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ABSTRACT 

Current conservation planning tends to focus on protecting species ranges or landscape 

connectivity but seldom both – particularly in the case of diverse taxonomic assemblages and 

multiple planning goals. Therefore we lack information on potential tradeoffs between 

maintaining landscape connectivity and achieving other conservation objectives. Here we 

develop a prioritization approach to protect species ranges, different ecosystem types, and 

forest carbon stocks, while also incorporating dispersal corridors to link existing protected 

areas and habitat connectivity for protection of range-shifting species. We apply our 

framework to Sabah, Malaysia, where the State Government has mandated an increase in 

protected area coverage of ~305,000 ha but without having specified where the new protected 

areas will be. Compared to conservation planning that does not explicitly account for 

connectivity, our approach increased the protection of dispersal corridors and elevational 
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connectivity by 13% and 21%, respectively, while decreasing the coverage of other 

conservation features by 0% (vertebrate and plant species ranges; forest types), 2% (forest 

carbon), and 3% (butterfly species ranges). Hence, large increases in the protection of 

landscape connectivity can be achieved with minimal loss of representation of other 

conservation targets.  

 

 

INTRODUCTION 

Protected areas are critical but insufficient for mitigating the impacts of habitat loss, which is 

the principal threat to global biodiversity (Laurance et al. 2012; Gray et al. 2016). In 2010, 

signatories to the Convention on Biology Diversity adopted a commitment to protect 17% of 

global land and inland sea surface area by 2020 (known as Aichi Biodiversity Target 11). As 

of July 2018, the coverage of terrestrial protected areas had reached 14.9%, which implies 

that achieving the target requires an additional ~2.8 million km
2
 of protected areas globally 

by 2020 (UNEP-WCMC 2018). Locating new protected areas in the lowland tropics, and 

especially in Southeast Asia, would contribute disproportionately to global biodiversity 

conservation through avoided deforestation in biodiversity hotspots (Myers et al. 2000). 

Determining the most important areas for additional conservation measures requires 

prioritizing multiple objectives. Many conservation plans have sought to maximize the 

representation of species ranges (Pressey et al. 2007). Indeed, powerful and widely-used 

prioritization tools such as Marxan (Ball & Possingham 2000) and Zonation (Moilanen 2007) 

have helped planners optimize the selection of new conservation areas on every continent 

(Sinclair et al. 2018). Other prioritization plans have explicitly focused on landscape 

connectivity (e.g. Gordon et al. 2009; Lehtomäki et al. 2009; Sirkiä et al. 2012), as this is 

known to affect metapopulation persistence (Fahrig & Merriam 1994; Hanski & Ovaskainen 
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2000), the supply of ecosystem services (Kukkala & Moilanen 2017), and organisms’ 

adaptive capacities in the face of climate change (Scriven et al. 2015; Reside et al. 2017). The 

technical capacity for assessing connectivity and determining optimal locations for habitat 

corridors is growing rapidly (e.g. Lehtomäki & Moilanen 2013; Pouzols & Moilanen 2014; 

Brodie et al. 2016; Daigle et al. 2018).  

Far fewer conservation plans, however, have attempted to simultaneously optimize 

landscape connectivity and the representation of multiple conservation features (Reside et al. 

2017; Harlio et al. 2019), particularly for multi-species assemblages, over large landscapes, 

and in the context of diverse planning goals (Magris et al. 2018). Simultaneously accounting 

for both representation of conservation features and connectivity increased the predicted 

average population size of Mediterranean fishes by ~66% (Magris et al. 2018) and the 

average metapopulation capacity (a proxy for population persistence) of Australasian 

mammals by 5-fold (Strimas‐ Mackey & Brodie 2018). But jointly optimizing connectivity 

and representation has seldom been attempted with more diverse taxonomic assemblages and 

multiple conservation objectives (e.g., species ranges, ecosystem services, habitat types).  

