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Abstract: Automation of agricultural processes requires systems that can accurately detect and

classify produce in real industrial environments that include variation in fruit appearance due

to illumination, occlusion, seasons, weather conditions, etc. In this paper we combine a visual

processing approach inspired by colour-opponent theory in humans with recent advancements

in one-stage deep learning networks to accurately, rapidly and robustly detect ripe soft fruits

(strawberries) in real industrial settings and using standard (RGB) camera input. The resultant system

was tested on an existent data-set captured in controlled conditions as well our new real-world

data-set captured on a real strawberry farm over two months. We utilise F1 score, the harmonic

mean of precision and recall, to show our system matches the state-of-the-art detection accuracy

(F1: 0.793 vs. 0.799) in controlled conditions; has greater generalisation and robustness to variation

of spatial parameters (camera viewpoint) in the real-world data-set (F1: 0.744); and at a fraction of the

computational cost allowing classification at almost 30fps. We propose that the L*a*b*Fruits system

addresses some of the most pressing limitations of current fruit detection systems and is well-suited

to application in areas such as yield forecasting and harvesting. Beyond the target application in

agriculture this work also provides a proof-of-principle whereby increased performance is achieved

through analysis of the domain data, capturing features at the input level rather than simply increasing

model complexity.

Keywords: fruit detection; deep learning; computer vision; agricultural robotics; multi-modal;

strawberry perception; fruit localisation; outdoor detection; bio-inspired; one-stage networks

1. Introduction

The horticultural industry is facing many challenges due to its reliance on manual labour [1].

For example, soft fruit production involves many complex manual operations such as planting,

plant care, yield prediction and fruit picking which remains difficult to automate. The first step in

enabling automation in this application domain is a reliable and fast fruit recognition system which

can provide the information about the presence, location and quality of the fruit [2].

Colour is one of the most relevant cues in detecting ripe soft fruit such as strawberries and shown

to be directly related to their intrinsic attributes such as sugar level [3]. Yet, the visual appearance

of fruit changes due to (a) different shape and texture between levels of maturity (b) variation of natural

conditions such as weather, illumination, seasonal condition and growing cycles or (c) changes

of camera viewpoint (see Figures 1 and 2). Many approaches have shown promising results for
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classification, segmentation and localisation of crops [2,4–7]. However, as noted in [8], the problem

of creating a fast and reliable fruit detection system still persists due to challenges described above.

Figure 1. Camera configuration for viewpoints V1, V2 and V3, where V1−3 are camera identifiers.

Figure 2. View point illumination variance for V1, V2 and V3. Blue circles show the effect viewpoint

has on class appearance.

The current state of the art in machine learning for object detection is represented by deep learning

methods which have been also applied to agriculture with excellent results such as the DeepFruit

network [8]. The network achieves very good performance but its robustness to natural variations is

unknown since data acquisition in the presented work relies on heavily controlled lighting conditions
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(i.e. visible and near infrared LEDs in combination with a canopy) and the use of multi-modal sensing

(RGB and Near Infra-red (NIR)).

The performance of any machine learning method, including deep neural networks, depends

heavily on the quality and quantity of training data sets. Large data-sets do not currently exist

for real-world agricultural setting and small data-sets will struggle to encompass all variations

of parameters such as illumination. Therefore, the development in this field must look at alternate

methods to boost performance and generalisation even when using small amounts of data.

In this work, we introduce a novel solution that moves beyond the state of the art by displaying

greater invariance to environmental changes in the agricultural domain. Our high throughput fruit

detection system utilises a combination of recent advancements in deep learning that have been shown

to remove variance within data sets [9–11]. This approach incorporates an efficient feature extractor

ResNet which fuses RGB and colour opponent data combined with a multi-scale feature pyramid

network to deal with scale invariance and RetinaNet for classification with the modified focal loss

function reducing class imbalance. We present an evaluation of this system on data sets collected

from a real strawberry farm in natural conditions and compare its performance to the state-of-the-art

network in Sa et al. [8]. The specific contributions of this paper are as follows:

1. Combining colour opponent features represented in CIELab space and RGB to provide greater

multiple viewpoint invariance on networks trained on a singular view-point. This approach,

referred to as early fusion, is then validated on viewpoints not present in the training data that

show great variation in both spatial properties such as shape and illumination changes affecting

colour.
2. Development of an accurate, high resolution and high throughput fruit detection system based on

efficient network topology that can be trained on a low number of images in only one hour using

state of the art approaches such as Feature Pyramid Networks [9], Residual Neural Networks [10]

and RetinaNet [11].
3. Ablation study of the proposed system in Section 4. Showing the effect individual components

of the system have on overall accuracy such as reduction of data set size and different permutations

of model input.
4. Publication of an open access longitudinal strawberry data set captured in real agricultural

environments from multiple views over a period of two months, each providing weather data,

camera parameters, RGB, stereo infrared images and registered point clouds (available on https:

//github.com/RaymondKirk/labfruits_dataset).

This paper is organised as follows: a discussion of the related work in crop detection in agriculture

and the application of deep learning methods is presented in Section 2 followed by a description

of the proposed system (see Section 3). Section 4 presents the experiments used to validate our

hypothesis of removing the effect luminance has on object detection through approximated human

vision mechanisms. The paper concludes with a short summary and discussion of future work in

Section 5.

