
This is a repository copy of Methodology of a novel risk stratification algorithm for patients 
with multiple myeloma in the relapsed setting.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/155352/

Version: Published Version

Article:

Bouwmeester, W., Briggs, A., van Hout, B. orcid.org/0000-0001-9698-6094 et al. (5 more 
authors) (2019) Methodology of a novel risk stratification algorithm for patients with 
multiple myeloma in the relapsed setting. Oncology and Therapy, 7 (2). pp. 141-157. ISSN 
2366-1070 

https://doi.org/10.1007/s40487-019-00100-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ORIGINAL RESEARCH

Methodology of a Novel Risk Stratification Algorithm
for Patients with Multiple Myeloma in the Relapsed
Setting

Walter Bouwmeester . Andrew Briggs . Ben van Hout .
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ABSTRACT

Introduction: Risk stratification tools provide

valuable information to inform treatment

decisions. Existing algorithms for patients with

multiple myeloma (MM) were based on patients

with newly diagnosed disease, and these have

not been validated in the relapsed setting or in

routine clinical practice. We developed a risk

stratification algorithm (RSA) for patients with

MM at initiation of second-line (2L) treatment,

based on data from the Czech Registry of

Monoclonal Gammopathies.

Methods: Predictors of overall survival (OS) at

2L treatment were identified using Cox pro-

portional hazards models and backward selec-

tion. Risk scores were obtained by multiplying

the hazard ratios for each predictor. The

K-adaptive partitioning for survival (KAPS)

algorithm defined four groups of stratification

based on individual risk scores.

Results: Performance of the RSA was assessed

using Nagelkerke’s R2 test and Harrell’s concor-

dance index through Kaplan–Meier analysis of

OS data. Prognostic groups were successfully

defined based on real-world data. Use of a

multiplicative score based on Cox modeling

and KAPS to define cut-off values was effective.

Conclusion: Through innovative methods of

risk assessment and collaboration between

Enhanced Digital Features To view enhanced digital
features for this article go to: https://doi.org/10.6084/
m9.figshare.10028474.

Electronic supplementary material The online
version of this article (https://doi.org/10.1007/s40487-
019-00100-5) contains supplementary material, which is
available to authorized users.

W. Bouwmeester (&)
Pharmerit International, Rotterdam, The
Netherlands
e-mail: wbouwmeester@pharmerit.com

A. Briggs
Institute of Health and Wellbeing, University of
Glasgow, Glasgow, UK

B. van Hout
Department of Health Economics and Decision
Science, University of Sheffield, Sheffield, UK

R. Hájek
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physicians and statisticians, the RSA was cap-

able of stratifying patients at 2L treatment by

survival expectations. This approach can be

used to develop clinical decision-making tools

in other disease areas to improve patient

management.

Funding: Amgen Europe GmbH.

Keywords: Algorithm; Multiple myeloma;

Prognostic model; Risk; Survival

Key Summary Points

Defining the prognosis of patients with

multiple myeloma (MM) is increasingly

challenging, and validated prognostic

tools are needed in MM to standardize risk

stratification of patients and ultimately

improve risk assessment.

Existing algorithms for patients with MM

are based on patients with newly

diagnosed disease, and these have not

been validated in the relapsed setting or in

routine clinical practice.

A risk stratification algorithm (RSA) has

been developed for patients with MM at

initiation of second-line (2L) treatment,

based on data from the Czech Registry of

Monoclonal Gammopathies.

The RSA uses 16 predictors to stratify

patients with MM at 2L treatment into

four risk groups with profoundly different

survival expectations.

This approach can be used to develop

clinical decision-making tools in other

disease areas to improve patient

management.

INTRODUCTION

Statistical tools capable of predicting risk can

provide valuable information for healthcare

professionals and patients and can potentially

lead to improved outcomes. Widely used

examples that have influenced clinical practice

include the Kattan prostate cancer nomogram

[1], the PREDICT online assessment tool [2, 3],

and disease activity indices for systemic lupus

erythematosus (SLE) [4, 5]. Recently, a phase 3

trial has shown that a web-based risk assessment

tool, which used patient-reported symptoms

and was sent to the oncologist between sched-

uled visits, improved the rate of early detection

of relapse in patients with lung cancer, which in

turn led to significant increases in overall sur-

vival (OS) in patients who used the tool than in

those who did not [6].

