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In this paper, we propose using kernel ridge regression (KRR) to avoid the step of selecting basis func-
tions for regression-based approaches in pricing high-dimensional American options by simulation. Our
contribution is threefold. Firstly, we systematically introduce the main idea and theory of KRR and apply
it to American option pricing for the first time. Secondly, we show how to use KRR with the Gaussian
kernel in the regression-later method and give the computationally efficient formulas for estimating the
continuation values and the Greeks. Thirdly, we propose to accelerate and improve the accuracy of KRR
by performing local regression based on the bundling technique. The numerical test results show that
our method is robust and has both higher accuracy and efficiency than the Least Squares Monte Carlo
method in pricing high-dimensional American options.

Keywords: High-dimensional American Option; Monte Carlo; Regression-based Method; Kernel Ridge
Regression; Machine Learning.
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1. Introduction

The pricing of American options through Monte Carlo simulation is an active and evolving area
of research. Among all kinds of proposed approaches, regression-based Monte Carlo methods (pro-
posed by Carriere (1996) and further developed by Tsitsiklis and Van Roy (2001) and Longstaff
and Schwartz (2001)) have been becoming popular. Depending on the procedure of generating
basis functions, regression-based methods can be categorized into two types: regression-now and
regression-later (Glasserman and Yu (2004)). Up to now, the Least Squares Monte Carlo (LSM)
method (Longstaff and Schwartz (2001)), one of the typical representatives of regression-now meth-
ods, is still the most successful method for pricing American options by simulation and it has
become the method of choice for practitioners. Please see Glasserman (2003) and Kohler (2010)
for more detailed review.
One of the drawbacks of regression-based methods is that there is not an objective way of

choosing the basis functions for regression, especially for the high-dimensional options. As a result,
nonparametric regression, kernel-based regression (Han et al. (2009)), robust regression (Jonen
(2011)) and so on have been proposed to overcome or alleviate this issue. Among these approaches,
the kernel method is appealing. Kernel-based methods belong to the field of machine learning, with
support vector machine (SVM) and kernel regression the typical representatives. Machine learning
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for quantitative finance, such as derivative pricing and hedging, has been attracting increasing
attention (e.g., Spiegeleer et al. (2018)). Spiegeleer et al. (2018) use Gaussian process regression
to directly fit the option prices, without applying the option pricing methodology. Specifically,
the regressors are the option parameters such as the initial share prices, volatility and maturity,
and the explained variable is the option price. It can be considered as a high-level application of
machine learning methods in pricing. By contrast, we focus on a low-level application, in which
we use kernel regression in one of the key steps for pricing American options by simulation. With
kernel regression, the inner product of basis functions can be replaced with a kernel function,
which can expand the original space to a space with higher or even infinite dimension. Kernel-
based methods have already been applied to American options pricing (see Han et al. (2009)), with
promising results. However, the theoretical and implementation aspects of the method presented
in Han et al. (2009) need further clarification, and one may actually have a better choice of the
kernel-based methods (e.g., the method we use in this paper). Furthermore, no pricing results for
high-dimensional American options have been reported, though it is where the kernel method can
show its advantages.
Another newly proposed American option pricing method, the stochastic grid bundling method

(SGBM) (Jain and Oosterlee (2015)) is noticeable. It is a hybrid method of the stochastic mesh
method (Broadie and Glasserman (1997)), LSM and the stratified along the payoff function method
(Barraquand and Martineau (1995)). SGBM has lower variance than LSM and it can calculate the
Greeks rapidly. However, one drawback is that one needs to choose the basis functions and calculate
their conditional expectations in a closed form. As a result, it is only applicable to some particular
processes, and the calculation of the conditional expectations of the basis functions is not trivial.
In this paper, we propose using kernel ridge regression (KRR) to price high-dimensional American

options. We use a new kernel-based approach, which is different from the method of Han et al.
(2009). Our method also utilizes the idea of bundling as SGBM but it conducts a totally different
regression step. SGBM needs to calculate the conditional expectation of the mapping function
or the basis functions, which would be difficult in some cases. Thanks to KRR, we perform the
regression directly on the original high-dimensional state space and avoid the problem of selecting
basis functions. Furthermore, the calculation of the conditional expectation in SGBM is transferred
to the kernel function, making the method simpler and more general.
The paper is organized as follows. Section 2 gives an introduction to the problem of pricing Amer-

ican options by simulation, including the problem formulation and the detail of regression-based
methods. Section 3 then presents the theoretic aspects of KRR. In Section 4, the implementations
of KRR for both regression-now and regression-later methods, as well as the parameter tuning
method are discussed. An algorithm is provided to summarize our method. Numerical test results
and discussion are given in Section 5. Finally, we conclude in Section 6.

2. Pricing American options by simulation

2.1. The problem of pricing American options

Let (Ω,F ,P) be a probability space with a time horizon [0, T ], where P is the risk neutral measure
and F = {Ft|0 ≤ t ≤ T} is the filtration. Denote by rt the risk-free interest rate, which is
assumed to be non-stochastic in this paper. Then we can define the risk-less savings account process
Bt = exp(

∫ t
0 rsds) and the discount factor Ds,t = Bs/Bt . The problem of pricing an American

option is to find the optimal expected discounted payoff:

V0(S0) = E [D0,τ∗hτ∗(Sτ∗)] = sup
τ∈T

E [D0,τhτ (Sτ )] (1)

where St ∈ Rd is the price vector of the underlying assets, ht(x) is the payoff function for exercise
at t, T is the set of all stopping times with respect to F and τ∗ is the optimal stopping time. In
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practice, the American option is approximated by a Bermudan option, which can only be exercised
at discreet time points.
The optimal exercise strategy can be determined via a backward recursive process starting from

the maturity date, i.e.,

VT (ST ) = hT (ST ). (2)

Assume the underlying assets follow a Markovian process and the time is discretized into N time-
steps, with t0 = 0 and tN = T . The continuation value of the option at ti can be written as (we
use i as ti to lighten notation)

Qi(Si) = E[Di,i+1Vi+1(Si+1)|Si], 0 ≤ i ≤ N − 1. (3)

The corresponding option value at ti is given by

Vi(Si) = max{Qi(Si), hi(Si)}. (4)

Equations (2) and (4) form a dynamic programming principle (DPP) for solving the optimal
stopping problem (1). Using the notations above, the optimal stopping time of the problem can be
written as

τ∗0 = inf{t ≥ 0 : Qt(St) ≤ ht(St)}, (5)

and the DPP can equivalently be written as





τ∗N = N

τ∗i =

{
i, Qi(Si) ≥ hi(Si)

τ∗i+1, otherwise
, i = N − 1, ..., 0.