2. State-of-the-Art

The automation of agricultural processes such as harvesting and yield prediction is the

ultimate goal of recent research in vision systems for agricultural applications. Vision systems

aim to segment, classify and localise fruit instances in the environment and provide meaningful

semantic information such as area, position, size and maturity. Gongal et al. [12] review image

processing techniques applied in to the agricultural domain, recent deep learning methods have

outperformed classical image processing approaches and therefore represent the state-of-the-art

(see recent review by Kamilaris et al. [13]). A recent approach by Sa et al. [8] applied standard

deep-learning methods to fruit detection. Specifically, they use a two stage detector, Faster R-CNN [14],

with a fusion of RGB and Infrared features to detect sweet peppers. For the late fusion approach,

https://github.com/RaymondKirk/labfruits_dataset
https://github.com/RaymondKirk/labfruits_dataset
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they train two networks on each of the image modalities and merge the results achieving an F1 score

(harmonic average of precision and recall [15]) of 0.838. However the fusion of these features doubles

the complexity and resource requirement of their deep network, which is undesirable for time critical

predictions in an agricultural environment. To address this issue they train a single network and

combine the different image modalities at the input level instead. Using this early fusion approach

halves the model inference time and achieves a F1 score of 0.799 which is very comparable to their

late fusion model performance. The data-set used however, does not consider illuminance variation,

occlusion and colour similarity between crop and background classes. Which we attribute in this work

as three major constraints limiting current approaches.

Roy et al. [16] tracked pomegranates over multiple frames, the authors note two distinct

approaches to automatic robot harvesting, spectral-based and shape-based. Stating that spectral-based

approaches are fast but weak to occlusions and inconsistent illumination whereas shape based are

computationally expensive but more robust to these limitations. They obtain 96.6% accuracy with a

25.0% and 11.3% false positive and false negative error rate respectively by using K-Means clustering

and morphological operations. The approach presented in [7] utilises super-pixel over-segmentation,

dense SIFT descriptors and a bag-of-words histogram to classify fruits in images, achieving an accuracy

of 97.6% for pineapples. A bag-of-words model was also used in [6] to find peppers in images in their

two step automated fruit counting approach. Simple colour transformations and a naive Bayes classifier

are used to detect initial regions of interest which are then in-turn used to train the bag of words

model which uses texture and Maximally Stable Colour Region feature sets [17]. The estimates from

multiple images are aggregated, limiting the impact of occluded fruits, to calculate the final fruit count.

They note that a more comprehensive solution could have been achieved with 3D data. In [18] they

combine both machine and deep learning based approaches for automatic observation of rice heading

stage through a support vector machine and a convolutional neural network. Similarly to this paper

they simplify the classification process by prior analysis and design of principled approaches.

Recent work within deep learning has shown great advancements in object detection and

classification tasks [10,11,14,19,20]. The current approaches can be defined in two categories; one and

two stage detectors. Two stage detectors are named so because they consist of (1) generating regions

of interest using region proposal methods such as, BING [21], Selective Search [22], Region Proposal

Network [14] and ContourBoxes [23], and (2) classifying and regressing the specified regions. One stage

detectors on the other hand learn the bounding box location and classification labels simultaneously.

Until RetinaNet [11] two stage detectors outperformed single stage detector accuracies; single stage

detectors have higher throughput and consequently are much more desirable for real time applications.

This achievement was contributed to the class imbalance problem one stage detectors generally face,

where the background is too highly classified.

Two stage detectors such as Mask R-CNN [19] generate far fewer candidate locations than

one stage detectors process and this was addressed by introducing a new loss function within

RetinaNet to weight the cross entropy loss of these well classified classes (background) closer to zero.

Recently hybrid approaches such as in [24] have been proposed using fast one stage approaches for

easier detection problems and two stage detectors for robust detection on more difficult input data.

They achieve this by estimating the difficulty of the input data before detection. In this paper we

demonstrate the use of a one stage detector RetinaNet with a bio-inspired early fusion stage to combine

the speed of one stage detectors, robustness to class imbalance shown by the architecture in [11] and

detection at multiple scales through the introduced Feature Pyramid Network [9]. The motivation

behind this approach is to remove variance observable in data sets such as scale and class imbalance

at a higher, representational stage using colour. With this we bootstrap the model performance on

multiple views the information already contained within the data set.
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3. Materials and Methods

The fruit detection system presented in this paper initially retrieves an image from either the

data set (training) or the camera (testing). After the RGB data is captured and the transformation

described in Section 3.1 is applied to convert into CIELab space. Figure 3 visualises the RGB data

and CIELab data in the RGB colour space. The two images are then stacked depth-wise to form a

D = 6 dimensional tensor of size W × H × D where D is the dimensionality, W and H are the width

and height respectively. At this point the fused image tensor is input into the network where a

convolutional layer with stride 2 increases the dimensionality of the input D to 64 (chosen number

of filters) via 2D convolutions of kernels of size 7 × 7. The ResNet-18 feature extractor then generates

four feature maps from four blocks of a 3 × 3 convolution and ReLU activation function repeated twice

at increasing number of input channels D. The latter three feature maps are then used in the feature

pyramid network to generate five multi-scale feature maps, this process is visualised in Figure 4.

