
This is a repository copy of Gaussian process regression for binned data.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/155248/

Version: Submitted Version

Article:

Smith, M.T., Álvarez, M.A. and Lawrence, N.D. orcid.org/0000-0001-9258-1030
(Submitted: 2019) Gaussian process regression for binned data. arXiv. (Submitted)

© 2018 The Author(s). For reuse permissions, please contact the Author(s).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Noname manuscript No.
(will be inserted by the editor)

Gaussian Process Regression for Binned Data

Michael Thomas Smith · Neil D Lawrence⋆ · Mauricio A Álvarez

Received: date / Accepted: date

Abstract Many datasets are in the form of tables of

binned data. Performing regression on these data usually

involves either reading off bin heights, ignoring data from

neighbouring bins or interpolating between bins thus

over or underestimating the true bin integrals.

In this paper we propose an elegant method for per-

forming Gaussian Process (GP) regression given such

binned data, allowing one to make probabilistic predic-
tions of the latent function which produced the binned

data.

We look at several applications. First, for differen-

tially private regression; second, to make predictions

over other integrals; and third when the input regions

are irregularly shaped collections of polytopes.

In summary, our method provides an effective way

of analysing binned data such that one can use more

information from the histogram representation, and thus
reconstruct a more useful and precise density for making

predictions.

Keywords Regression · Gaussian Process · Integration
This work has been supported by the Engineering and Physical
Research Council (EPSRC) Project EP/N014162/1. We thank
Wil Ward and Fariba Yousefi for their assistance & suggestions.

⋆Work conducted while at the University of Sheffield.

Michael Thomas Smith
Department of Computer Science
University of Sheffield
E-mail: m.t.smith@sheffield.ac.uk

Neil D Lawrence
Department of Computer Science
University of Sheffield
E-mail: neil@sheffield.ac.uk

Mauricio A Álvarez López
Department of Computer Science
University of Sheffield
E-mail: mauricio.alvarez@sheffield.ac.uk

1 Introduction

Consider the following problem. You want to use a
dataset of children’s ages and heights to produce a

prediction of how tall a child of 38 months will be. The

dataset has been aggregated into means over age ranges:

e.g. those aged 24 to 36 months have an average height

of 90cm, those aged 36 to 48 months, 98cm, etc.

A naive approach would be to simply read off the age

range’s mean. A slightly more advanced method could

interpolate between bin centres. The former method fails

to use the data in the neighbouring bins to assist with

the prediction, while the latter will produce predictions

inconsistent with the dataset’s totals. Ideally we would

have access to the original dataset, however binning
such as this is ubiquitous, sometimes for optimisation

(for storage or processing, for example hectad counts in

ecology, annual financial reports, traffic counts), some-

times as an attempt to preserve privacy (for example

geographical and demographic grouping in the census)

and sometimes due to the data collection method itself

(camera pixels or fMRI voxels; survey selection, as in sec-

tion 5.5; or rain-gauge measurements taken each hour).

The examples in this paper cover some of these use

cases, although many others exist. We also demonstrate

how this method can be combined with differential pri-

vacy (DP), to provide a simple method for performing

DP-regression.

This problem is a particular example of symbolic

data analysis (SDA); in which a latent function or

dataset (micro-data) is aggregated in some way to pro-

duce a series of symbols (group level summaries). In
SDA inference is then conducted at the symbol-level

(Beranger et al, 2018). It often ignores the underlying

likely distributions, often assuming that the data lies

ar
X

iv
:1

80
9.

02
01

0v
2

 [
st

at
.M

L
]

 2
0

M
ay

 2
01

9

2 Michael Thomas Smith et al.

uniformly within the histogram bins (Le-Rademacher

and Billard, 2017) for example.