(6)

No matter in what form, the key step of implementing the DPP is to estimate the continuation
values. In this paper, we only focus on solving the DPPs discussed above by the Monte Carlo
method, though other general methods such as the binomial tree approximation can also be applied
to this problem. Under DPP (4) (e.g., Tsitsiklis and Van Roy (2001)), the value of the option
estimated by simulation is given by

V̂0 =
1

M

M∑

m=1

max
{
Q̂

(m)
0

(
S
(m)
0

)
, h0

(
S
(m)
0

)}
, (7)

and under DPP (6) (e.g., Longstaff and Schwartz (2001)) it is

V̂0 =
1

M

M∑

m=1

D0,τ∗

0,m
hτ∗

0,m

(
S
(m)
τ∗

0,m

)
, (8)

where M is the number of simulated paths, Q̂
(m)
0 is the estimated continuation value corresponding

to the asset prices S
(m)
0 on path m at time t0, and τ∗0,m is the realized optimal stopping time on path

m. Note that DPP (6) is usually more accurate and robust, as the estimation of the continuation
value is only used to make the decision and has limited influence on the estimated option price.
DPP (4) tends to give upper biased pricing values due to the convexity of the max function. In
this paper, we use DPP (6) unless otherwise specified.
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2.2. Regression-based Monte Carlo methods

The basic idea of regression-based Monte Carlo methods is to approximately estimate the contin-
uation value Qi(Si) ( 0 ≤ i ≤ N − 1) at each time-step i by regression. There are basically two
ways to obtain the estimations: regression-now and regression-later (Glasserman and Yu (2004)).
The regression-now method, which is more common, is to directly estimate Qi(Si) by regression

on a limited number of basis functions at ti. Assuming the continuation value function Qi(x)
belongs to the L2 space, the linear regression can be written as

Q̂i(Si) := φ⊤(Si)βi =

J∑

j=1

βi,jϕj(Si), (9)

where

φ(x) = (ϕ1(x), ϕ2(x), ..., ϕJ(x))
⊤, x ∈ R

d (10)

are the selected J basis functions. The coefficients are determined by solving the ordinary least
squares (OLS) problem

min
βi

∥∥∥∥∥∥
Qi(Si)−

J∑

j=1

βi,jϕj(Si)

∥∥∥∥∥∥

2

2

(11)

The realizations of Qi(Si) for the regression are the cash flows of each path. The cash flow on path
m is given by

Q
(m)
i

(
S
(m)
i

)
= Di,τ∗

i+1,m
hτ∗

i+1,m

(
S
(m)
τ∗

i+1,m

)
, m = 1, ...,M. (12)

The regression-later method is another way of estimating the continuation values. The idea is
the same to the regression-now method, except that the regression is done at the next time-step.
Based on the fact that Qi(Si) = E[Di,i+1Vi+1(Si+1)|Si], the regression-later method first estimates

V̂i+1(Si+1) := φ⊤(Si+1)βi =

J∑

j=1

βi,jϕj(Si+1) (13)

at ti+1 by regression, and then calculate the conditional expectation to obtain the continuation
value; i.e.,

Q̂i(Si) = E[Di,i+1V̂i+1(Si+1)|Si] = Di,i+1

J∑

j=1

βi,jE[ϕj(Si+1)|Si], (14)

where the expectation E[ϕj(Si+1)|Si] needs to be analytically calculated. The coefficients are de-
termined by solving the ordinary least squares (OLS) problem with L2 norm

min
βi

∥∥∥∥∥∥
Vi+1(Si+1)−

J∑

j=1

βi,jϕj(Si+1)

∥∥∥∥∥∥

2

2

. (15)
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The realizations of Vi+1(Si+1) for the regression on path m is given by

V
(m)
i+1

(
S
(m)
i+1

)
= hτ∗

i+1,m

(
S
(m)
τ∗

i+1,m

)
, m = 1, ...,M. (16)

The regression-later method (e.g., Jain and Oosterlee (2015)) usually has lower variance than
the regression-now method (e.g., Longstaff and Schwartz (2001)) and it can calculate the Greeks
rapidly. However, one drawback is that one needs to choose the basis functions and calculate the
conditional expectations of them in closed forms. The calculation of the conditional expectations
is not trivial and it is only applicable to particular stochastic processes and functional forms.

3. Kernel ridge regression

Regression based methods do not have an objective way of choosing the basis functions in the
regression step, especially for high-dimensional options. If we choose the basis including all possible
polynomials of the d elements of Si up to the nth degree, there are

Cn
d+n =

(d+ n)!

d!n!
(17)

basis functions. E.g., for d = 17 and n = 3, the number is C3
20 > 103, which is too large to handle

in practice and the computation will be very time consuming. Kernel ridge regression (KRR) can
be utilized to avoid the basis function selection step, so as to solve the issue of a huge number of
basis functions for high-dimensional options.
Generally, consider the following linear regression model

y = φ⊤(x)β + ϵ, x ∈ R
d, (18)

where ϵ is an independent zero-mean random noise, and the dataset

Φ =




φ⊤(x(1))

φ⊤(x(2))
...

φ⊤(x(M))




M×J

y =




y(1)

y(2)

...

y(M)




M×1

. (19)

The ridge regression problem on estimating β is

min
β

(Φβ − y)⊤(Φβ − y) + λβ⊤β, (20)

where λβ⊤β is a ridge penalty term to overcome over-fitting or ill-posed problems. The corre-
sponding OLS estimation of β with ridge parameter λ is

β̂ = (Φ⊤Φ+ λI)−1Φ⊤y, (21)

and the corresponding prediction at x is

ŷ(x) = φ⊤(x)β̂ = φ⊤(x)(Φ⊤Φ+ λI)−1Φ⊤y. (22)

The linear regression model (18) satisfies LSP (Learning subspace property, see Kung (2014)
pp.11) so that the solution of β can be restricted to the space of span{[Φ]} (the empirical space);
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i.e.