For each scale created a classification and regression sub-net are applied. Respectively the sub-nets

output tensors of size K · A and 4A where K are the classes and A are the predefined region proposals

(anchors). In summary the classification sub-net outputs class predictions for each anchor and the

regression sub-net outputs 4A regressed bounding boxes at each spatial location.

Figure 3. Network Input: Visualisation of RGB (top left) and CIELab (top right) used in model

training. It’s evident in the opponent feature channels (bottom row) of CIELab that this colour space is

appropriate for fruit detection due to the maximal and minimal response of fruit pixels.

Figure 4. Model Architecture: RetinaNet implementation showing early fusion of RGB and CIELab

features, where Fn are convolutional layers with resolution 2n of the input and 256 channels. F6 and

F7 are obtained by a 3 × 3 convolutional layer with stride 2 of F5 and 3 × 3 convolution with stride 2

and intermediate ReLU activation layer of F6 respectively.
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3.1. Colour Opponent Process

The approach presented in this paper is based on colour opponent process theory, network

input features are modelled as an approximation of logarithmic function responses of photo-receptive

materials in the human eye. Colour opponent process theory explains how the human vision system

perceives colour information [25]. It explains colour vision as the combination of energy differences

between opponent energy pairs. Red versus green, blue versus yellow and finally white versus

black [26]. The first two opponent pairs model the perceived colour and the later opponent pair

determines perceived luminance of an observed object. Simply, the opponent process is a translation

between rod/cone responses to the combination of colours we perceive.

The motivation behind this is that luminance is contained entirely within a single opponent pair

such that the three channels represent perceptually uniform colour, helping reduce one of the biggest

constraints visions systems face; the impact of variable illumination in the environment. In computer

vision the CIELab colour space approximates perceptually uniform human vision which means any

change in the CIELab space should induce a similar change in the colour we perceive. CIELab has three

channels each representing one of the colour spaces mentioned above, L represents white versus black,

a represents red versus green and b represents blue versus yellow.

The opponent colour model has been applied in research numerous times [26–30], usually to tackle

variable luminance. CIELab can naturally segment regions containing perceptually opposing colour

channels, in [26] they state that objects have been designed/exist to be easily perceived by the human

visual cortex. Things are described as easily perceived when the colour features maximally activate

single components in each opponent pair. In example ripe and unripe strawberries both activate

different ends of their respective red/green opponent pair. CIELab is used in [26] to detect the presence

of roadworks without ever explicitly modelling any of the objects; traffic signs are usually bright

oranges (yellow), blues and reds, corresponding to maximal activation of one component in each colour

pair. CIELab extracts the visual saliency of colour features in objects and is used in research to model

RGB more uniformly. As in [28] where it is used to generate colour models invariant of lighting and

illumination changes.

The Deep Fruits system [8] attempts to solve the luminance problem by fusing multiple spectra,

the visual RGB and infrared images. We aim to solve a similar problem by modelling the luminance

through antagonistic colour pairs instead. The benefit of our approach is that it only requires RGB

data from a standard camera and a non linear transform described in Equations (1)–(3) to convert

between the two colour spaces. First to convert to the CIE XYZ space, described in Equation (1) where

Y is modelled as luminance, Z is quasi-equal to blue stimulation, and and X is a linear combination

of cone response curves. In Equation (1) the values used for D are calculated with regard to the D65

illuminant [31].







X

Y

Z






=

[

D
]

∗







R

G

B







D =







0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950227







(1)

Once RGB values have been transformed to CIE XYZ colour space a non linear transformation

described in Equations (2) and (3) is applied to directly convert to CIELab space. In Equation (2) the

values used for Xn, Yn and Zn are Xn = 95.047, Yn = 100.000, Zn = 108.883 and are calculated under

the D65 illuminant [31] with normalisation Yn = 100. Note that this conversion from RGB to CIELab is

device dependant and must be converted to the an absolute colour space such as CIE XYZ or sRGB.
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where f (x) adds the non-linearity and δ is equal to 6
29 .

f (x) =

{

3
√

x, if t > δ3

x
3δ2 +

4
29 , otherwise

(3)

3.2. Early Feature Fusion

In our approach, we aggregate the selected colour spaces at the model input level and define

our first layer of the model architecture accordingly. The first layer is defined as having D channels,

where D = 3 for either RGB or CIELab and D = 6 for the early fusion model composed of both RGB

and CIELab channels. A late fusion approach was also considered, which would combine predictions

from two networks trained on RGB and CIELab inputs respectively but as found in [8] the performance

gain is small and incurs linear increase of computational cost per network. In this case it was deemed

that doubling the resources necessary for this small performance increase was an inefficient method

of combining the information contained within each input transform domain.