In this paper, we propose a method for performing

Gaussian Process (GP) regression given such binned

data. Gaussian Processes are a principled probabilistic

method for performing regression. Put simply they pro-

vide a way of describing how one believes data across

input space is correlated, and thus make predictions
using previously given training data. We show how one

can find the correlation between a cuboid region’s in-

tegral and a single point. In essence, the histogram we

are working with can be considered as a simple form

of density estimation. We attempt to extract as much

information as possible from the histogram representa-

tion, and reconstruct a more useful and precise density.
We will later refer to the analytically derived kernel as

the integral kernel.

The analytical method described only applies when

the boundaries of the integral are independent of one an-

other (i.e. the volume to be integrated over is a cuboid)

which often occurs in real datasets, for example in pop-

ulation surveys one might bin people into age ranges

and income ranges. However there are many cases where

the bins are non-cuboid. An obvious example is that

of census tracts, which often follow complicated paths.

Kyriakidis (2004) handles this by approximating the

volumes with sets of points, over which the covariance is

computed. We briefly re-examine this method (including

the problem of point placement and hyperparameter op-

timisation), extending it to use a set of hyperrectangles

to approximate the volumes instead.

The analytical derivation is based on work by Alvarez

et al (2009) in which dynamical systems are modelled

using a Gaussian process. A related article is that of

Ažman and Kocijan (2005) in which derivatives of a

function are observed (rather than the function itself).

This was later used to enforce monotinicity in Riihimäki

and Vehtari (2010). A similar constraint was described

in Gosling et al (2007) who use the observation that a

GP and its derivative are jointly Gaussian. In the current

paper we operate in the opposite direction, and assume

we have observations of a collection of definite integrals

of a latent function. Oakley and O’Hagan (2007) follow

a similar line of reasoning to this paper and use this

to sample the posterior using MCMC. Our method has

the advantage that it has a closed form solution, but
the use of MCMC allowed them to integrate over the

model’s hyperparameters and enforce other constraints

(such as non-negative latent functions, for example if

they are describing a probability density function). Our

method operates over higher dimensions and its speed

means it can be used as part of an approximation for

non-rectangular regions, as in Section 4.1. The work of

Calder and Cressie (2007) is also related, as it focuses

on the creation of new kernels though integration. In
their case however it was to apply convolution to the

latent function.

Note that, unlike probabilistic integration (O’Hagan,

1991), we are not trying to integrate a function, but
rather have been given the integrals of an unknown

‘latent’ function and wish to reconstruct this unknown

function.

There is a slight relationship with the combining of

basis functions in functional analysis. In Ramsay (2006,

equation 16.3), the authors describe how a new kernel

is created by summing over the basis functions of two

one-dimensional bases, somewhat like how we integrate

over the (effectively infinite, for a GP) basis functions

that lie over the domain being integrated.

We derive both the analytical and approximate forms

of the kernel, then demonstrate the methods on a series

of simulated and real datasets and problems.

2 Analytical Derivation

To begin we consider the analytical formulation in which

we believe that there is a latent function that has been

integrated to provide the outputs in the training data.

We assume, for now, that we want to make predictions

for this latent function. To proceed via Gaussian pro-

cess regression (Williams and Rasmussen, 2006) and

continuing with our child-height example, we assume

that there is some latent function, f(t), that represents

the values of height as a function of age. The summary

measures (average over age ranges) can then be derived

by integrating across the latent function to give us the

necessary average. Importantly, if the latent function is

drawn from a Gaussian process then we can construct a

Gaussian process from which both the latent function

and its integral are jointly drawn. This allows us to

analytically map between the aggregated measure and

the observation of interest.

To summarise, we assume that a second function,

F (s, t), describes the integral between the ages s and t

of f(·) and we are given observations, y(s, t), which are

noisy samples of F (s, t).

A Gaussian process assumption for a function speci-

fies that for a set of random variables, the outputs are

jointly distributed as a Gaussian density with a par-

ticular mean and covariance matrix. The integration

operator effectively adds together an infinite sum of

scaled covariances. In summary there will be a Gaussian

process with a covariance which describes individually

and jointly, the two functions f(t′) and F (s, t). Such

a Gaussian process is specified, a priori, by its mean

Gaussian Process Regression for Binned Data 3

function and its covariance function. The mean function

is often taken to be zero. It is the covariance function

where the main interest lies.