Assessing the risk of death and predicting

survival outcomes for patients with complex

diseases can be challenging. Multiple myeloma

(MM) is a complex malignancy that is hetero-

geneous in prognosis, response to treatment,

and drivers of disease progression [7, 8]; despite

this, staging algorithms have been developed

for patients with newly diagnosed MM, such as

the International Staging System (ISS). Data

from more than 5000 patients were analyzed

using a survival tree model to produce the ISS, a

three-group staging system. The ISS is based on

levels of serum b-2 microglobulin (Sb2M) and

serum albumin [9]. In 2015, a revised ISS (R-ISS)

was published that used additional factors, such

as cytogenetic abnormalities (CA) and lactate

dehydrogenase (LDH) levels, to define the

extent of disease progression in patients with

newly diagnosed MM [10]. The R-ISS used a Cox

proportional hazards model and the K-adaptive

partitioning for survival (KAPS) algorithm to

define the thresholds associated with each of

the three disease stages [10, 11].

Despite recent advances in treatment, almost

all patients with newly diagnosed MM will

relapse eventually [12, 13]. Prognostic infor-

mation obtained during first-line (1L) treatment

could influence prognosis and treatment deci-

sion-making when patients are entering second-

line (2L) treatment [7]; indeed, it has been

shown that the predictors of OS can change

between the initiation of 1L and 2L treatments

[14]. Therefore, the first relapse is an important

time during which physicians need further evi-

dence of patient frailty and disease severity.

To date, none of the staging algorithms for

MM have been validated in the relapsed setting.

Herein, we describe the approach taken and
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statistical methods employed to develop a risk

stratification algorithm (RSA) specifically for

patients with MM initiating 2L treatment, and

we compare the performance of the RSA with

that of existing MM staging algorithms.

METHODS

Selection of a Suitable Data Source

The Czech Registry of Monoclonal Gam-

mopathies (RMG) is one of the largest of its kind

and contains data on a substantial number of

patients with MM initiating 2L treatment [15],

as well as mature OS data and information on a

large number of parameters [15]. This RSA was

developed using validated and quality-con-

trolled data that were collected between May

2007 and April 2016. Informed consent was

granted in the original study of the RMG [15].

The data in this study are based on a previously

conducted study, and informed consent was

granted in the original study. Each center con-

tributing to the registry received approval by an

Institutional Review Board/Independent Ethics

Committee (IRB/IEC). Further information on

the ethical approval is detailed in the original

study.

Eligibility Criteria

The RSA included individuals aged C 18 years

who were given one or more doses of anti-

myeloma treatment after first relapse. Eligibility

for stem cell transplantation was not consid-

ered. Patients who died or were lost to follow-up

before initiating 2L treatment were excluded

from the analysis.

Development Strategy

Step 1: Selection of Candidate Predictors of OS

at the Initiation of 2L Treatment

Predictors of OS (Table 1) were identified by

literature analysis and by the findings from a

conceptual model of MM progression, which

was defined by a Delphi process involving

leading experts in MM [16, 17].

Step 2: Defining Parameters to Reflect Clinical

Relevance

Splitting predictors into categories can lead to

the omission of important information [18];

non-categorical variables were treated as con-

tinuous whenever possible. Martingale residuals

and restricted cubic splines were used to model

the relationships between continuous variables

and the risk of death. Fractional polynomials

and restricted cubic splines were used to assess

the shape of the associations between non-lin-

ear variables and risk of death. These methods

provide more flexible descriptions of the non-

linearity of continuous variables than other

procedures [19]. Current literature does not

contain data describing the shape of the rela-

tionships between prognostic factors and OS in

patients with MM. Therefore, the form of the

modeled associations between continuous vari-

ables and OS was reviewed by experts in MM to

assess whether the shape of the relationships

between prognostic factors and OS demon-

strated clinically meaningful associations.

Step 3: Imputation of Missing Values

Missing data for all but one of the parameters

(CA at diagnosis) were added through multiple

imputation by chained equations (using MICE,

a software package in R) to provide full data sets

for all patients in the RMG [20, 21]. Given that

data on CA are not routinely collected, a dif-

ferent imputation method was required that

would allow the risk of death associated with

not having CA data to be captured in the RSA.