3.3. Fruit Detection Using RetinaNet

Using the colour opponent process as model input attempts to maximise luminance invariance

when training deep networks. Where variable luminance is a problem intrinsic to the data and

contained classes, deep networks face other challenges. Some of the challenges are mitigated in this

implementation through state-of-the-art approaches, such as ResNet-18 to help with the vanishing

gradient constraint of deeper networks and Feature Pyramid Networks to mitigate issues with scale

disparity between class samples in the training set. The combination of these approaches results

in an architecture that can better learn features with high variation in luminance, spatial resolution

(size of classes in input images) and intra-class balance (the ratio of class observations to other

class observations, i.e., number of ripe strawberries objects in the training set to number of unripe

strawberries).

3.3.1. Feature Pyramid Networks

Detecting objects at multiple sizes and scales is a difficult problem in machine learning and has

seen many different approaches in the computer vision domain. As mentioned above its unfeasible

to construct a data set where the objective classes are well represented over all possible scales,

illumination, shapes, colours and many other attributes. Such a data set would be need to be larger,

meaning increased network training times and require infeasible levels of maintenance and annotation.

One of the most popular recent advances in deep learning is Feature Pyramid Networks [9]. A image

pyramid is comprised of multiple feature maps at different scales and are generally the output

of sequential convolutional layers (i.e., an input image down sampled by a factor of 2, n number

of times will create a feature pyramid where each layer is a different scale of the original down sampled

image). Until recently this approach was mainly avoided due to the computational complexity and

memory overhead they add to an architecture. To overcome the overhead, approaches have included

using a single feature map from the feature pyramid, which looses the semantic information of the

lower/higher layers or pyramidal feature hierarchies computed by sequential convolutional layers
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in a deep network [9]. However in these approaches there is a disparity between how semantically

strong each layer is and therefor the effectiveness of this approach.

In [9] they exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks

to compute the Feature Pyramids at a much lower memory and computational cost while maintaining

greater semantic information across each layer in the pyramid. The key contribution is the combination

of lateral and top-down connections in the pyramid construction. Since lower level feature maps are

not semantically strong the model will find it harder to learn from this information, generally deeper

layers contain semantically strong information and are useful for classification/regression tasks. This

approach uses top down connections so the model can learn as effectively or up to as well as the

deepest layer containing the greatest semantic information. This process is described in much greater

detail and clarification can be found for the terms in [9]. Using this Feature Pyramid Network in our

approach helps maximise scale/size invariance while maintaining similar performance to using a

single layer for feature extraction as mentioned above. In the original paper they increased the accuracy

by 8.0% on the MS COCO data set [32] using this approach, for small objects generally missed, they

increased the accuracy by 12.9%.

3.3.2. RetinaNet

As discussed above the inclusion of the Feature Pyramid Network on top of the feature extractor

we use, deemed ResNet [10], helps increase model performance over multiple scales. RetinaNet is a

one-stage dense detector first presented in [11], the motivation behind this architectures development

came from the fact one-stage detector performances were consistently trailing behind that of two-stage

detectors such as Faster R-CNN [14]. The benefit of using one stage detectors is the speed, however

until RetinaNet the speed generally cost model accuracy. The model accuracy loss was attributed

to class imbalance during model training. To which they mitigated with the novel loss function they

introduced deemed Focal Loss. This loss function reshapes standard cross entropy loss in a way that

down weights well classified examples. With this new approach RetinaNet outperformed all two-stage

detectors and matched the speed of one stage-detectors at the time of publication. We based our

network architecture on RetinaNet to reduce the impact of class imbalance on network performance,

this was key especially due to the data imbalance between ripe and unripe strawberries in the data set.

In our approach we use an 18 layer ResNet architecture with the discussed Feature Pyramid

Network on top calculating feature maps at three scales from the ResNet-18 feature extractors basic

blocks. For each scale we compute the probability that objects are present for each class K and at

anchors A, and then regress anchor boxes A to nearby bounding boxes present in the ground truth.

To achieve this we use two very similar sub-nets, a classification sub-net and a regression sub-net

respectively. Composed of four 3 × 3 convolutional layers each with a ReLU activation layer attached.

For the classification sub-net there is a final convolutional layer K · A filters and for the regression

sub-net a 3 × 3 convolutional layer with 4A outputs. Both sub-nets have a final sigmoid activation

layer attached to output binary predictions for K · A classifications and 4A regressed boxes per spatial

location respectively. These sub-nets are described in greater detail in [11], where our implementation

is based. Finally A number (9 in our approach) of boxes are generated at each location and focal loss

for the regression and classification sub nets are calculated (using α = 0.25, γ = 2.00 in our approach).

This constitutes the final loss as the sum of both classification and regression focal loss. The model

architecture we used in our experiments is defined in Figure 4.

3.4. State of the Art Strawberry Detectors

In Table 1 we summarise the current state-of-the-art for deep learning based strawberry detectors.

The columns in the upper table denote the number of images available in each data set, the availability

of the data set, the camera viewpoint, whether the data set contains more than one imaging modality

and finally if the data was captured in controlled (e.g., under controlled lighting) or natural agricultural

conditions. The columns in the lower table denote the network architectures used, the average precision
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(used in the ImageNet challenge [33]), the F1 score at an intersection over union of 0.5 and finally

the inference speed (the time taken to generate predictions from a given input) at a specific image

resolution.