Moreover, existing approaches to incorporating connectivity into conservation 

planning tend to focus on single aspects of connectivity. For example, corridors may be 

identified so as to maintain dispersal among habitat patches and thereby enhance 

metapopulation stability (Fahrig & Merriam 1994; Hanski & Ovaskainen 2000), or to provide 

movement routes by which organisms can shift their distributions in response to climate 

change (Scriven et al. 2015; Reside et al. 2017). However, simultaneously incorporating the 

different facets of connectivity into planning has been done much more rarely (Moilanen & 

Wintle 2007; Lehtomäki et al. 2009), despite each facet being critical to long-term 

persistence of species in dynamic landscapes.  
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Multi-faceted conservation optimization always has the potential to involve tradeoffs. 

Trying to protect one conservation feature can decrease protection of another feature that is 

uncorrelated or negatively correlated with the first. The inclusion of connectivity in spatial 

prioritization involved relatively small tradeoffs with habitat quality in a semi-arid grassland 

site in Europe (Harlio et al. 2019) and with estimated current and future species ranges of 

tropical vertebrates in Australia (Reside et al. 2017). But we have little understanding of 

connectivity tradeoffs in prioritization analyses involving more diverse taxa and conservation 

objectives. For example, it remains important to assess how the addition of connectivity to 

multi-objective spatial planning in complex systems would affect the areal representation of 

species ranges, habitat types, and ecosystem services. Indeed, the lack of evaluations of 

connectivity in the context of complex, multi-faceted spatial conservation planning may have 

contributed to the only slight improvements in landscape connectivity that have accompanied 

recent increases in the coverage of protected areas (Saura et al. 2018).  

Here we designed an analysis to simultaneously prioritize species ranges, ecosystem 

services (aboveground forest carbon storage), and two types of landscape connectivity. We 

then assessed whether the inclusion of connectivity compromised the achievement of the 

other conservation objectives. Our approach explicitly incorporated (i) specific locations of 

dispersal corridors based on animal movement models and (ii) connectivity of habitat along 

elevational gradients to enhance climate change resiliency and facilitate species range-

shifting. We applied this prioritization approach to recommend new areas for protection of 

rainforest in the state of Sabah in Malaysian Borneo, where the state government has 

mandated an increase in the coverage of terrestrial Totally Protected Areas (TPAs; e.g., State 

Parks or Class 1 Forest Reserves) of ~305,000 ha. The locations of the forest areas to be 

designated for protection have not yet been chosen, and here we present the analytical 

method that we developed to aid the Sabah Forestry Department in this decision making.  
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METHODS  

Study system and objectives 

Sabah is in the north of Borneo, which is a global biodiversity hotspot based on high levels of 

endemism and rapid land conversion (Myers et al. 2000). Rates of land use change in this 

region have been among the fastest in the world (Langner et al. 2007; Miettinen et al. 2011), 

often driven by the expansion of industrial-scale tree and agricultural (mainly oil palm) 

plantations (Gaveau et al. 2018). Until the 1970s, most of Borneo was covered by primary 

rainforest (Bradshaw et al. 2009); by 2010, just over 50% of the island remained forested, 

with much of that commercially selectively logged and fragmented (Gaveau et al. 2014). The 

Sabah Forest Policy directives call for an increase in the coverage of terrestrial TPAs to 30% 

by the year 2025 (SFD 2018), requiring a minimum of 304,708 ha of additional land area to 

be protected. For our conservation planning exercise, we were asked by the Sabah Forestry 

Department to prioritize 410,000 ha for protection, as this would allow decision-makers 

flexibility in choosing the final configuration of new TPAs. 