An indicator method was selected in which

missing observations were set to a fixed value,

and an extra dummy variable was added to

indicate whether the value for that variable was

missing. However, patients who were lost to

follow-up and those who had not died after

initiation of 2L treatment were censored, and

dates of death were not estimated in the

imputation.

Five data sets were generated from the

relapsed/refractory population of the RMG

using an imputation algorithm. The selected

predictors and predictor effects on OS were

generally similar across data sets; however,

there is limited information in the literature on

methods for pooling the results of (backward)
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predictor selection from multiple imputed data

sets [22, 23]. Therefore, the third imputed data

set was chosen at random and used for devel-

opment of the optimized RSA.

Step 4: Selecting Independent Predictors of OS

Covariates that correlated strongly with other

candidate predictors (Pearson’s correlation

coefficient[0.40) were excluded. Backward

selection was used in combination with clinical

judgement for accurate prognostic model

building. Clinical judgement via a Delphi

process was used to preselect predictors before

backward selection and to validate the model

[17]. Backward selection was then performed in

which multivariable Cox regression models

were fitted with OS as the dependent variable,

with the predictors that emerged from Pearson’s

test as independent variables. The Akaike

information criterion was used to select

parameters for the RSA; however, studies have

demonstrated that automated statistical pre-

dictor selection can exclude parameters that are

known to have a strong independent effect on

Table 1 Candidate predictors of overall survival from initiation of 2L treatment

Age at 2La Treatment received in 1L

Sb2M at diagnosis Best response to 1L treatment

Sb2M at 2La Bone marrow plasma cell count at 2L

M-protein level at 2L Calcium level at 2L

Nature of relapse at 2L Cytogenetic abnormalitiesb at diagnosisa

New bone lesions at 2L Creatinine level at 2L

Neuropathy during 1L Duration of response in 1L

Refractory to 1L regimensa,c ECOG PS at 2La

Serum albumin level at diagnosis Extramedullary disease at 2L

Serum albumin level at 2L Hemoglobin level at 2L

Severe toxicities during 1L Infection during 1L treatment

SCT status at 2L LDH level at diagnosis

Thrombocyte count at 2L LDH level at 2La

Time to initiation of 2L treatmentd Time since diagnosis at 2L

Time to progression at 2Le

Predictors retained in the model are marked in bold text
1L First-line, 2L second-line, ECOG PS Eastern Cooperative Oncology Group performance status, LDH lactate dehy-
drogenase, Sb2M serum b-2 microglobulin, SCT stem cell transplantation
a To be included in the model regardless of statistical significance
b High-risk cytogenetic abnormalities were defined as the presence of del(17p) and/or t(4:14) and/or (14;16) and were
based on fluorescence in situ hybridization (FISH), with plasma cell selection
c Refractory to the 1L regimen status was defined as being either non-refractory, refractory to thalidomide, or refractory
regimens with new agents (comprising bortezomib ? thalidomide (n = 21), lenalidomide only (n = 20), bortezomib ?

lenalidomide (n = 2) and lenalidomide ? thalidomide (n = 1)
d To be included in the model regardless of statistical significance if time to progression was excluded by backward selection
e To be included in the model regardless of statistical significance if time to initiation of 2L treatment was excluded by
backward selection
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survival [18]. To prevent the omission of key

variables, a group of predictors with acknowl-

edged links to survival in patients with MM was

included in the model regardless of statistical

significance (Table 1).

Step 5: Calculating Patient-Specific Risk Scores

Risk scores were calculated for each individual

patient for each of the selected predictors. For

categorical variables, the hazard ratio (HR)

belonging to the patient-specific value was

used; for continuous variables, the log HR (b)

multiplied by the patient-specific value was

used (exp[b 9 patient value]). The resulting

predictor-specific risk scores were multiplied

with each other to produce a total risk score for

each patient. The resulting patient-specific total

risk score is continuous and can be interpreted

as the relative risk of death for a given patient

compared with a theoretical patient who has

the lowest predictor value for each parameter. It

is of note that baseline hazards were not relied

upon to derive the individual risk scores for the

RSA.

Step 6: Defining Risk Stratification Using

Patient-Specific Risk Score

A KAPS algorithm was used to define the risk

score boundaries between groups that would

provide statistically significantly differences in

OS for the RSA [11].