We sought methods that were trained and tested with data-sets of comparable number of images

and characteristics (viewpoint, multiple modalities, environmental conditions) allowing for fair and

meaningful comparisons. Table 1 shows that closet approach with data that was freely available was Sa

et al. [8], justifying its selection for comparison. While we do not compare with the remaining methods

due to the inaccessibility of data-sets, Table 1 defines the performance scores and inference speed

obtainable of different architectures on specific data sets. It is evident from the results that increased

data set sizes and simpler viewpoints correlate to greatly improved accuracies, and it is difficult

to compare different methodologies due to the variable complexity levels in the respective data-sets

and their availability. to address this issue we provide a base line data-set (https://lcas.lincoln.ac.uk/

owncloud/index.php/s/teQvy1iSLoUllU0) gathered in a real agricultural settings including multi

viewpoints and modalities for future benchmarking studies.

Table 1. Summary of SOTA (state-of-the-art) approaches to Strawberry Detection in Deep Learning.

Method # Images Availability Viewpoint Multi Spectra Controlled Natural

Yu et al. [34] 1900 7 Side on (Close) 7 3 7

Chen et al. [35] 12526 7 Aerial 7 7 3

Lamb and Chuah [36] 4550 7 Ground 7 7 3

Ge et al. [37] - 7 Side on 7 7 3

Sa et al. [8] 122 3 Side on 3 3 7

L*a*b*Fruits (Ours) 150 3 Multiple 3 7 3

Method Network AP (IoU 0.5) F1 (IoU 0.5) Inference Speed (s)

Yu et al. [34] Mask R-CNN - ResNet-50 - - 0.13 @ 640 × 480 px
Chen et al. [35] Faster R-CNN - ResNet50 0.77 - 0.11 @ 480 × 380 px

Lamb and Chuah [36] Single Shot Detector (SSD) 0.84 - 0.61 @ 360 × 640 px
Ge et al. [37] Mask R-CNN - ResNet-101 0.81 0.90 0.62 @ 640 × 480 px
Sa et al. [8] Faster RCNN - VGG-16 - 0.79 0.39 @ 1296 × 964 px

L*a*b*Fruits (Ours) RetinaNet, ResNet-18 0.75 0.75 0.07 @ 1920 × 1080 px

4. Results and Discussion

In the following section we present our findings on reducing illumination and viewpoint variance

on a challenging, real-world data set. We present (a) benchmark results for models trained on RGB

data Section 3.1, (b) model results using the CIELab colour space, (c) model performance with early

fusion of both colour spaces, (d) a evaluation of viewpoint (spatial) invariance between the three

trained models describing a level of generalisation between unobserved views that alter the spatial

appearance (shape, texture and colour of the class), and finally (e) a comparison to the Deep Fruits

system [8] which similarly attempted to maximise illumination invariance but through multi-spectra

fusion. Although we take it further and test our proposed solution on unseen views, Deep Fruits was

found to be the closest baseline.

F1 scores and the mean average precision metric used in the ImageNet challenge [33] are used in

this paper to evaluate the experiments. The F1 score is the harmonic average of precision P and recall

R where precision is the number of true positives TP divided by the sum of true and false positives FP,

and recall is the number of true positives TP divided by the sum of true positives TP and false negatives

FN . The equation to compute the F1 score using precision and recall is presented in Equation (4).

An object is considered correctly detected in our results when the predicted bounding boxes have

a intersection over union (IoU) of at least 0.5 (50%) with the ground truth annotation. However we

also provide results using a value of 0.4 (40%) to enable more accurate comparison to the DeepFruits

experiments. The justification provided for using the smaller intersection over union threshold in [8] is

https://lcas.lincoln.ac.uk/owncloud/index.php/s/teQvy1iSLoUllU0
https://lcas.lincoln.ac.uk/owncloud/index.php/s/teQvy1iSLoUllU0
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that objects in the data set are smaller than in the ImageNet challenge therefore require less overlap.

We use values of 0.5 for non maximum suppression.

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2 ·

P · R

P + R
(4)

4.1. Data Acquisition

Sa et al. [8] note that variation in outdoor agricultural environments affects vision systems

greatly and many of the introduced factors such as sunlight and weather are detriment to the

performance of machine vision systems. Current computer vision systems are either developed in

controlled indoor conditions that avoid real-world constraints or use external equipment to minimise

illumination variance in their data sets (see adaptation of data set from [38] by [8]). In this paper we

present a longitudinal data set recorded in a real working agricultural environments containing RGB,

stereo infrared images and point clouds as well as providing camera parameters, localisation and meta

data describing capture conditions such as humidity and temperature. This data set was created in

order to capture the variance present in natural outdoor conditions.

We captured 6189 images over 2 months, August and September 2018, and manually annotated

150 of them. Table 2 shows the number of images across each view that we used in the model training

and validations (testing) stages. Note the data set used is small, as currently no large fruit data sets

exist to the authors knowledge. All the Strawberries were labelled into two classes, Ripe and Unripe.