β = Φ⊤α, (23)

for some α ∈ RM . Then the optimization problem (20) can be converted to

min
α

(ΦΦ⊤α− y)⊤(ΦΦ⊤α− y) + λα⊤ΦΦ⊤α. (24)

Let K = ΦΦ⊤, the estimation of α is

α̂ = (K+ λI)−1y. (25)

As a result,

β̂ = Φ⊤α̂ = Φ⊤(K+ λI)−1y = (Φ⊤Φ+ λI)−1Φ⊤y, (26)

where the last equality uses the fact that

Φ⊤(ΦΦ⊤ + λI)−1 = (Φ⊤Φ+ λI)−1Φ⊤. (27)

It seems that KRR is not any different from OLS as the two solutions are exactly the same.
However, the strength of KRR lies in the kernel trick. Notice that

K = ΦΦ⊤, Kij = φ⊤(x(i))φ(x(j)), i, j = 1, ...,M. (28)

K would be difficult to calculate if the intrinsic space (the space generated by φ) is of high dimen-
sion. Now the kernel trick will help with this. We can define a kernel function K(x,y) satisfying

K(x(i),x(j)) = Kij = φ⊤(x(i))φ(x(j)), (29)

which converts the inner product calculation in the high-dimensional intrinsic space (with dimen-
sion J) to the calculation in the low-dimensional original input space (with dimension d). By
defining different kernel functions, the original input space can be expanded to much higher or
even infinite dimensional intrinsic spaces, which is called the kernel trick. One typical kernel is the
Gaussian kernel:

K(x,y) = e−
1

C
(x−y)⊤(x−y), C > 0, (30)

resulting in an infinite-dimensional intrinsic space. Theoretically, the Gaussian kernel can cover any
continuous basis functions, because φ(x) for the Gaussian kernel contains the dampened polynomial

e−
1

C
x⊤x

d∏

i=1

xni

i√
ni!

(31)

for each combination of nonnegative degrees n1, ..., nd (Exterkate (2013)). It is expected that KRR
with the Gaussian kernel can give better prediction results than using limited basis functions.
Under KRR with kernel tricks, the predicted function value at x becomes

ŷ(x) = φ⊤(x)β̂ = φ⊤(x)Φ⊤α̂ =

M∑

m=1

α̂mK(x(m),x). (32)

6
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In summary, the discussion above is an outline of KRR, which is the proposed approach to avoid
choosing basis functions for regression-based methods. Please note that by means of KRR, the
problem of choosing basis functions is actually transferred into one of choosing kernel functions,
which is much more tractable.

4. Application of KRR to regression-based methods

4.1. Regression-now

We first consider applying KRR to regression-now methods. It is actually straightforward as we
only need to change the regression to KRR and estimate the continuation value at Si as

Q̂i(Si) = Di,i+1

M∑

m=1

α̂i,mK(S
(m)
i ,Si). (33)

The problem worthy of consideration is the implementation efficiency. As the basic method we are
using for pricing is Monte Carlo, thousands of paths are needed in the simulation. This leads to
regressions with large-scale samples, which finally results in a large-scale matrix K (defined in (28))
in KRR. The calculation of matrix inversion for estimating α̂ would be very slow. Furthermore, the
regression needs to be done at every time-step. KRR cannot be naively applied to the regression-
based method.
The main idea of the solution is to partition the global regression into small-scale local regressions

as proposed in Zhang et al. (2013). Suppose the whole dataset is partitioned into P sub-datasets.
Then the time complexity of the regression can be reduced from O(M3) to O(M3/P 2). In light
of the specific problem of pricing, it is better to use bundling (Jain and Oosterlee (2015)) instead
of the random partition in Zhang et al. (2013). The basic idea of bundling is to group together
similar grid points (simulated underlying asset prices) at the same time-step to get better regression
results. There are many approaches for bundling, such as k-means clustering and sorting the data
by bundling references. We will see that KRR can provide a better fit and become more efficient
due to bundling.
Specifically, suppose the current step is to estimate the continuation values by regression at ti. In

order to do local regression, we first use the payoff function as the bundling reference and partition

the grid points at ti−1 into P non-overlapping bundles with M̃ = ⌊M/P ⌋ paths in each bundle.
The regression is then performed at ti for the paths belong to the same bundle. Local regression
at bundle level has been proved more accurate than global regression (Jain and Oosterlee (2015)),
due to the similarity among the samples. In other words, bundling improves not only the efficiency
of KRR, but also the accuracy provided P is not too large.

4.2. Regression-later

For regression-later, we use the Gaussian kernel (30) as the kernel function and perform KRR on
Xt = lnSt instead of St. Within the framework of the regression-later method with KRR, the
estimation of the continuation value at Xi can be expressed as

Q̂i(Si) = Di,i+1E

[
M∑

m=1

α̂i+1,mK(X
(m)
i+1,Xi+1)

∣∣∣Xi

]

= Di,i+1

M∑

m=1

α̂i+1,mE[K(X
(m)
i+1,Xi+1)|Xi].

(34)
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As a result, the problem of calculating the conditional expectations of the basis function in (14)
is converted into calculating the conditional expectations of the kernel function. The benefit is that
we not only avoid the choice of basis functions, but also may simplify the expectation calculation,
as the there is only one expectation to calculate. For example, the expectation of the payoff function
of max or min options has no analytic solution, so that approximations are needed if the payoff
function is selected as the basis function (E.g., Jain and Oosterlee (2015) use Clark’s algorithm to
do the approximation). In contrast, no such an issue will arise in this case when using KRR. In
practice, we also perform local regression by bundling for the regression-later method.

4.2.1. Regression-later under geometric Brownian motion. We first consider the most
common situation in which the underlying assets follow the multi-dimensional geometric Brownian
motion (GBM)

dSt,ν

St,ν
= (r − qν)dt+ σνWt,ν , ν = 1, ..., d, (35)

where r is the risk-free interest rate, qν are the dividend rates and Wt,ν are standard Brownian
motions with instantaneous correlation coefficient ρij between Wt,i and Wt,j , i, j = 1, ..., d. Define
a d× d matrix ΣS with ΣS

ij = σiσjρij and let AA
′

= ΣS . By denoting Xt = lnSt, we can simulate
the underlying assets as

Xi+1,ν = Xi,ν + (r − qν −
1

2
σ2
ν)h+

√
h

d∑

j=1

AνjZi,j , i = 0, ..., N − 1, (36)

where Zi,j are independent standard normal random variables, and h = T/N is the step size.

Lemma 1 Suppose X ∼ N(µ,Σ). Then

E
[
e−

1

C
X⊤X

]
=

1

| 2CΣ+ I|1/2
e−

1

C
µ⊤( 2

C
Σ+I)

−1
µ. (37)

Proof. See Appendix A.