Step 7: Measuring the Performance of Cox

Models and Risk Stratification

Performance of the optimized RSA Cox model,

and the ISS and R-ISS Cox models, when applied

to the RMG data set, was assessed using

Nagelkerke’s R2 test, Harrell’s concordance

index (C-index), and integrated discriminations

improvement (IDI) [24]. Given that the opti-

mized RSA was derived from the same data set

in which it was tested, results for Nagelkerke’s

R2 test, the C-index and IDI data were adjusted

for optimism by bootstrapping [25]; the ISS and

R-ISS were developed using different data sets.

The RSA was designed to predict survival

from the initiation of 2L treatment; therefore,

the treatment regimen used after stratification

was not considered as a predictor. We assumed

that each patient would receive the best possi-

ble therapy, meaning that future treatment

should not bias the association of the predictors

with the outcome. This assumption should

have been tested using marginal structural

models; however, these were not feasible in the

development data set. Nevertheless, based on

the similar outcomes achieved by each regimen

within risk groups, we believe that the

assumption holds.

The optimized RSA, the ISS, and the R-ISS

were evaluated in the RMG data set using

Kaplan–Meier curves and HRs for OS from the

initiation of 2L treatment. P values for statistical

significance were obtained for HRs for OS and

for comparisons of OS between groups using the

log-rank test.

RESULTS

Patients

The RMG contained data on 1418 eligible

patients with MM who had begun 2L therapy.

Details on prior therapy have been reported

previously [26]. The longest duration of follow-

up was 103 months, and the median follow-up

(considering censoring for mortality) was 27.6

(95% confidence interval [CI] 25.1–30.1)

months. Details of baseline characteristics of

patients have been reported previously [26].

Identification and Coding of Candidate

Predictors

Twenty-nine candidate predictors were identi-

fied by literature searches and by the conceptual

model (Table 1). Parameters such as the pres-

ence of extramedullary disease or Eastern

Cooperative Oncology Group performance sta-

tus at the initiation of 2L treatment are cate-

gorical in nature and were treated as such in the

RSA (Table 2). Our intention was that none of

the continuous variables would be categorized

or dichotomized in the optimized RSA, but this

was considered to be inaccurate in some cases.

For example, the measurement of LDH levels is

subject to considerable variation among

Oncol Ther (2019) 7:141–157 145



Table 2 Cox models showing selected predictors of overall survival in the risk stratification algorithm

Predictor of OSa

(at initiation of 2L
unless
stated otherwise)

Classification
of predictor

Categories/
thresholds

Backward selection,
HR (95% CI)
AIC = 9172.275

p value

Age, years Fully continuous NA 1.015 (1.007–1.023)f 0.0002

Albumin, g/dL Fully continuous NA 0.846 (0.745–0.960)f 0.0095

Bone marrow plasma cell

count, %

Fully continuous NA 1.008 (1.005–1.011)f \ 0.0001

Thrombocyte

count, 9 109

cells/L

Continuous with threshold (150 9 109 cells) 0.995 (0.992–0.997)f \ 0.0001

Sb2 M, mg/L Continuous with threshold (5.5 mg/L) 1.063 (0.993–1.138)f 0.0787

Sb2M at diagnosis, mg/L Continuous with threshold (5.5 mg/L) 1.090 (1.022–1.162)f 0.0084

LDH, U/L Continuous with clinically

established cut-off

B ULN Reference

[ULN 2.080 (1.651–2.622) \ 0.0001

LDH at diagnosis, U/L Continuous with clinically

established cut-off

B 360c Reference

[ 360 1.297 (0.960–1.752) 0.0904

Calcium, mmol/L Continuous with clinically

established cut-off

B 2.75 Reference

[ 2.75 1.406 (1.012–1.954) 0.0422

Time to next treatment,

months

Continuous with clinically

established cut-off

[ 24 Reference

B 24 1.112 (0.915–1.353) 0.2858

ECOG PS Categorical 0 Reference

1 1.667 (1.227–2.265) 0.0011

2 2.123 (1.520–2.964) \ 0.0001

3 or 4 3.708 (2.496–5.506) \ 0.0001

Cytogenetic

abnormalitiesb

at diagnosis

Categorical Standard risk Reference

High risk 1.643 (1.147–2.353) 0.0067

NA 1.081 (0.789–1.481) 0.6299

Extramedullary disease Categorical No Reference

Yes 2.331 (1.872–2.904) \ 0.0001

New bone lesions (X-ray) Categorical No new lesions Reference

[ 2 at diagnosis and

initiation

of 2Ld or new lesions

1.271 (1.075–1.502) 0.0049
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laboratories. Consequently, LDH could not be

