blocks and
assignments, which are adapted from [13, page 102].

Theorem 8.6 (Variable Block Laws).

x := v # openX = openX # VX :x := (v ↑ VX) (1)

y := v # closeX = closeX when y � CX (2)

x := v # closeX = closeX # (x /VX) := (v ↓ VX) when x � VX , CX ♯ v (3)

An assignment to a global variable x can be pushed into a variable block (1).
We have to coerce both the variable and the assigned expression using lens
composition and the state space extension operators, respectively. An assignment
to a local variable y � CX at the end of a block is lost (2). An assignment to a
global variable in a block can be moved past the end (3). Again, it is necessary to
coerce the variable and expression, using lens quotient and state space restriction,
this time to contract the state space. Moreover, this law only applies when the
expression does not refer to local variables, given by the condition CX ♯ v . These
latter two laws show how the symmetric lens allows us to distinguish local and
global variables. We can also derive a Hoare logic law for variable blocks:

Theorem 8.7. If { p ↑ VX }S { q ↑ VX } then { p } openX # S # closeX { q }

The intuition is that p and q must be augmented with additional variables in
the enlarged state space, and references to global variables must be type cast.

We can now model the algorithm in Example 8.1. First, we need to create
global and local state spaces and a suitable symmetric lens. The global state
space can be described by global , [x : int , y : int], as explained in §3. This
gives rise to base : global =⇒ [α]global-ext and more : α =⇒ [α]global-ext, which
together form a symmetric lens all . Moreover, the local state can be described by

Automated Algebraic Reasoning with Lenses 13

Fig. 1. Modelling swap, and its properties in Isabelle/UTP

the record local , global + [z : int], and so we specialise global’s base lens, base,
to have type global =⇒ local. In Isabelle/UTP, local can be generated on-the-fly
in a record block, to support the syntax given in Example 8.1. This approach,
using extensible records for variable blocks, is used in Simpl [17].

An implementation is shown in Figure 1, along with several theorems. We
construct global using the alphabet command, and then define swap, with a
near identical representation to Example 8.1. The decorations &z and U(·) are
hints to parser with no semantic content. The machinery for creating local and
instantiating the symmetric lens is hidden behind the var construct, though we
have to explicitly state that we are using the all symmetric lens from the global
state space. We then prove three theorems. The first one calculates a weakest
precondition, the second a Hoare triple, and the final one shows that swap can
actually be replaced by a simultaneous assignment, assuming this is supported.

While the use of records in blocks provides strong typing, the fact that the
all symmetric lens changes the type of the state space means it cannot be used
in recursive functions. This was previously observed by Back and Preoteasa [18].
To handle recursion, the symmetric lens must describe a global state with the
same type as the overall state space (which includes both global and local). As
mentioned previously, (hdA, tlA) is such a lens, and so is its converse (tlA, hdA).
This symmetric lens creates variable blocks that push an arbitrary value onto
the start of a list, creating a stack semantics.

The fact that the list symmetric lens forms a partial lens creates the need
for domain checks when variables in the list are accessed. Such checks can be
avoided by using a state space with a function from natural numbers to values
instead of a list. We define head and tail lenses on such a state space as follows:

hd
f
A , (A,N → A, λ f • f 0, λ f v n • v 2n = 03 f n)

tl
f
A , (N → A,N → A, λ f n • f (n + 1), λ f v n • f 02n = 03 f (n − 1))

These head and tail lenses are total lenses, since they are defined on a total
function. We can thus define a total symmetric lens using them in a similar
way to the list symmetric lens. These lenses can also be lifted to a state space
with additional global state in a similar way to the list symmetric lens. We have
mechanised these definitions in Isabelle/UTP and proved the resultant lens is
indeed a total symmetric lens. We have also proved properties for a swap function
using this symmetric lens as we did for the record symmetric lens. This shows
the flexibility of our lens-based approach to local variables: list or function lenses

14 Simon Foster, James Baxter

Fig. 2. Insertion Sort in Isabelle/UTP

can be used where support for recursion is required, while record lenses can be
used where the added structure of Isabelle’s type system is desired.