 Within the study area, we restricted our analysis to mainland Sabah in areas with 

forest cover (Fig. 1; Appendix S1). We determined the remaining forested area of Sabah, 

excluding mangroves, by applying a threshold of 40 Mg ha
-1

 of aboveground forest carbon, as 

determined from a recent high-resolution mapping study (Asner et al. 2018). This followed 

similar forest delineation guidelines used elsewhere (Rosoman et al. 2017) and was selected 

to be low enough to include areas of minimally degraded forest capable of regeneration, 

whilst excluding most oil palm and short-rotation tree plantations.  

We employed a conservation planning framework with three underlying objectives. 

First, we aimed to ensure that the areas of forest recommended for protection covered 

distributional ranges for a variety of taxa for which such data were available – plants, 
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butterflies, and several vertebrate groups (amphibians, birds and mammals). We included 

only restricted-range or threatened species to ensure that we prioritized species of highest 

conservation value; overall we included 149 range-restricted plants (trees, shrubs and 

orchids), 77 range-restricted butterflies, and 83 threatened vertebrates (IUCN status of 

Vulnerable, Endangered, or Critically Endangered; Appendix S2).  

Our second objective was to ensure that landscape connectivity was conserved. 

Landscape connectivity was measured in two different ways, reflecting its different 

ecological benefits. First, we sought to protect forest areas that provide linkage between 

existing TPAs, specifically allowing for regular population exchange of highly mobile 

species, for example clouded leopards (Neofelis diardi) (hereafter, dispersal corridors). 

Second, we aimed to conserve forest areas that spanned elevational gradients between TPAs 

so as to provide range shifting routes for less mobile species (e.g., a forest dependent 

butterfly) in the face of climate change (hereafter, elevational connectivity).  

Our final objective was to maximize representation of different forest types 

(excluding mangroves and beach forest), as a proxy for facets of biodiversity that we did not 

capture with our species ranges, and to protect forest areas that store particularly large 

amounts of aboveground carbon, so as to contribute to state and national commitments to 

climate change mitigation. For forest types, we used data from the Sabah Forest Research 

Centre with a classification of the state’s forest types based on the pre-development spatial 

distribution of each. The 22 forest types (Appendix S3) were distinguished by species groups, 

edaphic characteristics, and land formations. Details of the different types of feature layers 

(species ranges, dispersal corridors, elevational connectivity, forest type, and aboveground 

carbon) are provided in the online Supplementary Material (Appendix S1). 
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Estimation of connectivity 

To determine the location of dispersal corridors, we simulated the movements of individuals 

across the landscape using correlated random walk models to identify forest areas that may be 

the most important for animal movement between existing TPAs. Within these simulations, 

we incorporated biologically-relevant parameters to generate movement scenarios commonly 

associated with transit or dispersal as exhibited by wide-ranging mammals and birds. We 

varied starting locations within areas of high-quality forest habitat as well as the resistance to 

movement through suboptimal habitat (non-forested areas). This technique estimated the flow 

of dispersers across all potential corridors on the landscape, or the ‘centrality’ of each linkage 

(Brodie et al. 2016). We weighted each landscape unit according to its spatial position 

relative to its two nearest TPAs as well as the size of the TPAs – previous research in the 

system has suggested that short corridors linking two large habitat patches are the most 

important to metapopulation persistence (Brodie et al. 2016). The output value from the 

movement simulations was the total use of each cell in the landscape by all dispersing 

individuals that successfully reached a new habitat patch. The most important corridors were 

then generated by iteratively selecting the highest value cells across the landscape until a 

corridor across the landscape was reached. By integrating animal movement and location 

weighting, we generated a connectivity metric that incorporates movement stochasticity and 

metapopulation dynamics to identify corridors of contiguous planning units (see Appendix S1 

for more details). 

To assess elevational connectivity, we used ‘Condatis’ models (Hodgson et al. 2012), 

based on circuit and metapopulation theories, to identify the most important forested areas 

connecting each lowland (source) TPA to higher elevation (target) TPA grid-cells: those that 

would have equal or lower mean annual temperature in 2061-2080 (based on Relative 

Concentration Pathway 8.5, the ‘business as usual’ emissions scenario) than the source TPA’s 
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current mean annual temperature. Identifying the most important forest areas was achieved 

by progressively dropping unprotected forest from the landscape (Hodgson et al. 2016) and 

monitoring the decline in the conductance between the source and target TPAs, which 

indicated the rate at which organisms could cross the landscape (see Appendix S1 for more 

details). 