To construct the joint Gaussian process posterior

we need expressions for the covariance between values

of f(t) and f(t′), values of F (s, t) and F (s′, t′) (i.e.

the covariance between two integrals) and the ‘cross
covariance’ between the latent function f(t′) and the

output of the integral F (s, t). Where t, t′, s and s′

specify input locations.

For the underlying latent function we assume that

the covariance between the values of the latent function

f(·) is described by the exponentiated quadratic (EQ)

form,

kff (u, u
′) = α e−

(u−u′)2

l2 ,

where
√
α is the scale of the output and l is the (cur-

rently) one-dimensional length-scale.1 We are given

training points from the integral F (s, t) =
∫ t

s
f(u)du.

Reiterating the above, if f(u) is a GP then F (s, t) is also

a GP with a covariance we can compute by integrating

the covariance of f(u),

kFF ((s, t), (s
′, t′)) =

∫ t

s

∫ t′

s′
kff (u, u

′) du′du.

Substituting in our EQ kernel, and integrating,

kFF ((s, t), (s
′, t′)) =

1

2

√
πlα

[

(s′ − s) erf

(

s− s′

l

)

+ (s− t′) erf

(

s− t′

l

)

+ s′ erf

(

s′ − t

l

)

+ t erf

(

t− s′

l

)

+ (t− t′) erf

(

t′ − t

l

)

+
l√
π

(

−e−
(s−s′)2

l2 +e−
(s−t′)2

l2 +e−
(s′−t)2

l2 −e−
(t−t′) 2

l2

)

]

,

(1)

where erf(·) is the Gauss error function. For ease of

interpretation and later manipulation we rewrite this

as,

kFF ((s, t), (s
′, t′)) = α

l2

2

×
[

g

(

t− s′

l

)

+ g

(

t′ − s

l

)

− g

(

t− t′

l

)

− g

(

s− s′

l

)]

(2)

1 There is a
√
2 difference between our length-scale and

that normally defined, this is for convenience in later integrals.
Note that other kernels could be substituted, with associated
work to integrate the kernel’s expression. The supplementary
contains a demonstration using the exponential kernel instead.

where we defined g(z) = z
√
πerf(z) + e−z2

.

Because we are interested in computing a prediction
for the latent function (i.e. the density) that’s been inte-

grated, it would be useful to have the cross-covariance

between F and f . If we assume that the joint distribu-

tion of F and f is normal, we can calculate the cross-

covariance,

kFf ((s, t), (t
′)) = α

√
πl

2

×
(

erf

(

t− t′

l

)

+ erf

(

t′ − s

l

))

. (3)

When using this ‘integral kernel’ in a real GP regres-

sion problem we are likely to need to select appropriate

hyperparameters. Typically this is done using gradient

descent on the negative log marginal-likelihood, L, with

respect to the hyperparameters. In this case, we need

the gradient of kFF wrt l and α (respectively, the length-

scale and variance of the latent EQ function).2 Defining

h(z) = z
√
π

2 erf(z) + e−z2

, we can write the gradient

as

∂kFF ((s, t), (s
′, t′))

∂l
= αl

×
[

h
(t− s′

l

)

+ h
(t′ − s

l

)

− h
(t− t′

l

)

− h
(s− s′

l

)]

. (4)

Similarly we can compute the gradient of the hyper-

parameters with respect to the cross-covariance (kFf).

Defining another support function d(z) = z
√
π

2 erf(z)−
ze−z2

, we can show that the gradient is

∂kFf ((s, t), (s
′))

∂l
= α×

[

d
(t− t′

l

)

+ d
(t′ − s

l

)]

. (5)

We need the gradients of the hyperparameters of the
latent function’s kernel kff , we will not state these here

as they are already well known.