9 Insertion Sort

Here, we show how we have used the collected results of the previous sections
to verify the insertion sort algorithm in Isabelle/UTP. We model the algorithm
using both collection lenses and symmetric lens variable blocks, as shown in
Figure 2. In order to ease verification, we split the algorithm into two definitions:
one for the inner loop (insert-elem), and one for the outer loop (insertion-sort).
Both are specified as functions that take the list to be sorted, xs, as a parameter.

The syntax of the program broadly follows that given in Example 1.1. The
only significant deviation is that we have manually constructed a symmetric lens
lv that uses an explicit local state space. This is so that i and j can be referred
to as global names in the Isabelle theory, to enable description of the invariants.
The outer program itself operates on a state space where only arr is present,
and the other variables are introduced by open and close.

As usual [1], our loop construct supports invariant annotation, using the invr

keyword. The invariant of the inner loop (I xs) is not shown due to its complexity.
The outer loop invariant states that (1) 0 < i ≤ #arr , it is within the array
bounds; (2) the array in the range 0 · · · i−1 is sorted; and (3) arr is a permutation
of the original list xs. The function sorted : [A]list → bool determines that a list
is sorted by a predefined total order on A, and perm : [A]list → [A]list →
bool states two lists have the same elements, including repetitions. Both of the
latter functions are provided as part of the Isabelle/HOL library. Function nths :
[A]list → [nat]set → [A]list gives the elements of a list described by an index set.

The program is verified using Hoare logic as shown in Figure 3. The proof
is quite long, due to the number of proof obligations, and some manual effort is
required. This seems mainly due to missing lemmas, and so in future the proof
should be more automated (cf. [12]). Nevertheless, for now we omit details of the
proof steps. The first Hoare triple demonstrates that the inner loop preserves

Automated Algebraic Reasoning with Lenses 15

Fig. 3. Insertion Sort Verification

the invariant of the outer loop. The outer loop shows that, when provided with
a non-empty list a sorted permutation of xs is returned in arr .

10 Conclusions

In this paper we have shown how lenses support modelling and verification of
algorithms in the Isabelle/UTP tool [11]. We introduced dynamic lenses, that
allow us to handle collections, and symmetric lenses, that allow partitioning of
the state space into disjoint regions. Collection lenses allow us to generically
characterise a variety of different indexed collection types in Isabelle/UTP, in-
cluding arrays and maps. Symmetric lenses [16] allow us to characterise state
partitioning, and we have used them here to distinguish local and global variables
scopes. Due to typed nature of our state spaces, coercions are necessary when
moving between scopes, which we can also handle using lenses. Our conclusion
is that algebraic characterisation in this way is both flexible and practical, as
our verification of insertion sort demonstrates. Moreover, since our characterisa-
tion sits at the state space level, our results are applicable to paradigms beyond
imperative programming, such as reactive [11] and hybrid programming [4, 19].

In future work, we will explore symmetric lenses and their properties further.
We note that there are several different models for symmetric lenses, including
extensible records, lists, and total functions, each with unique advantages. We
can use extensible records to support variables with native type checking, but
they cannot support recursion, as for example required by quicksort, due to a
priori bounding of the state space. In contrast, list and function symmetric lenses
overcome this limitation, but require a fixed element type. Our mechanisation
thus allows us chose the best model for a particular circumstance. In the future,
we will perform a detailed comparison of the different models.

Acknowledgements. This work is funded by the EPSRC projects CyPhyAs-
sure3 (Grant EP/S001190/1) and RoboTest (Grant EP/R025479/1).

References

1. Armstrong, A., Gomes, V., Struth, G.: Building program construction and verifi-
cation tools from algebraic principles. Formal Aspects of Computing 28(2) (2015)

2. Dongol, B., Gomes, V., Struth, G.: A program construction and verification tool
for separation logic. In: MPC 2015. LNCS 9129, Springer (2015) 137–158

3. Gomes, V.B.F., Struth, G.: Modal Kleene algebra applied to program correctness.
In: 21st. Intl. Symp. on Formal Methods (FM). LNCS 9995, Springer (2016)

3 CyPhyAssure Project: https://www.cs.york.ac.uk/circus/CyPhyAssure/

16 Simon Foster, James Baxter

4. Huerta y Munive, J.J., Struth, G.: Verifying hybrid systems with modal Kleene
algebra. In: RAMICS. LNCS 11194, Springer (October 2018)