The production site where the data was captured was at the University of Lincoln research farm at

Riseholme campus. Two poly tunnels with table top strawberry rows were constructed, one row was

tagged with visual markers [39] to indicate the points along the row where data should be collected,

and the subsequent data collection process occurred singularly on this tagged row three times a day

three times a week to capture various light intensities, weather conditions and plant growth stages.

The species of strawberry was Amesti, captured at the flowering and fruiting stages of the plant.

Table 2. Distribution of images across training and testing sets for V1, V2 and V3.

Viewpoint Training Validation Total

V1 120 (80%) 10 (6.6%) 130
V2 0 (0%) 10 (6.6%) 10
V3 0 (0%) 10 (6.6%) 10
Total 120 (80%) 30 (20%) 150

The images were captured at 1920 × 1080 px resolution and the network was trained without

resizing them. The data acquisition rig is visualised in Figure 2 and shown in Figure 5, three cameras

were mounted 45 degrees apart to capture as much spatial information from the strawberry crops as

possible. The top, middle and bottom cameras will each be referred to as V1, V2 and V3 respectively from

here on in. Capturing at these three distinct points ensured the information captured by each camera

would have a good spread of dissimilar semantic information about each class. For example V1 and V3

would contain visually very different information for each class, whereas V2 would share a greater

instance information about each class with viewpoints V1 and V3; Shown in Figure 2. This enabled us

to compare the impact viewpoint variance had on model performance. Each class could be trained

on a training set that contained information from each viewpoint V1−3, however we exclusively set

the experiments up so only V1 would be used in the model training stage. We did this to simulate the

real-world effect of illumination, shape and texture changes introduced by unpredictable viewpoint

variations caused by indeterministic environmental effects such as weather and human interaction.

During data collection the acquisition rig was mounted on a modular robotic platform

Thorvald [40] and moved incrementally to each visual marker to ensure consistency between data

collection cycles.
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Figure 5. The image acquisition rig inside the strawberry polytunnels.

The data set presented should be considered a complex data set in the sense it contains classes

with heavy occlusion and highly varied illumination. The images were captured over a period of

24 days with a intra-day variance of 11 hours. It contains two classes: Ripe Strawberry and Unripe

Strawberry with uneven distribution as shown in Table 3. The difficulty of the data set is reflected in

the quantitative assessment later in this paper. The data set will be made publicly available, in order

to support key advances in this research area.

Table 3. Distribution of labelled classes across training and testing sets for V1, V2 and V3.

Bounding Boxes Ripe Unripe Total

Training 673 2680 3353
Validation 217 649 886
Total 890 3329 4219

4.2. RGB and Early Fusion Comparison

In order to determine the effect of perceptually uniform colour spaces on viewpoint invariance

we conducted three different experiments. The original motivation of this approach is that error due

to variation in luminance of each class described in Section 4.1 would be minimised. To test this the

CIELab colour space was used in order to capture the colour feature components present in the image

more uniformly and thus fortify the features learnt in the network. We utilise an early fusion method,

introduced in [8]. A late fusion method that combined two separate models was also proposed but

we determined that doubling the number of parameters present in the network, computation time

and GPU utilisation was an insufficient method to deal with luminance for reaching greater viewpoint

performance.

As shown in Table 4 in terms of F1 the early fusion approach outperforms both RGB and CIELab by

2.4% and 8.2% respectively on V2−3. On the unseen viewpoints the F1 score is lower as was expected

since no images from either of these orientations was included in the training data set. The early fusion

F1 score for V2−3 is 4.3% less than the result on the singular view V1, the small difference in scores

compared to the 6.4% and 8.8% drop for RGB and CIELab show that this approach can better generalise

to unseen views of the each of the classes.

It can be seen in both Table 4 and Figure 6 that RGB and CIELab are both consistently outperformed

by the early fusion method, while the fusion of these two features shows a great improvement over

a singular approach alone. It’s also evident from this table that the lesser opponent class “Unripe

Strawberry” has higher performance in RGB space however is still beaten by early fusion when on
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unseen views. The early fusion approach demonstrates greater invariance to luminance and achieves

excellent results on previously unseen views described in Figure 2.

Table 4. F1, Average Precision (AP) and Average Recall (AR) scores of RGB, CIELab and Early Fusion at

50% intersection over union (IoU) for each detected class. Bold indicates the best result in each row.

Class View Score RGB CIE Lab Early Fusion

Both Classes V1 F1 0.744 0.710 0.747
Both Classes V1 AP 0.722 0.695 0.748
Both Classes V1 AR 0.870 0.844 0.909
Both Classes V2−3 F1 0.680 0.622 0.704
Both Classes V2−3 AP 0.659 0.586 0.694
Both Classes V2−3 AR 0.812 0.761 0.851

Ripe Strawberry V1 F1 0.683 0.625 0.697
Ripe Strawberry V1 AP 0.616 0.571 0.678
Ripe Strawberry V1 AR 0.807 0.767 0.892
Ripe Strawberry V2−3 F1 0.697 0.662 0.729
Ripe Strawberry V2−3 AP 0.659 0.621 0.719
Ripe Strawberry V2−3 AR 0.806 0.777 0.877

Unripe Strawberry V1 F1 0.805 0.795 0.797
Unripe Strawberry V1 AP 0.828 0.819 0.818
Unripe Strawberry V1 AR 0.933 0.922 0.927
Unripe Strawberry V2−3 F1 0.663 0.582 0.679
Unripe Strawberry V2−3 AP 0.658 0.552 0.668
Unripe Strawberry V2−3 AR 0.819 0.745 0.825

30 40 50 60 70 80 90 100
Data Reduction Size (%)
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0.60

0.65

0.70
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0.80
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 Io
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RGB V2, 3

69.7%
69.2%

Figure 6. F1 Score for 50% intersection over union on V1 and V2 + V3 validation data sets.