 

Conservation prioritization 

Our framework employed systematic conservation planning using integer linear 

programming based on specified objectives, input conservation features, targets, and land 

budget. This was implemented with the package priotritizr (ver. 4.0.2; Hanson et al. 2017) in 

the program R (R Core Team 2015); the analysis code is available at 

github.com/williash23/SEARRP-UMT-Prioritization. As our aim was to incorporate several 

types of conservation features, each with varying numbers of raw feature layers, we 

developed a two-step prioritization process (Appendix S4). First, we prioritized the input 

features for each of seven categories (i.e., plants, butterflies, vertebrates, aboveground 

carbon, forest types, elevational connectivity, and dispersal corridors) that addressed our 

three ecological objectives and our budgeted land area, with the objective of maximizing the 

number of features that meet a specified target without exceeding a land area budget. This 

produced a single prioritized output layer per feature category (Appendix S4). Second, we 

used these seven feature category layers (e.g., a single prioritized layer for butterflies instead 

of 77 individual species layers), all weighted equally and with equal representation targets, as 

input features to create one overall output layer. We used a boundary length modifier 

(Appendix S1) to clump the prioritized areas spatially. Existing TPAs were ensured of being 

included in the conservation solution. Thus, our solution found the optimal area (up to 

410,000 ha) outside of existing TPAs that maximized the representation of species ranges, 
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forest type diversity, aboveground carbon density, dispersal corridors, and elevational 

connectivity across Sabah. Prioritization was implemented across 100 ha planning units 

covering the current extent of forested areas in the state.  

 

Evaluation of the conservation prioritization 

We computed the total proportion of each feature layer that was covered by the prioritized 

area, both excluding and including existing TPAs. For our first assessment, excluding 

existing TPAs and evaluating only the additional area prioritized for conservation, the 

410,000 ha land budget accounted for approximately 5% of the total land area of mainland 

Sabah. Thus, we measured the success of the 410,000 ha of prioritized new areas by assessing 

the number of raw feature layers for which the overall prioritization solution reached a 

coverage of at least 5%. Note that it is also important to consider that many of the best areas 

are already protected by the existing TPA network, so reaching this level of coverage for each 

of the raw features is more difficult in the remaining available forested area of Sabah. 

For our second assessment, the total area of our full prioritized solution (i.e., our land 

budget plus existing TPAs) was 32% of the total land area of mainland Sabah. Thus, to 

measure the efficacy of our prioritization analysis, we determined how many raw input 

features reached at least 32% coverage through the full prioritization solution.  

We determined how the results of our overall prioritization compared to those 

generated from a more typical systematic conservation planning exercise that did not 

explicitly incorporate connectivity. As a measure of this more typical analysis, we ran the 

same prioritization analysis using the five feature layers not related to connectivity (i.e. 

plants, butterflies, vertebrates, forest types, and aboveground carbon) but excluded dispersal 

corridors and elevational connectivity. Finally, we assessed the sensitivity of our overall 

prioritization results to each input feature layer (Appendix S1). 
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RESULTS 

The total area available for conservation in our analysis covered 2,288,426 ha, of which 

1,879,238 ha were in existing TPAs on mainland Sabah that were forced to be included in the 

solution. Our two-step analysis prioritized an additional 409,187 ha for conservation 

(hereafter, prioritized area). The prioritized area (Fig. 1B) was concentrated largely in several 

clumps including (i) southwestern Sabah, which had high species richness of butterflies and 

vertebrates and important dispersal corridor connections to Sarawak and Kalimantan, (ii) the 

Upper Kinabatangan, which was important for plants, vertebrates, and elevational 

connectivity, and (iii) areas east of the Crocker Range that were important for all taxa and 

contained a diverse range of forest types (Appendix S4). All of these areas were also 

relatively high in aboveground carbon density, generally above 200 Mg C ha
-1

 (Appendix 

S4).  