Based on Lemma 1, we have the following result.

Proposition 1 Suppose the underlying assets follow the GBM model (35), and the Gaussian
kernel is used in KRR. The conditional expectation in (34) is given by

Q̂i(Xi) = Di,i+1

M∑

m=1

α̂i+1,mE
[
K(X

(m)
i+1,Xi+1)|Xi

]

=
Di,i+1

|2hC ΣS + I|1/2
M∑

m=1

α̂i+1,me−
1

C
(µi+1−X

(m)
i+1)

⊤

( 2h

C
ΣS+I)

−1
(µi+1−X

(m)
i+1),

(38)

where µi+1 = (µi+1,1, ..., µi+1,d)
⊤, and

µi+1,ν = Xi,ν + (r − qν −
1

2
σ2
ν)h, ν = 1, ..., d. (39)

Proof. See Appendix B.

8
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Corollary 1 Suppose the conditions in Proposition 1 are satisfied and the underlying assets are
independent from each other. Then the conditional expectation in (34) is given by

Q̂i(Xi) =
Di,i+1C

d/2

√∏d
ν=1(2σ

2
νh+ C)

M∑

m=1

α̂i+1,m exp


−

d∑

ν=1

(
µi+1,ν −X

(m)
i+1,ν

)2

2σ2
νh+ C


 . (40)

Proof. When the underlying assets are independent from each other, ΣS is a diagonal matrix and
the result can be directly verified based on Proposition 1.

4.2.2. Regression-later under Merton jump diffusion. We then consider the multi-
dimensional Merton jump diffusion (MJD) process driven by a common Poisson process. The
model is





dSt,ν

St,ν
= (r − qν − λJκν)dt+ σνWt,ν + dΓt, ν = 1, ..., d

Γt =

N(t)∑

n=1

(
eZ

J
ν,n − 1

) , (41)

where the diffusion part is the same as for the GBM process (35), Γt is a compound Poisson process
with jump intensity λJ , ZJ

n = (ZJ
1,n, ..., Z

J
d,n)

⊤. are the jump sizes following multi-dimensional

normal distribution N(µJ ,ΣJ) with µJ = (µJ
1 , ..., µ

J
d )

⊤ and ΣJ
ij = σJ

i σ
J
j ρ

J
ij , κν = E[eZ

J
ν,n − 1] =

exp(µJ
ν + (σJ

ν )
2/2) − 1 so as to make e−rtSt,ν a martingale under the risk neutral measure. The

processes Wt, Nt and ZJ
n are assumed to be independent of each other, and ZJ

n are i.i.d. In the
model (41), the jump times are the same for different components of St, but the jump sizes are
different.
The underlying asset St,ν has the analytic solution

St,ν = S0,ν exp

(
(r − qν − λJκν −

1

2
σ2
ν)t+ σνWt,ν

)
exp




N(t)∑

n=1

ZJ
ν,n


 , (42)

where N(t) is the number of jumps in [0, t]. Correspondingly,

Xt,ν = lnSt,ν

= lnS0,ν + (r − qν − λJκν −
1

2
σ2
ν)t+ σνWt,ν +

N(t)∑

n=1

ZJ
ν,n.

(43)

Denote ∆Ni as the number of jumps in (ti, ti+1], then conditional on Xi and ∆Ni = k, Xi+1 follows
the multi-dimensional normal distribution

Xi+1 ∼ N
(
µJD
i+1,Σ

JD
)
, (44)

where

µJD
i+1,ν = Xi,ν + (r − qν − λJκν −

1

2
σ2
ν)h+ kµJ

ν , ν = 1, ..., d, (45)

9
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and ΣJD = hΣS + kΣJ .

Proposition 2 Suppose the underlying assets follow the MJD model (41), and the Gaussian
kernel is used in KRR. The conditional expectation in (34) is given by

Q̂i(Xi) = Di,i+1

M∑

m=1

α̂i+1,mE
[
K(X

(m)
i+1,Xi+1)|Xi

]

= Di,i+1

∞∑

k=0

e−λJh(λJh)k

k!| 2CΣJD + I| 12

M∑

m=1

α̂i+1,me−
1

C
(µJD

i+1−X
(m)
i+1)

⊤

( 2

C
ΣJD+I)

−1
(µJD

i+1−X
(m)
i+1).

(46)

Proof. See Appendix C.

In practice, we need to do truncation when calculating the infinite sum in (46).

4.3. Regression-later for computing the Greeks

As pointed out in Jain and Oosterlee (2015), regression-later with bundling can be conveniently
used to calculate the Delta and Gamma of American options. Specifically,

∆ν =
∂V0(S0)

∂Sν
0

≈ ∂Q̂0(S0)

∂Sν
0

= D0,1

M∑

m=1

α̂1,m

∂E
[
K(X

(m)
1 ,X1)|X0

]

∂Xν
0

1

Sν
0

,

Γν =
∂2V0(S0)

(∂Sν
0 )

2
≈ ∂2Q̂0(S0)

(∂Sν
0 )

2
=

∂∆ν

∂Xν
0

1

Sν
0

, ν = 1, ..., d.

(47)

Furthermore, based on the explicit expression for E
[
K(X

(m)
1 ,X1)|X0

]
, we have the following ex-

pressions for the approximations.

Proposition 3 Suppose the underlying assets follow the GBM model (35), and the Gaussian
kernel is used in KRR. The Delta of the option is given by

∆ν ≈ ∂Q̂0(S0)

∂Sν
0

=
D0,1

Sν
0 |2hC ΣS + I|1/2

M∑

m=1

α̂1,mγm,νe
− 1

C
(µ1−X

(m)
1 )

⊤

( 2h

C
ΣS+I)

−1
(µ1−X

(m)
1 ), (48)

and the Gamma of the option is given by

Γν ≈ ∂∆ν

∂Xν
0

1

Sν
0

=
D0,1

(Sν
0 )

2|2hC ΣS + I|1/2
M∑

m=1

α̂1,m

(
Σγ
νν + γ2m,ν − γm,ν

)
e−

1

C
(µ1−X

(m)
1 )

⊤

( 2h

C
ΣS+I)

−1
(µ1−X

(m)
1 ),

(49)

where γm = Σγ
(
µ1 −X

(m)
1

)
and Σγ = − 2

C

(
2h
C ΣS + I

)−1
.

Proof. See Appendix D.