For each kernel above we can compute the gradient

with respect to α simply by returning the expression for

the appropriate kernel with the initial α removed.

The same idea can be used to extend the input to

multiple dimensions. If we specify that each dimension’s

kernel function contains a unique lengthscale parameter,

with a bracketed kernel subscript index indicating these

differences, we can express the new kernel as the product
of our one dimensional kernels,

kFF ((s, t), (s
′, t′)) =

∏

i

kFF (i)((si, ti), (s
′
i, t

′
i)), (6)

2 These gradients are then multiplied by ∂L
∂kFF

by the GP

framework to give the gradients ∂L
∂l

and ∂L
∂α

.

4 Michael Thomas Smith et al.

with the cross covariance given by

kFf ((s, t), (t
′)) =

∏

i

kFf(i)((si, ti), (t
′
i)).

3 Non-negative latent function constraint

It is common for the latent function to describe a feature

which is known to be non-negative. Examples include

house prices, people’s heights and weights, populations,

etc. We therefore may wish to constrain the model to

only produce non-negative predictions. To address this

problem we use as a basis the work of Riihimäki and
Vehtari (2010) who constrain a GP posterior mean to

be approximately monotonic by adding ‘virtual points’.

We could use a similar mechanism by adding virtual

points that specify observations of our latent function
instead. The likelihood of these new points is no longer

Gaussian. Instead we use a probit function (as in the

reference) with probability approaching zero if negative,
and probability approaching one if positive. This non-

Gaussian likelihood fails to remain conjugate with the

prior. We therefore compute an approximate posterior

by applying the expectation propagation (EP) algorithm,

as suggested in the reference.

We refrain from reproducing the full derivation of the

EP site parameters as the full details are in Riihimäki

and Vehtari (2010), however to summarise, we have two

types of observation; integrals over the latent function

and virtual observations of the latent function itself.

For the former the likelihood remains Gaussian, for

the latter we use a probit likelihood. The posterior

is approximated using EP. We have a joint Gaussian

process that describes the latent function, f and its

definite integrals, F over hyperrectangles. We use the

same expression of Bayes’ rule as in Riihimäki and

Vehtari (2010),

p(F, f |y, z,X,V) =
1

Z
p(F, f)p(y|F,X)p(z|f,V)

but here y are the observations of the definite integrals

(at X) of the latent function, z is a placeholder vector

representing the latent function’s non-negative status at
the virtual point locations, V . The two likelihood terms

are,

p(y|F,X) =

N
∏

i=1

N
(

yi|F (xi), σ
2
)

p(z|f,V) =

M
∏

j=1

Φ

(

f(vj)

ν

)

The normalisation term is,

Z =

∫

p(F, f)p(y|F,X)p(z|f,V) dFdf

We then proceed with the EP algorithm to compute a

Gaussian approximation to the posterior distribution,

q(F, f |y, z,X,V)

=
1

ZEP

p(F, f)p(y|F,X)

M
∏

i=1

ti(Z̃i, µ̃i, σ̃i),

where ti are scaled Gaussian, local likelihood approxi-

mations, described by the three ‘site parameters’. Thus

the posterior in this approximation is again Gaussian

and a mean and covariance can be computed, using the

EP algorithm (iteratively updating the site parameters

and normalising term until convergence).

A final step, once the latent function’s mean and

variance has been computed is to use the probit link
function to generate our posterior prediction, specifi-

cally, given the distribution of the latent function predic-

tion p(f∗|X,y,x∗,V) we produce a final prediction fed

through the probit link,
∫

Φ(f∗)p(f∗|X,y,x∗,V)df∗.

Finally a quick note on the placement of the virtual

points. The original paper discusses a few possible ap-

proaches; for low-dimensional inputs we can space these

points evenly over a grid. For higher dimensions one

could restrict oneself to placing these points in locations

with high probability of being negative. In the examples

in this paper where they are used, the dimensionality of

the data set is low enough that using a grid of virtual

points remains tractable.