In our assessment of how well the 410,000 ha prioritized area covered each of the raw 

input conservation features outside of existing TPAs, 200 out of the 246 raw input features 

(excluding the restricted plants species that had limited point locality data) reached the ≥5% 

benchmark. On average, raw input features reached over 12% coverage (Fig. 2), 

demonstrating that our prioritization analysis provided a conservation solution that was far 

better than what would have been achieved by randomly selecting new conservation areas. 

Connectivity features had the lowest coverage of the seven input features of the final 

prioritization (these features were generated by analyses that focused explicitly on locations 

outside the existing TPA network, so existing TPAs added no coverage for these features.) 

For our assessment of how well the full conservation solution (i.e., the prioritized area 

plus existing TPAs) covered the raw input features, an average of 37% coverage was reached 

for species ranges and forest types (Table 1). The mean coverage for all seven feature 

categories was ≥40% (Fig. 2). Coverage was achieved most successfully for butterflies and 
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forest types (58% of the input features for each). Coverage was least successful for 

vertebrates (43% of input features), though even for this feature, the fact that coverage was so 

far above the 32% benchmark suggests, again, that the prioritization analysis provided a 

substantially better solution than randomly choosing conservation areas would have done.  

 Compared to the analysis that excluded the two connectivity features (i.e., a more 

typical systematic conservation planning approach), our prioritized area had no change in the 

protected coverage of vertebrates, plants, and forest types, a 3% decline in coverage for 

butterflies, a 2% decline in coverage for aboveground carbon, a 12.5% increase in coverage 

of elevational connectivity, and a 21.4% increase in the protection of dispersal corridors 

(Table 1). 

 

DISCUSSION  

Systematic conservation planning is important for identifying the most important areas for 

new protection in order to stem extinctions driven by habitat loss. The Convention on 

Biological Diversity’s Aichi Target 11 calls for at least 17% of the world’s land to be covered 

by well-connected protected areas or other effective area-based conservation measures by 

2020 (CBD 2010). Globally, protected area coverage is ~14.7%, but only about half of that 

area is considered well-connected (Saura et al. 2018). But while numerous conservation 

planning exercises have sought to optimize the representation of conservation features or the 

connectivity of the landscape, few have sought to do both, especially in the context of multi-

species assemblages and diverse conservation objectives. Here, we prioritized multiple 

conservation features (ranges for a diverse array of species, ecosystem types, and forest 

carbon storage) across a large landscape, while also incorporating the protection of landscape 

connectivity. This approach greatly enhanced the protection of dispersal corridors and 

elevational gradients along which species could move in response to warming temperatures, 
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with no additional cost in terms of land area requirements, and limited costs in terms of 

poorer representation of other conservation features. This is consistent with other studies, 

which had less diverse conservation objectives, that also show relatively limited tradeoffs 

between the protection of connectivity and species ranges (Reside et al. 2017; Harlio et al. 

2019). Part of the reason why these studies and ours may have been able to achieve multiple 

benefits with limited costs is that at least some of the input features were spatially correlated 

(see Appendix S4, for example). At least in our case, this is unlikely to represent systematic 

collection bias because we included a wide range of taxa representing data assembled from 

multiple sources as input features. Applications of these methods to other systems with less 

input feature correlation, for example where species were strongly clustered into distinct, 

non-overlapping habitat types, could increase the difficulty in simultaneously achieving 

different conservation objectives.  