Figures 6 and 7 show how the Early Fusion approach responds to reduced data sizes. The original

data size of 120 images described in Table 2 is a small data set and in the experiments shown in these

figures it was reduced by a factor of 25%, 50% and 75%. Its observed from the gradient of the line

that the methods evaluated may perform better when more data is available. It can be seen that for

a heavily reduced data set the methods have much lower performance than they do with full data

access. Data augmentation could be further used to boost the performance of early fusion by altering
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the luminance values within the fused data to uniformly alter colour features in the original RGB data.

Figure 8 shows a false positive analysis of the early fusion network on the DeepFruits data set, you can

clearly see in this graph most of the models inaccuracy comes from misclassification (BGR on Figure 8),

data augmentation is one approach that could help minimise this issue. In Figure 9 we provide the

output of our early fusion approach compared to RGB alone, highlighting the cases where it surpasses

baseline performance. The results shown are from a network trained on V1 data and evaluated on

the most dissimilar view V3 to stress the detectors performance across high variation of shape and

luminance.

30 40 50 60 70 80 90 100
Data Reduction Size (%)
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0.50

0.55

0.60

0.65

0.70

0.75

0.80
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 Io

U=
50
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72.2%

65.9%
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CIE Lab V1

CIE Lab V2, 3

RGB V1

RGB V2, 3

69.5%
69.4%

Figure 7. Average Precision for 50% intersection over union on V1 and V2 + V3 validation data sets.
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Figure 8. Precision-recall (PR) analysis: PR curves of the trained Sa et al. [8] early fusion network. C50,

C40 and LOC correspond to PR curves for IoU values of 0.5, 0.4 and 0.1, LOC when all localisation

errors are removed. SIM and CLS when errors from similar categories and all classification labels are

removed. BGR is the PR curve when all other class/background false positives are removed and finally

FIN shows PR containing no errors.
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(a) RGB network detection showing failure cases.

(b) Early Fusion network detection showing improved results.

Figure 9. Performance on difficult input: Early Fusion and RGB models evaluated on V3, the view

with the highest spatial variation. The early fusion approach maintains detection accuracy over huge

illumination and shape alterations (introduced from viewpoint). Improved results are shown in green

and detrimental results shown in red.

4.3. State-of-the-Art Comparison

The Sa et al. [8] paper noted the crucial component of autonomous fruit harvesters to be an

accurate vision system, to which they attributed illuminance variation, occlusion and colour similarity

between crop and background class to be the three major constraints limiting current approaches. They

proposed a system based on the two stage detector Faster R-CNN that utilised early and late fusion of

RGB and near Infrared imagery. Early fusion was a singular model with four input channels (RGB + IR)

and late fusion trained two separate models (RGB, IR) and combined the detected objects in the final

stage. Sa et al. [8] found late fusion to be the best approach achieving an F1 score of 0.838 for Sweet

Peppers, however they also noted this approach requires double the number of network parameters,

computational cost, power, GPU utilisation, training time and inference time. Ultimately concluding

the small decrease in accuracy of the early fusion approach from 0.838 to 0.799 as a worthy trade-off.

We compare our approach using a one stage detector RetinaNet to theirs in the following section.

We directly compare the performance of three of our networks trained on RGB, CIELab and Early

Fusion inputs to their Late and Early fusion approach. We compare the effectiveness of our perceptually

uniform features CIELab to that of IR to remove luminance variance within the data set, described in

Table 5. The evaluation metrics used are in correspondence with the original paper (IoU at 0.4) and

only classification scores greater than 0.9 are considered. The images contained in the sweet pepper

data set were not as high resolution as with our Strawberry data set described in Table 2 but instead

were 1296 × 964 px which we sampled to be divisible by 32 at 1280 × 736 pixels.

Table 5. Distribution of training and testing images used in DeepFruit models

Class Train Validation Total

Sweet Pepper (Capsicum) 100 (82%) 22 (18%) 122
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In this experiment we would expect lower performance values due to the fact we’re using a one

stage detector over the two stage detector used in the original paper, as well as working with a data set

less colour centric than ours. It is less colour centric due to the single class sweet pepper sharing very

similar colour features with the background class. However we show the effectiveness of our approach

at achieving what the addition of IR tried to achieve in DeepFruits, fortifying the prior viewpoint

experiment results and luminance removal even when classes share much of their colour features that

CIELab is based upon.

Moreover the early fusion approach attempted in the deep fruits paper failed at surpassing the F1

score of standard RGB and their approach using late fusion (which did outperform the RGB baseline)

was dependant on simultaneous collection of IR data as well as training two separate networks,

ultimately only showing a 2.2% increase.