The computation of the Greeks discussed above is based on the KRR regression results at t1,
so that it is no more difficult than pricing, and little extra effort is needed. The constraint is that

10
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it is only applicable to the sensitivity with respect to the underlying assets. With regard to the
implementation, there is only one bundle at time t0, but we can still do local regression by randomly
partitioning the grid points at time t1. Therefore, each bundle at time t1 can give one estimation
of the Greeks, and we then take the average.

4.4. Hyperparameters selection

There are two key parameters in KRR, namely, the ridge parameter λ and the Gaussian kernel
parameter C. They cannot be determined from Equation (25) and must be determined from the
data. We refer to such parameters as hyperparameters. The optimal hyperparameters for each
regression can be selected by cross-validation with grid searching. However, the process is time
consuming. What’s more, as there are regressions for each bundle at each time-step in our method,
we need to keep it simple and avoid selecting the hyperparameters for each time-step.
The strategy we use in this paper is to perform calibrations at the price level instead of the

regression level at each time-step. In any case, the final purpose is pricing rather than regression.
One of the advantages of this strategy is that once a suitable set of parameters are found, the
pricing results may be not so sensitive to the change of the parameters.
Specifically, the way we determine the parameters is to always fix the ridge parameter λ to 1 just

as Zhang et al. (2013) suggest (in Corollary 5), and then select a suitable C for all the time-steps
for the same option. As discussed in Exterkate (2013), parameter C controls the smoothness of the
prediction, and its optimal value depends on the dimension of the input space. We set C = C0 or
C = C1d, where C0 > 0, C1 > 0 and d is the dimension of St, so that there is only one parameter
to be estimated. For a set of similar options with only different dimensions, C0 is selected for all
of them by a simple cross-validation strategy:

Step 1 Set a tolerance of mean squared error for the pricing, and a maximum number of iterations.
Step 2 Calibrate an option of low dimension (e.g., d = 5) to its true price (or a price given by LSM

in case the true price is unknown) with a suitable C0.
Step 3 Validate on an option of high dimension (e.g., d = 100) with the selected C0. If the pricing

result is beyond the error tolerance, go back to Step 2.

If C0 cannot be found by the cross-validation strategy above, we turn to estimating C1 with a
similar procedure. If C1 cannot be found either, we estimate C0 individually for each option.
Numerical test results indicate that this strategy works well, and the pricing results are actually

not sensitive to the value of C. Therefore, C is not necessarily the optimal value and the calibration
process can even be done manually within several trials. Another hyperparameter is the number
of bundles P . The numerical test results show that the optimal value of it is different for different
pricing parameters. The quantitative rule to determine the optimal P requires further investigation.
In this paper, we simply set it to a fixed value for all cases.

4.5. Algorithm

We summarize our method into a complete algorithm for pricing and calculating Greeks for high-
dimensional American options by regression-based methods.

Algorithm 1 Kernel ridge regression for pricing and calculating Greeks for high-dimensional
American options.

Step 1 Preprocessing. Determine the hyperparameters λ, C and P through the strategy described
in Section 4.4.

Step 2 Simulate M paths with N time-steps for the underlying assets.
Step 3 Calculate the options values at tN to obtain the initial cash flows.
Step 4 For each i = N − 1, ..., 1

11
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a) Bundling. Partition the grid points at ti−1 (regression-now) or ti (regression-later) into
P bundles.

b) Estimating continuation values. Within each bundle, perform KRR at ti (regression-

now) or ti+1 (regression-later) to estimate α̂i and get Q̂i by (33) or (34).
c) Renewing cash flows. Compare the continuation values with the exercise values and

renew the cash flows.
Step 5 Additional KRR for regression-later at t0. Randomly bundle the grid points and perform

KRR at t1 to estimate α̂0 and get Q̂0 by (34).
Step 6 Computing the Greeks (optional). Calculate the Greeks by Proposition (3) based on α̂1

generated in Step 5.
Step 7 Average the discounted cash flows at each path to get the option price.

5. Numerical test

In this section, three main aspects of our method will be tested based on various American options
under GBM and MJD processes. The first is the pricing accuracy and efficiency for a range of
options with different dimensions. The second is the error and computation time for the same
options with a different number of bundles in KRR. The last is the robustness of our method when
some of the parameters vary. For the first aspect, we will compare the pricing results with LSM.
The basis functions of LSM are all the polynomials up to the second degree. We also set another
LSM with the payoff function as an additional basis function. The local KRR is performed with
default number of bundles P = 100 on the paths with positive immediate exercise values.
In order to show the strength of KRR, the options are set with very high dimensions, up to

100 underlying assets. As there are no reliable benchmark prices (either from existing literature
or other pricing methods) for such high-dimensional options, we resort to Premia 1, a third-party
software designed for option pricing, hedging and financial model calibration, and take its results
as the benchmark. All the tests were performed by Matlab 2017b on a system with an Intel(R)
Core(TM) i7-7500U 2.7 GHZ CPU and 8 GB of RAM in a Windows 10 environment.

5.1. Max call under GBM

We first test the proposed approach for a multi-dimensional max call American option with payoff
function

h(St) = (max(St,1, ..., St,d)−K)+, (50)

where St follows the multi-dimensional GBM process defined by (35), and K is the strike price.
The parameters are set as

S0,ν = K = 100, σν = 0.2, r = 5%, qν = 10%, ρij = ρ = 0, T = 3,

d = {5, 10, 15, 20, 30, 40, 60, 80, 100}, P = 100, N = 3, M = 10, 000,
(51)

which are similar to the cases studied in Broadie et al. (2004). The same fixed λ and kernel
parameter C are used for pricing all the options.