regarded as a continuous parameter and was

treated as a binary variable for which the refer-

ence categories and high-risk categories were

below and above the upper limit of normal,

respectively. Analysis of the curves plotted to

show the relationships between the remaining

continuous variables and OS, using restricted

cubic splines (Fig. 1), highlighted that some of

the other continuous parameters could not be

treated as such in the model. The plot for time

to initiation of 2L treatment against OS (Fig. 1)

appeared to show that risk of death initially

increased as time to initiation of 2L treatment

increased; this was counterintuitive, and expert

opinion suggested that the spike in the curve

was not clinically meaningful. To ensure that

the HR associated with time to initiation of 2L

treatment was clinically meaningful, this

variable was dichotomized ([ 24 months

and C 24 months). When serum calcium level

was treated as a fully continuous variable, the

slope for risk of death continued to rise into the

normal range (2.20–2.75 mmol/L) (Fig. 1).

Experts advised that this did not reflect clinical

observations and that patients with calcium

levels in this range would not be regarded as

having an increased risk of death when initiat-

ing 2L treatment for MM. Calcium level was,

therefore, dichotomized and described in terms

of the presence or absence of hypercalcemia

(defined as calcium levels[ 2.75 mmol/L).

When measured at the initiation of 2L

treatment, age and serum albumin both exhib-

ited a linear relationship with risk of death

(Fig. 1). However, bone marrow plasma cell

count, thrombocyte count, and Sb2M (both at

diagnosis and at the initiation of 2L treatment,

Table 2 continued

Predictor of OSa

(at initiation of 2L unless
stated otherwise)

Classification
of predictor

Categories/
thresholds

Backward
selection,
HR (95% CI)
AIC = 9172.275

p value

Refractory status Categorical Non-refractory Reference

Refractory to

bortezomib

1.533

(1.202–1.955)

0.0006

Refractory to

thalidomide

1.186

(0.942–1.493)

0.1446

Refractory regimens

with new agentse
1.427

(0.961–2.120)

0.0776

Severe toxicities during 1L treatment

(any grade 3 or 4 toxicity)

Categorical No Reference

Yes 1.145

(0.984–1.332)

0.0797

AIC Akaike information criterion, CI confidence interval, HR hazard ratio; NA not applicable; OS, overall survival; RSA,
risk stratification algorithm; ULN, upper limit of normal
a At the initiation of 2L treatment unless otherwise stated
b High-risk cytogenetic abnormalities was defined as the presence of del(17p) and/or t(4:14) and/or (14;16) and were based
on FISH, with plasma cell selection
c ULN was 360 U/L in this data set
d Category comprises patients with accelerated osteoporosis/[ 2 lesions at diagnosis and 2L treatment
e Comprising bortezomib ? thalidomide (n = 21), lenalidomide only (n = 20), bortezomib ? lenalidomide (n = 2) and
lenalidomide ? thalidomide (n = 1)
f HR per unit change
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Fig. 1 Shape of the association of continuous predictors with overall survival, modeled using restricted cubic splines (three
knots). 2L Second-line, BM bone marrow, HR hazard ratio, Sb2M serum b-2 microglobulin
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unless specified otherwise) exhibited a non-lin-

ear relationship (Fig. 1). Bone marrow plasma

cell count proved difficult to evaluate non-lin-

early because values up to 10% were recorded as

0% in the data; therefore, linearity was

assumed, and bone marrow plasma cell count

was coded as fully continuous. We investigated

the use of three- or four-knot restrictive cubic

splines and fractional polynomials to define

curve shapes that would allow HRs to be

assigned for thrombocyte count and Sb2M.