We observe similar results in Table 6, our early fusion approach closely follows the RGB F1 scores

and matches the performance obtained by Sa et al. [8] (0.799). Our average precision scores outperform

the standard RGB results by 2.8% and 6.2% for AP50 and AP40 respectively, suggesting the network

more accurately classifies than it detects. Although we show statistically similar results to DeepFruits,

our approach is considerably faster (6.6×) at 0.06 s per image compared to 0.393 s and only needs

RGB data instead of the RGB + Near Infrared data their approach requires. Interestingly the early

fusion approach maintains similar precision increases over the experiments as in Table 4 and Figure 7.

In Figure 10 we compare our early fusion approach to standard RGB on networks trained from the

data provided by Sa et al. [8] originally captured in [38]. The results provided are representative of the

results presented in Table 6.

Table 6. F1 scores of RGB, CIELab and Early Fusion at AP40 and 50 on the DeepFruit data set (0.799 at

AP40). Bold indicates the best result in each row.

IoU Metric RGB CIE Lab Early Fusion

40% F1 0.789 0.763 0.793
40% AP 0.759 0.758 0.821
50% F1 0.789 0.738 0.772
50% AP 0.759 0.705 0.787

Across experimental conditions we see consistent improvement in viewpoint invariance using

early fusion of RGB and CIE Lab. Utilising the RetinaNet architecture as a base allowed us to remove

class imbalance through the Focal Loss function and improve detection for objects at multiple scales

through the implemented Feature Pyramid Network. We achieve near real time performance as

seen in Table 7, where we present speeds similar to what is stated as near real-time in relevant

literature [20]. Our early fusion approach adds to the architecture by providing results less sensitive

to colour specificity of trained classes, and can be seen as a more generalised approach to solving this

problem than introducing multiple spectra as in [8].

Table 7. Performance of the Early Fusion Network on a Nvidia GTX 1080 Ti 11GB (single forward

pass).

Resolution Model Inference Time Frames Per Second

1920 × 1080 0.073 s 13.71
1280 × 736 0.038 s 26.33
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(a) RGB Network (b) Early Fusion Network

Figure 10. DeepFruits evaluation: Early Fusion (right) and RGB (left) models evaluated on the

DeepFruits Capsicum data. It can be seen that the early fusion approach more frequently detects

objects the RGB network misses (highlighted in green).

5. Conclusions

We present in this paper an example of improving network performance on unseen data through

a structured approach and analysis of the network input. We chose a fusion of features instead

of modifying network architecture and depth to increase generalisation to non-representative images.

The results observed indicate that using bio-inspired features can avoid increased model complexity for

increases in accuracy and generalisation capabilities. For colour centric data classes we conclude that

this approach shows great promise in increasing the robustness of trained deep networks in real world

conditions. The addition of CIELab helps increase viewpoint invariance by training on more specific

colour features across a wider luminosity range within each class. With the introduction of multiple

viewpoints or unknown viewpoints the environmental factors contributing to the appearance of objects
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in a scene change and CIELab provides a more normalised representation of each class when they’re

colour centric (maximally activate a single component in colour opponent pairs).

We achieve a 2.4% and 8.2% increase with our early fusion approach on unseen viewpoints V2−3

over the standard RGB and CIELab modalities alone. In comparison the standard RGB and CIELab

drop by 6.4% and 8.8% respectively for F1 scores between viewpoints V1 and V2−3. Similarly when

applied to the DeepFruits data set we gain an AP score increase of 2.8% (IoU = 0.5) and 6.2% (IoU = 0.4)

over RGB alone. Our F1 scores match those presented in the original paper, suggesting the added

CIELab opponent features assist in classification of the detected objects more so than aiding the initial

detection since our obtained AP scores are consistently higher than RGB in all cases (2.8% and 6.2%).

Our approach also gains a performance increase of 6.6 times that of the DeepFruits early fusion method

utilising IR and only considering a single class. This improvement is likely to increase the applicability

of the method to robotic fruit monitoring and harvesting systems that have limited computational and

power resources.

Future Work

Leveraging CIELab colour opponent features with RGB helped mitigate some luminance variation

in the validation sets. As can be seen in Figures 6 and 7 the early fusion approach appears to improve

with larger amounts of data. Investigation into the benefits provided by this approach as the data set

size increases would provide insight to the limitations and optimal accuracy increase through our

proposed methods. As well as calibrating the cameras to improve the colour accuracy over multiple

sensors. Visualisation of features and filters learned in the network would also provide intuition

as to what the network is learning which would be useful in seeing the difference between learnt

RGB filters and colour opponent filters. To validate the removal of luminance further this analysis

could compare network activation for synthetically created Strawberries at variable luminosity, where

uniform activation over variable parameters would indicate the removal of the detrimental effects

of the parameter on overall accuracy. Finally analysis into accuracy increase with fewer classes or

binned classes would show whether error is introduced through learning multiple classes, due also

to the fact this paper compares to Sa et al. [8] which noted multi-class detection as further work than

the scope of the paper.
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