5.1.1. Pricing accuracy and efficiency. Table 1 and Figure 1 report the pricing results of
four algorithms. Column Premia contains the benchmark prices calculated by Premia. They are

1https://www.rocq.inria.fr/mathfi/Premia/index.html
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Figure 1. Pricing errors under GBM for a range of dimensions.

point estimations based on the primal-dual method in Andersen and Broadie (2004). However,
Premia does not provide the confidence interval for the benchmark prices. We construct the 95%
confidence interval for them by estimating the standard deviations by 10 independent runs with the
same input data. Please see more details in Table 2. The columns in Table 1 and lines in the figure
labelled as LSM, LSMP, NKRR and LKRR correspond to, respectively, LSM without payoff basis
function, LSM with payoff basis function, KRR with regression-now, and KRR with regression-
later. The values in the parentheses are the standard deviations based on 10 independent batches.
All errors are relative to Premia’s prices. It can be seen that generally NKRR/LKRR outperform
LSM/LSMP, LKRR is the most accurate method, and LSMP is a little better than LSM.
Figure 2 shows the computation time of these algorithms. LSM/LSMP usually run fast in low-

dimensional cases, which is also indicated in the figure. When d ≤ 20, NKRR and LKRR are
relatively slower. However, the computation time for LSM/LSMP seem to increase exponentially
with dimension, while for NKRR/LKRR it is approximately linear. NKRR/LKRR start to exhibit
the speed advantage when d > 40.
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Figure 2. Computation time under GBM for a range of dimensions.
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Table 1. Pricing results under GBM for a range of dimensions.

d Premia LSM Error(%) LSMP Error(%) NKRR Error(%) LKRR Error(%)

5 25.306 24.536(0.230) 3.040 24.821(0.187) 1.914 24.827(0.287) 1.893 25.543(0.149) 0.939

10 37.698 37.047(0.259) 1.727 37.232(0.264) 1.234 37.248(0.255) 1.192 37.876(0.224) 0.474

15 45.569 45.110(0.211) 1.008 45.114(0.178) 0.999 45.315(0.180) 0.559 45.659(0.285) 0.198

20 51.443 50.821(0.264) 1.208 50.949(0.242) 0.961 51.088(0.276) 0.689 51.467(0.220) 0.046

30 59.775 58.927(0.263) 1.420 59.180(0.161) 0.995 59.357(0.257) 0.700 59.769(0.277) 0.011

40 65.525 64.978(0.300) 0.835 65.055(0.290) 0.717 65.514(0.236) 0.018 65.697(0.304) 0.262
60 73.900 73.420(0.149) 0.650 73.685(0.252) 0.291 73.918(0.297) 0.024 73.878(0.268) 0.031
80 79.908 79.926(0.174) 0.023 80.011(0.163) 0.130 79.943(0.245) 0.044 79.962(0.193) 0.068
100 84.501 85.025(0.288) 0.621 84.895(0.311) 0.467 84.610(0.264) 0.130 84.482(0.153) 0.022

NKRR: λ = 1, C = 105; LKRR: λ = 1, C = 30; Other parameters see (51).

Table 2. 95% confidence interval of the benchmark prices from Premia.

d 5 10 15 20 30 40 60 80 100

Premia 25.306 37.698 45.569 51.443 59.775 65.525 73.900 79.908 84.501
STD 0.073 0.079 0.087 0.110 0.056 0.091 0.129 0.090 0.097
LCL 25.261 37.649 45.515 51.375 59.740 65.468 73.820 79.852 84.441
UCL 25.351 37.747 45.623 51.511 59.810 65.582 73.980 79.964 84.561

Notes. The benchmark prices are point estimations calculated by the primal-dual method in Andersen and Broadie (2004) from Premia. The
primal early-exercise policy is obtained by LSM with 50000 simulation paths and Hermite polynomials of degree 0− 3 as the basis functions.
The dual prices are calculated with 500 outer simulation paths and 100 nested simulation paths. STD is the standard deviation of 10 runs,
LCL = Premia− 1.96 ∗ STD/

√
10 is the 95% lower confidence limit and UCL = Premia + 1.96 ∗ STD/

√
10 is the 95% upper confidence limit.
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5.1.2. The influence of the number of bundles. As local KRR runs faster with a larger
number of bundles P under the same number of paths M , we can accelerate NKRR/LKRR by
increasing P . The test results in Jain and Oosterlee (2015) show that the pricing error decreases
when the number of bundles increases. (However, the computation time will increase in their test.)
Combining these two, we can expect that NKRR/LKRR may run faster and with higher accuracy
as the number of bundles increases. Figures 3 and 4 display the corresponding test results. The error
bars in Figures 3(b) and 4(b) are calculated according to the confidence intervals of the benchmark
prices in Table 2 (similarly for the error bars in Figures 5 and 6 below). Figure 3 confirms our
guess and the error and running time both decrease as the number of bundles increases for d = 30.
However, Figure 4 gives the negative result that the error decreases first and increases after P > 200.
The reason is that with P increasing, there are fewer regression points in each bundle, which may
lead to higher estimation errors.
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Figure 3. Pricing results under GBM for a range of values of P with d = 30.
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Figure 4. Pricing results under GBM for a range of values of P with d = 100.

The results indicate that an optimal P exists, but it is different for options with different pa-
rameters. It would be interesting to develop an algorithm that can quickly find the optimal P .
Incidentally, we also did local regression for LSM and LSMP, but we found it could not improve
the pricing accuracy, i.e., P = 1 is the best choice for LSM/LSMP.
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5.1.3. The robustness test. We use the same λ and C for all the pricing in the same KRR
algorithm. The value of C is selected through calibration and then set fixed to price all the options.
There are two potential concerns. One is whether the price results are sensitive to the value of C
and λ, and the other is whether a same C is able to price options with different parameters. The
aim of the test in this section is to dispel these doubts.
For the first concern, from the theoretical perspective we know that when C changes, the coef-

ficients α̂ (equation (25)) will change accordingly to make the result accurate. We also perform a
numerical test to further confirm this. Figure 5 presents the results for both NKRR and LKRR for
d = 30. Note that we originally set C = 105 and C = 30, respectively, for NKRR and LKRR in
all the pricing, and now let C vary from 0.5C to 1.5C. The errors are all below 0.8% for NKRR,
and below 0.5% for LKRR. We can also see from the figures that our selection of C is not optimal
(but it is sufficient to give accurate results) and the pricing results of our method in Table 1 can
actually be improved by selecting a more suitable C.
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Figure 5. Pricing results under GBM for a range of values of C with d = 30.

We performed the same analysis for λ. The rule we originally use is to simply set λ = 1 for both
NKRR and LKRR. Now we let λ vary from 0.5 to 1.5 and report the results in Figure 6. From the
figure we can see that λ = 1 is nearly optimal for the interval [0.5, 1.5]. The test results confirm
that the rule for setting λ is reasonable for the test cases in this section.
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Figure 6. Pricing results under GBM for a range of values of λ with d = 30.
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For the other concern, Figure 7 reports the pricing results using the same C when one of the
parameters σ, S0, r or ρ changes. For the test when ρ changes, we use the prices of LSM and LSMP
because the prices of Premia are unavailable for ρ > 0. We can see that both NKRR and LKRR
can give accurate results in all the cases. The results show that our method in determining the
hyper parameters is reasonable and robust.
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Figure 7. Pricing results under GBM for various parameters with d = 30.