Various fractional polynomial transformations

of each variable (x) were considered, including

xp in which p was set at - 2, - 1, - 0.5, 0 (i.e.

log[x]), 0.5, 1, 2 or 3. The functional form for

Sb2M and thrombocyte count was chosen using

a modified backward selection process that

identified the transformation with the best fit to

the data. Fractional polynomials gave the best

fit from a clinical standpoint, and this method

was used to define the curve shape for Sb2M

(p set at 2) and thrombocyte count (p set at

- 0.5) (Electronic Supplementary Material

[ESM] Fig. S1). When cubic splines were applied

to Sb2M level or thrombocyte count, a decline

in risk was suggested for extreme values com-

pared with elevated values (10 vs. 5–6 mg/L for

Sb2M;[400 9 109 vs. 300 9 109 cells/L for

thrombocyte count); however, the confidence

intervals (CIs) indicated a high degree of

uncertainty around the area of decline (Fig. 1).

The ultimate objective when developing the

RSA was to create a tool that could be used in

the clinical setting. The mathematical transfor-

mations required to derive the HRs for Sb2M

and thrombocyte count were deemed to be too

complex for clinical use, and a more practical

solution was sought. The curve shapes gener-

ated by the application of fractional polynomi-

als featured distinct gradient and plateau

regions. Based on these curve shapes, threshold

values at which the risk of death remained

constant could be defined using the devised

variable methods (Fig. 2) [27]. The curve for

Sb2M suggested a threshold of approximately

5.5 mg/L (Fig. 2), which was consistent with the

value used in the ISS and R-ISS, as well as with

expert opinion [9, 10]. No such clinically

established threshold exists for thrombocyte

count, but risk of death appeared to plateau

between 150 9 109 and 200 9 109 cells/L; any

value above this range can be considered to be a

normal count. Experts agreed that any value in

the plateau region would be in line with clinical

observations; therefore, to identify the opti-

mum cut-off, Cox models were run with the

threshold value set at various points within this

range. The best fit was observed when the

threshold level was 150 9 109 cells/L, and this

value was used in the optimized RSA.

Independent Predictors of OS

from the Initiation of 2L Treatment

Following elimination of parameters that cor-

related strongly with other candidate predictors

in the model and a backward selection process,

16 independent predictors of OS (at initiation of

2L unless stated otherwise) were identified

(Table 2). Of the variables that were pre-speci-

fied to be included in the RSA regardless of

statistical significance (Table 1), only time to

initiation of 2L treatment was forced into the

model. The calculation formula to measure risk

score is included in the Appendix in the ESM.

Cox Model Performance

The Nagelkerke’s R2 test score, which was

adjusted for optimism, was 0.23 for the opti-

mized RSA Cox model (possible scores range

between 0 and 1), and the C-index was 0.72 (a

perfectly discriminating model would have a

score of 1; a good discriminating model would

have a score of[0.70) (Table 3) [28].

Comparison of RSA Cox Model with ISS

and R-ISS

When analyzed in the RMG data set, the opti-

mized RSA Cox model outperformed the ISS and

R-ISS Cox models as measured by Nagelkerke’s

R2 test and C-index. The scores in the Nagelk-

erke’s R2 test for the optimized RSA model (ad-

justed for optimism), R-ISS, and ISS (not

adjusted for optimism) are described in Table 3;

the C-indices were 0.72, 0.60, and 0.59, respec-

tively (Table 3).
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Fig. 2 Shape of the association of Sb2M (a, b) and
thrombocyte count (c) with overall survival as used in
calculating the risk score in the algorithm. Thrombocyte

count was measured at initiation of 2L treatment at which
the risk of death remains constant, based on curves derived
from fractional polynomials
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Table 3 Performance measures of Cox models for risk stratification algorithm, the International Staging System (ISS) and
the revised ISS