5. Barnett, M., Chang, B.Y., DeLine, R., Jacobs, B., Leino, R.: Boogie: A modular
reusable verifier for object-oriented programs. In: FMCO. LNCS 4111, Springer
(2005)

6. Filliâtre, J.C., Paskevich, A.: Why3 – where programs meet provers. In: Program-
ming Languages and Systems (ESOP). LNCS 7792, Springer (2013)

7. Kozen, D.: Kleene algebra with tests. ACM TOPLAS 19(3) (May 1992)
8. Foster, J., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for bidi-

rectional tree transformations: A linguistic approach to the view-update problem.
ACM Trans. Program. Lang. Syst. 29(3) (May 2007)

9. Foster, J., Pilkiewicz, A., Pierce, B.: Quotient lenses. In: Proc. 13th Intl. Conf. on
Functional Programming (ICFP), ACM (2008)

10. Foster, S., Zeyda, F., Woodcock, J.: Unifying heterogeneous state-spaces with
lenses. In: ICTAC. LNCS 9965, Springer (2016) 295–314

11. Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F.: Unifying theories
of reactive design contracts. Theoretical Computer Science 802 (September 2020)

12. Bockenek, J., Lammich, P., Nemouchi, Y., Wolff, B.: Using Isabelle/UTP for the
verification of sorting algorithms. In: Proc. Isabelle Workshop (FLoC). (July 2018)

13. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer
(1998)

14. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: A mechanised theory engineer-
ing framework. In: UTP. LNCS 8963, Springer (2014) 21–41

15. Foster, S., Zeyda, F., Nemouchi, Y., Ribeiro, P., Wolff, B.: Isabelle/UTP: Mech-
anised Theory Engineering for Unifying Theories of Programming. Archive of
Formal Proofs (2019) https://www.isa-afp.org/entries/UTP.html.

16. Hofmann, M., Pierce, B., Wagner, D.: Symmetric lenses. In: Proc. 38th Intl. Symp.
on Principles of Programming Languages (POPL), IEEE (2011) 371–384

17. Alkassar, E., Hillebrand, M., Leinenbach, D., Schirmer, N., Starostin, A.: The
Verisoft approach to systems verification. In: VSTTE. LNCS 5295, Springer (2008)

18. Back, R.J., Preoteasa, V.: An algebraic treatment of procedure refinement to
support mechanical verification. Formal Aspects of Computing 17(1) (2005)

19. Foster, S.: Hybrid relations in Isabelle/UTP. In: UTP. LNCS 11885, Springer
(2019) 130–153

20. Feliachi, A., Gaudel, M.C., Wolff, B.: Unifying theories in Isabelle/HOL. In: UTP.
LNCS 6445, Springer (2010) 188–206

21. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
22. Schirmer, N., Wenzel, M.: State spaces – the locale way. In: SSV 2009. Volume

254 of ENTCS. (2009) 161–179
23. Greenaway, G., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff: For-

mal verification of C code without the pain. In: Proc. ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), ACM (June 2014)

24. Dongol, B., Hayes, I., Meinicke, L., Struth, G.: Cylindric Kleene lattices for pro-
gram construction. In: MPC. LNCS 11825, Springer (2019) 192–225

25. Tarski, A.: On the calculus of relations. J. Symbolic Logic 6(3) (1941) 73–89
26. Hoare, C.A.R., Hayes, I., He, J., Morgan, C., Roscoe, A., Sanders, J., Sørensen, I.,

Spivey, J., Sufrin, B.: The laws of programming. Commun. ACM 30(8) (1987)
27. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM

12(10) (1969) 576–580
28. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of

programs. Communications of the ACM 18(8) (1975) 453–457

	Automated Algebraic Reasoning for Collections and Local Variables with Lenses
	Introduction
	Related Work
	State Space Modelling with Lenses
	Relational Programs in Isabelle/UTP
	State Space Manipulation
	Dynamic and Collection Lenses
	Symmetric Lenses
	Variables Blocks
	Insertion Sort
	Conclusions