 The locations selected for conservation generally contained several conservation 

features, but full representation of all seven conservation features was only achieved across 

the suite of areas. Some of the hyper-endemic plants (where we used point locality 

information instead of predicted species ranges) were not included in our prioritized area 

(Table 1), and may require additional conservation measures in particular localities. The most 

important part of the state for dispersal corridors was southwestern Sabah, where connectivity 

is needed to link the cluster of protected areas in the central part of Sabah to protected forests 

in Sarawak and Indonesia (Brodie et al. 2016). Several areas were critical for elevational 

connectivity, including the Upper Kinabatangan in central Sabah and areas around Kinabalu 

Park that would increase its connection to the lowlands. The Kinabalu area was also 

identified as a priority area in a conservation analysis focused on mammals (Struebig et al. 

2015). These three areas were also rich in vertebrates (southwest Sabah, Deramakot), 

butterflies (southwest Sabah), plants (Deramakot, Kinabalu Park vicinity), forest types 
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(southwest Sabah, Kinabalu Park vicinity), and aboveground carbon (southwest Sabah, 

Deramakot) (see Appendix S4).  

 In Sabah, the protection of the prioritized area identified by our analysis would 

provide important conservation benefits. The prioritized area has been presented to the Sabah 

Forestry Department, which has initiated a round of free, prior informed consent 

consultations with indigenous peoples, local communities, and other stakeholders who may 

have overlapping rights and interests in the locations identified for enhanced conservation. 

Outcomes of this process will inform subsequent revisions of the prioritization analysis. We 

will continue with this iterative process to seek consensus on the final recommendation for 

the designation of new protected areas. The conservation influence of this and other planning 

measures could be enhanced further via cross-border coordination with governments in 

Brunei Darussalam, Kalimantan (Indonesia), and Sarawak (Malaysia; van Paddenburg et al. 

2012; Runting et al. 2015).  
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TABLE 1: Targets and achievement in coverage of raw input features of the overall 

prioritized solution (existing totally protected areas plus areas prioritized for new 

conservation) both with (no brackets) and without (square brackets) explicit incorporation of 

dispersal corridors and elevational connectivity.  

Input feature 

categories  

 

No. of raw 

input features 

for round one 

of 

prioritization 

Targets for 

round one of 

prioritization 

Proportion of raw 

input features 

protected by overall 

prioritized solution  

 

Number of raw 

input features 

that reached 

32% coverage 

   Mean  Range Total  

Vertebrates 81 43.5% 0.39 

[0.40] 

0.00 - 

1.00 

[0.00 – 

1.00] 

—  34 [36] 
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Invertebrates 77 43.5% 0.32 

[0.32] 

0.25 - 

0.42 

[0.25 – 

0.43] 

— 35 [37] 

Plants 66
a
 43.5% 0.39 

[0.39] 

0.12 - 

0.88 

[0.11 – 

0.89] 

— 33 [33] 

Forest types 19 50% 0.44 

[0.45] 

0.00 - 

0.94 

[0.00 - 

0.96] 

— 11 [11] 

Aboveground 

carbon 

1 52.5% — — 0.49 

[0.50] 

— 

Elevational 

connectivity 

1 31% — — 0.17 

[0.14] 

— 

Dispersal 

corridors 

1 99% — — 0.17 

[0.14] 

— 

 

a 
An additional 83 plant species (331 locality records) with extremely limited distributions 

were included in this category, represented as 0.05 ha localities that were either included or 

excluded in their entireties in the prioritized area. 
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Figure 1: Study area on mainland Sabah, Malaysian Borneo, showing existing protected areas 

(dark green), the remaining forested areas (A; light green), and areas prioritized for additional 

protection (B: orange; C: blue), both with (B) and without (C) explicit incorporation of 

dispersal corridors and elevational connectivity. Panel D shows where the prioritized areas in 

B and C overlap (red).  
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Figure 2: Proportion of the conservation features (input feature data layers) protected by the 

overall conservation solution, with (A) and without (B) explicit incorporation of dispersal 

corridors and elevational connectivity. 

 