Performance measures Estimatea,b RSA ISS R-ISS

Nagelkerke’s R2 test Original 0.2408 0.0463 0.0801

Adjusting for optimism 0.2269 0.0443 0.0683

C-index Original 0.7316 0.5872 0.6014

Adjusting for optimism 0.7234 0.5872 0.5999

IDI—1 year IDIa New 0.1256 0.1704

IDIb 0.1197 0.1475

95% CIb 0.1009–0.1384 0.0955–0.1994

Increase for eventsb,c 0.0599 0.0519

Decrease for non-eventsb,d 0.0597 0.0956

IDI—2 years IDIa New 0.1564 0.1641

IDIb 0.1480 0.1318

95% CIb 0.1239–0.1720 0.0670–0.1967

Increase for eventsb,c 0.0683 0.0753

Decrease for non-eventsb,d 0.0797 0.0565

IDI—3 years IDIa New 0.1626 0.1426

IDIb 0.1533 0.1092

95% CIb 0.1235–0.1832 0.0155–0.2028

Increase for eventsb,c 0.0601 0.0874

Decrease for non-eventsb,d 0.0933 0.0217

IDI—4 years IDIa New 0.1786 0.1648

IDIb 0.1700 0.1429

95% CIb 0.1365–0.2035 0.0491–0.2367

Increase for eventsb,c 0.0492 0.0456

Decrease for non-eventsb,d 0.1207 0.0973

IDI—5 years IDIa New 0.1708 0.0557

IDIb 0.1629 NAe

95% CIb 0.1164–0.2093

Increase for eventsb,c 0.0403

Decrease for non-eventsb,d 0.1226
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Comparison of RSA Stratification

with that of Existing Risk Algorithms

The performance of the RSA in the RMG data set

was compared with that of the ISS and R-ISS

(Fig. 3). Overlaps were observed in the 95% CIs

for the HRs describing differences in OS

between patients at each of the three ISS-de-

fined disease stages, and a similar pattern was

observed for the R-ISS. However, this was not

the case with the RSA, despite the higher

number of subgroups.

DISCUSSION

We have developed an RSA that is capable of

stratifying patients with MM who have relapsed

and are initiating 2L treatment into four risk

groups with distinct survival expectations.

Multivariable modeling, coupled with guidance

from leading experts in the field, was used to

identify the strongest predictors of OS. Similar

approaches were used to develop the Kattan

prostate cancer nomogram [1], the PREDICT

breast cancer tool [3], the SLE disease activity

indices [4], and the R-ISS [10].

The RSA methodology differs from other risk

assessment tools in the way that risk scores are

calculated. In the RSA, risk scores are calculated

by multiplying the HRs for each predictor; in

comparison, the PREDICT tool, for example,

calculates the prognostic index for each patient

based on the sum of the weighted scores allo-

cated to each of the predictors [3]. Multiplica-

tive scoring is a more robust method for risk

stratification than the commonly used pre-

dicted probabilities because the scores do not

rely on the estimation of a baseline hazard. The

baseline hazard often varies across populations,

resulting in a low accuracy of risk stratification

based on predicted probabilities [29, 30].

The RSA also uses a unique approach for

stratifying patients. The R-ISS was developed

using a KAPS algorithm to match patients with

similar survival expectations with combinations

of predictor variables [10]. In the RSA, KAPS was

used to stratify individual patients according to

Table 3 continued

Performance measures Estimatea,b RSA ISS R-ISS

IDI—6 years IDIa New 0.1461 0.0561

IDIb 0.1390 NAe

95% CIb 0.0738–0.2041

Increase for eventsb,c 0.0316

Decrease for non-eventsb,d 0.1074

C-index Harrell’s concordance index, IDI Integrated discriminations improvement, ISS International Staging System, R-ISS
revised International Staging System, RSA risk stratification algorithm
The IDI considers actual change in calculated risk for individuals separately: those with and without events. The IDI is the
total of IDIevents and IDInon-events (where IDIevents is the difference between the mean of the new and reference model risk
probability for those with the event. Similarly, IDInon-events is the difference in mean probability for those without an event
between reference and new models)
a Original refers to measure calculated using the model fitted to the original data and evaluated on the original data
b Adjusting for optimism refers to measures adjusted for optimism as described in Harrell [28] with number of bootstrap
samples = 1000
c Increase for events = pnew

event
- pold

event; new = RSA continuous; old = model specified in header of the respective column;
p = 1 - probability of surviving
d Decrease for non-events = - (pnew

non-event
- pold

non-event); new = RSA continuous; old = model specified in header of the
respective column; p = 1 - probability of surviving
e Low number of patients without event resulting in zero number of patients without event in one of the bootstrap samples
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Fig. 3 Kaplan–Meier curves and statistics for overall
survival (OS) from initiation of 2L treatment stratified
by risk group by the optimized risk stratification algorithm

(RSA), International Staging System (ISS), and revised ISS
(R-ISS). CI Confidence interval, NE not able to be
evaluated

Oncol Ther (2019) 7:141–157 153



their total multiplicative risk score, which

allowed information on several parameters to

be included and the granular nature of contin-

uous variables to be captured.