5.2. Geometric basket put under MJD

In this section, we test the proposed approach on high-dimensional geometric put American options
with payoff function

h(St) =

(
K −

d∏

ν=1

S
1

d

t,ν

)+

. (52)

The prices St follows the multi-dimensional MJD process defined by (41).

5.2.1. Test case design. As there is no reliable price reference for high-dimensional geometric
American options under MJD (in particular, Premia 16, which we use, does not support multi-
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dimensional MJD), we need to design the test cases carefully. Notice that the multi-dimensional
problem can be converted to the one-dimensional problem

S̃t = S̃0 exp

(
(r − q̃ − λ̃J κ̃− 1

2
σ̃2)t+ σ̃Wt

)
exp




N(t)∑

n=1

Z̃J
n


 , (53)

where

S̃t =

d∏

ν=1

S
1

d

t,ν , κ̃ = exp

(
µ̃J +

1

2
(σ̃J)2

)
− 1, λ̃J = λJ ,

µ̃J =
1

d

∑
ν
µJ
ν , σ̃J =

1

d

(∑
i,j

σJ
i σ

J
i ρ

J
ij

) 1

2

,

σ̃ =
1

d

(∑
i,j

σiσiρij

) 1

2

, q̃ =
1

d

∑
ν
(qν +

1

2
σ2
ν + λJκν)−

1

2
σ̃2 − λJ κ̃.

(54)

The parameters for the one-dimensional problem are set as

S̃0 = K = 40, σ̃ = σ̃J =
√
0.05, r = 8%, q̃ = 0,

µ̃J = −0.025, λ̃J = 5, T = 1, N = 10,
(55)

which are the same as in the cases studied in Broadie and Yamamoto (2003). The true price is 6.995,
and based on this we can solve an inverse problem and design high-dimensional geometric options
that can be converted exactly into this one-dimensional option. Below is one of the solutions:

S0 = K = S̃0, σν = σJ
ν = aσ̃, r = 8%, µJ

ν = µ̃J , λJ = λ̃J ,

qν =
1

2
(σ̃2 − σ2

ν)− λJκν , ρij = ρJij =
d/a2 − 1

d− 1
, a > 1,

(56)

where we set a = 1.5. It can easily be verified that the parameter settings in (56) can be converted
into (55) according to the relationship described in (54) (notice that κ̃ = 0).

5.2.2. Pricing accuracy and efficiency. We then perform multi-dimensional pricing using
our method with

d = {5, 10, 15, 20, 30, 40, 60, 80, 100}, P = 100, M = 10, 000,

without utilizing the fact that the options can be converted to one dimension. We choose the
hyperparameters of the KRR as λ = 1 and C = d× 104 instead of a constant C to get reasonable
results, and this is possibly because ρij and ρJij will also change when d changes (see (56)). For
the infinite sum in Proposition 2, we sum from k = 0 to k = 2 and truncate the remaining terms,
which is sufficiently accurate for the numerical test cases in this section. We again set LSM with
polynomial basis functions up to the second power, and LSMP with additional basis of the payoff
function.
Figure 8 presents the pricing results for the various algorithms, with detailed data in Table 3. We

can see that LSM and LSMP perform poorly in MJD, especially when d ≥ 30, with the errors all
exceeding 5% and even reaching about 40%. In contrast, NKRR and LKRR perform quite well for
each d, with all errors below 2% for NKRR and 1.02% for LKRR. Figure 9 shows the computation
time. It is quite similar as the results under GBM, while LKRR is relatively slower this time.
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Figure 8. Pricing results under MJD for a range of dimensions.
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Figure 9. Computation time under MJD for a range of dimensions with P = 100.

LSM/LSMP run a little faster than NKRR when d < 20. However, the computation time increases
exponentially with d, and LSM/LSMP is slower than LKRR when d > 60. On the contrary, the
computation time of NKRR/LKRR increases linearly with d.
From the pricing tests above, we have learned that both NKRR and LKRR can efficiently give

accurate pricing results under GBM and MJD models. NKRR runs faster and it is simple, but
LKRR can provide relatively more accurate results. We can make a choice according to the practical
requirements.
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Table 3. Pricing results under MJD for a range of dimensions.

d LSM Error(%) LSMP Error(%) NKRR Error(%) LKRR Error(%)

5 6.883(0.079) 1.606 7.067(0.082) 1.023 6.994(0.099) 0.010 6.981(0.064) 0.205
10 6.962(0.104) 0.476 7.022(0.096) 0.391 7.027(0.084) 0.462 7.028(0.044) 0.465
15 7.042(0.048) 0.666 7.115(0.062) 1.722 7.049(0.090) 0.765 6.994(0.075) 0.018

20 7.174(0.061) 2.562 7.210(0.069) 3.075 7.022(0.082) 0.380 7.054(0.094) 0.842
30 7.379(0.058) 5.486 7.427(0.058) 6.179 7.034(0.098) 0.559 7.018(0.099) 0.322

40 7.661(0.067) 9.519 7.685(0.078) 9.859 7.122(0.071) 1.820 7.066(0.083) 1.014

60 8.271(0.058) 18.239 8.267(0.067) 18.178 7.065(0.077) 1.002 7.021(0.074) 0.371

80 8.939(0.089) 27.784 8.930(0.074) 27.665 7.091(0.066) 1.372 7.037(0.043) 0.597

100 9.651(0.092) 37.974 9.654(0.079) 38.016 7.077(0.091) 1.174 7.037(0.053) 0.594

NKRR: λ = 1, C = d× 104; LKRR: λ = 1, C = d× 104;
Benchmark price: 6.995; for other parameters see (55) and (56).

20



January 6, 2020 Quantitative Finance Pricing*high-dimensional*American*options*by*kernel*ridge*regression

5.2.3. Robustness test. We can also perform a robustness test for our method under MJD.
However, we only did the test from the first perspective (i.e., when C or λ changes), as there are
no benchmark prices for the models with different values of the other parameters. The range of C
is again set from 50% to 150%. To be specific, we test different values of d and for each d, we set
C ∈ [0.5d× 104, 1.5d× 104]. Similarly, λ is set to vary from 0.5 to 1.5.
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Figure 10. Pricing results under MJD for a range of values of C and d.

Figure 10 presents the results for NKRR and LKRR. Generally, the pricing errors are within 1%
for much of the range of values. Only for some part of the area for small values of d, the maximum
errors attain about 4% and 3% for NKRR and LKRR, respectively. We can conclude that our
method is robust with respect to the change of C. For the results for different λ’s in Figure 11, we
can see that λ = 1 attains local minimum error rates for NKRR, and nearly global minimum error
rates for LKRR. This confirms the effectiveness of our rule for setting λ for the test cases in this
section.
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Figure 11. Pricing results under MJD for a range of values of λ and d.

5.3. Greeks of max call under GBM

In this section we test the accuracy of the calculation of Delta and Gamma by regression-later
methods with KRR under the GBM model (35). The option is a max call on two correlated assets,
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Figure 12. Greeks calculation results under GBM.

and the parameters and benchmark values are from Wang and Caflisch (2010). The parameters are

K = 100, σ = 0.2, r = 5%, q = 10%, ρ = 0.3, T = 1, N = 3,

S0 = {80, 90, 100, 110, 120, 130}, M = 10, 000, P = 100, λ = 1, C = 0.2.
(57)

Figure 12 reports the result of the Greeks calculation. Our method performs well in computing
the Delta. However, the accuracy of Gamma calculation is unsatisfactory, through it captures the
rough shape of the curve. Our conclusion is similar to Jain and Oosterlee (2015), indicating that
it is difficult to obtain accurate Gamma by the regression-later method.

6. Conclusions and future work

We have shown how to use KRR in regression-based methods for pricing high-dimensional American
options by simulation. There is no basis selection step in our approach, while KRR is not a pure
non-parametric method. By the kernel trick and the Gaussian kernel, KRR can expand the original
input space to an infinite dimensional intrinsic space, so as to avoid selecting basis functions for the
regression and obtain more accurate regression results. Our method is simple, and the numerical
test results show that it is accurate, efficient and robust.
Our contribution is threefold. Firstly, we systematically introduce the main idea and theory

of KRR and apply it to American option pricing for the first time. Secondly, we show how to
use KRR with the Gaussian kernel in the regression-later method and give the computationally
efficient formulas for estimating the continuation values and the Greeks. Thirdly, we propose to
accelerate and improve the accuracy of KRR by performing local regression based on the bundling
technique. We also consider the implementation aspect and carry out comprehensive numerical
tests to compare the results and show the robustness of our method.
Inevitably, our method has both prons and cons, and one should pay attention to some pitfalls

when applying it. First, the time complexity of KRR is O(M3), so it is not sensible to directly
use KRR for a problem with large datasets. One of the solutions is to divide the samples and
do local regression. Second, the selection of the kernel function is important, or else one may be
unable to obtain the explicit expression of the kernel in LKRR. The optimal hyperparameters can
be selected by cross-validation. However, as standard cross-validation is time consuming, it needs
further consideration for problems like pricing American options by simulation, which involves
regression with large samples at each time-step. Third, KRR needs to use the original training
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dataset when performing the prediction. This is not memory efficient when getting lower estimation
of the American option price by an early-exercise policy and newly simulated paths.
In future work, we envisage two tasks to make our method more complete. First, we plan to find

a more effective way to select the Gaussian kernel parameter C and determine the optimal number
of bundles P . Second, we would like to consider constructing the lower and upper price bounds for
our method based on a path estimator and the dual method.
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Appendix A: Proof of Lemma 1

Proof. We first write X as µ+Y, Y ∼ N(0,Σ). Then we have

E
[
e−

1

C
X⊤X

]
= E

[
e−

1

C
(µ+Y)⊤(µ+Y)

]
= e−

1

C
µ⊤µE

[
e−

1

C
(2µ⊤Y+Y⊤Y)

]

=
e−

1

C
µ⊤µ

(2π)d/2|Σ|1/2
∫

Rd

e−
1

C
(2µ⊤Z+Z⊤Z)e−

1

2
Z⊤Σ−1ZdZ

=
e−

1

C
µ⊤µ

(2π)d/2|Σ|1/2
∫

Rd

e−
2

C
µ⊤Z− 1

2
Z⊤( 2

C
I+Σ−1)ZdZ

=
e−

1

C
µ⊤µ

| 2C I+Σ−1|1/2|Σ|1/2
| 2C I+Σ−1|1/2

(2π)d/2

∫

Rd

e−
2

C
µ⊤Z− 1

2
Z⊤( 2

C
I+Σ−1)ZdZ

=
1

| 2CΣ+ I|1/2
e−

1

C
µ⊤µE

[
e−

2

C
µ⊤Z

]
, Z ∼ N

(
0,

(
2

C
I+Σ−1

)−1
)
.

(A1)

According to the formula for characteristic function of multivariate normal distribution, we have
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It can be verified that
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This concludes the proof.

Appendix B: Proof of Proposition 1

Proof. As

Xi+1 −X
(m)
i+1

∣∣∣Xi ∼ N
(
µi+1 −X

(m)
i+1, hΣS

)
, (B1)

where µi+1 = (µi+1,1, ..., µi+1,d)
⊤ and

µi+1,ν = Xi,ν + (r − qν −
1

2
σ2
ν)h, ν = 1, ..., d, (B2)
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according to Lemma 1 we have
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By substituting (B3) into (34) we will get
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Appendix C: Proof of Proposition 2

Proof.
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where the inner summation can be calculated according to Lemma 1 with the corresponding normal
distribution in (44).

Appendix D: Proof of Proposition 3

Proof. We have

∆ν =
∂Q̂0(S0)

∂Sν
0

= Di,i+1

M∑

m=1

α̂1,m

∂E
[
K(S

(m)
1 ,S1)|S0

]

∂Sν
0

= Di,i+1

M∑

m=1

α̂1,m

∂E
[
K(X

(m)
1 ,X1)|X0

]

∂Xν
0

1

Sν
0

.

(D1)

According to Proposition 1, one can obtain by straightforward manipulations
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where γm = Σγ
(
µ1 −X

(m)
1

)
and Σγ = − 2

C

(
2h
C ΣS + I

)−1
. Therefore,

∆ν =
Di,i+1

Sν
0

M∑

m=1

α̂1,mγm,νE
[
K(X

(m)
1 ,X1)|X0

]

=
Di,i+1

Sν
0 |2hC ΣS + I|1/2

M∑

m=1

α̂1,mγm,νe
− 1

C
(µ1−X

(m)
1 )

⊤

( 2h

C
ΣS+I)

−1
(µ1−X

(m)
1 ).

(D3)

Similarly,
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where we use the fact that ∂γm,ν

∂Xν
0

= Σγ
νν .
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