Many algorithms categorize continuous

variables, and this is the approach that was

followed first; however, a body of evidence

exists to suggest that the categorization of

continuous variables can compromise the

accuracy of predictive models [19, 31]. Treating

the non-categorical parameters as fully contin-

uous variables [1, 3] produced a more accurate

picture of the drivers of disease progression for

patients with MM initiating 2L treatment than a

model in which all variables were categorized.

However, some continuous predictors did not

exhibit a linear relationship with risk of death,

and HRs per unit for Sb2M and thrombocyte

count were derived after variables were trans-

formed mathematically, and these were sup-

ported by expert opinion on the clinical

appropriateness of the thresholds. Defining

threshold values above which the HR remained

constant provided the best balance of statistical

accuracy and clinical utility. This approach

allowed us to account for the plateaus in risk of

death observed with variations in Sb2 M con-

centration and thrombocyte count.

Missing values in the data set were handled

through multiple imputation and the indicator

method, enabling the algorithm to be used in

patients for whom data for all predictive

parameters were not available, including those

for whom there were no CA data. In contrast,

the R-ISS and many other staging and predictive

algorithms are not designed to cope with miss-

ing data. In practice, many patients with MM do

not get tested for high-risk CA and, as a result,

cannot be staged using the R-ISS algorithm.

When assessed in patients with MM initiat-

ing 2L treatment, the Cox model developed for

the optimized RSA performed better than the

ISS or R-ISS Cox models, as measured using

Nagelkerke’s R2 test, the C-index, and IDI. Fur-

thermore, a Kaplan–Meier analysis of OS data

from the initiation of 2L treatment illustrated

that, in the Czech RMG data set, the optimized

RSA stratified patients at first relapse, according

to risk of death, more accurately than either the

ISS or R-ISS.

The RSA methodology has some limitations.

First, while backward selection is a common,

validated method in prognostic model building,

it is somewhat limited by the fact that all vari-

ables must be selected based on clinical signifi-

cance, which can be generally challenging to

assess. Second, further exploration is required to

optimize predictor selection methods when

analyzing multiple imputed data sets. Only one

imputed data set, selected at random, was used,

and this data set was employed to check for

consistency in the other four data sets. Finally,

the patient-specific scores were compared with

those of a theoretical patient who had the

lowest predictor value for each parameter.

Future work could include measurement of the

patient-specific score relative to normal labora-

tory values as baseline values.

Risk group definitions were derived using the

KAPS algorithm only. A mechanism that factors

in expert opinion when defining the boundaries

among risk groups may enhance the clinical

utility of the RSA. Comparisons between the

performance of the optimized RSA and R-ISS

were limited by the number of patients who

were able to be evaluated using R-ISS; only 300

of the 1418 patients in the RMG initiating 2L

treatment could be staged using the R-ISS owing

to the lack of CA data. It must also be

acknowledged that the comparison analysis

between the optimized RSA and ISS and R-ISS

has some limitations as, even though the ISS

and R-ISS are often used in trials in relapsed/

refractory setting, the ISS and R-ISS were not

developed for 2L therapy and have previously

not been validated in the relapsed setting.

The RSA was developed and tested using data

from one country only (Czech Republic). Sev-

eral factors are likely to cause regional varia-

tions in survival outcomes for patients with MM

initiating 2L treatment. Indeed, real-world

studies have shown that treatment patterns and

outcomes for patients with MM vary across

European countries [7, 32]; therefore, the tool

has been validated using data sets from France,

Germany and the UK in further studies (Hájek

et al., in preparation).
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CONCLUSIONS

In conclusion, we have developed an RSA to

assess patients with MM at first relapse and to

stratify them into groups with different survival

expectations. Once fully validated, this algo-

rithm may provide a framework to assist

physicians with making treatment decisions

according to survival expectations for patients

with MM who are initiating 2L treatment. The

methodology designed for the construction of

this algorithm has the potential to have wide-

reaching applications and could be used to

create algorithms that predict risk in other dis-

eases that influence survival.
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