4 Arbitrary Polygon Shapes

The product of kernels (6) assumes that we integrate be-

tween ti and t′i for each dimension i, giving a Cartesian

product of intervals. This constrains us to regions con-

sisting of rectangles, cuboids or hyperrectangles. Thus

if our input regions are described by polytopes3 that

are not hyperrectangles aligned with the axes, then the

above computation is less immediately tractable, as

the boundaries of the integral kernels will interact. For

specific cases one could envisage a change of variables,

but for an arbitrary polytope we need a numerical ap-

proximation. Classical methods for quadrature (such as

Simpson’s method, Bayesian Quadrature, etc) are not

particularly suited for this problem, either because of

the potential high-dimensionality, or the non-alignment

with the axes. If one considered Bayesian Quadrature

3 A polytope is the generalisation of a polygon to arbitrary
numbers of dimensions.

Gaussian Process Regression for Binned Data 5

(O’Hagan, 1991) for example, one is left with an analyt-

ically intractable integral, with a function with discon-

tinuities describing the boundary of the polytope. We

instead follow the more traditional approach described

by Kyriakidis (2004) who propose a numerical approx-

imation that mirrors the exact analytical methods in
this paper. Specifically they find an approximation to

the double integral (2) of an underlying kernel (equation

5 in the reference). Given a uniformly random set of

locations (X and X ′) in each polygon, one sums up the

covariances, kff (xi,x
′
i), for all these pairings. Then to

correct for the volumes of the two regions one divides

by the number of pairings (NN ′) and multiplies by the

product of their areas/volumes (A and A′) to get an

approximation to the integral,

kFF (X,X ′) ≈ AA′

NN ′

N
∑

i=1

N ′

∑

j=1

kff (xi,x
′
j).

Note that an advantage of this numerical approxima-
tion is the ease with which alternative kernels can be
used. Their paper does not address the issue of point

placement or hyperparameter optimisation. We decided

the most flexible approach was to consider every object

as a polytope. Each object is described by a series of S

simplexes, and each simplex is described by d+1 points

(each consisting of d coordinates). Selecting the sim-

plexes is left to the user, but one could build a 3d cube

(for example) by splitting each side into two triangles

and connecting their three points to the cube’s centre,

thus forming 12 simplexes, requiring 12× 4× 3 = 144

input values. Next, for every input polytope we place

points. We summarise a method for point placement
in Algorithm 1 which describes how one might select

points distributed uniformly within each polytope. This

method guarantees points will be placed in the larger

simplexes that make up the set of polytopes (if the ex-

pected number of points within that simplex is greater

than one) which means that the points will be placed

pseudo-uniform-randomly, aiding the approximation as

this offers a form of randomised quasi-Monte Carlo
sampling. We compared this to a simple Poisson-disc

sampling combined with the simplex sampling to fur-

ther reduce discrepancy.4 Finally, for each pair of points

between each pair of polytopes we compute the covari-

ance and the gradient of the kernel with respect to the

hyperparameters, θ. To compute the gradient of the

likelihood, L, with respect to the hyperparameters, we

need to compute the gradients for all the N ×N ′ point

pairings, using the kernel, kff (·, ·), of the latent func-

4 Future work might also wish to compute an equivalent to
the Sobel sequence for sampling from a simplex.

tion, and average (taking into account the areas (A and

A′) of the two polygons);

∂L

∂θ
=

AA′

NN ′

N
∑

i=1

N ′

∑

j=1

∂kff (xi,x
′
j)

∂θ

∂L

∂kff (xi,x′
j)
.

4.1 Hyperrectangle Numerical Approximation

One obvious proposal is to combine the numerical and

analytical methods. We also generalise the above method

to handle the covariance between a pair of sets of poly-

topes. Specifically, rather than approximate a set of

polytopes with points, one could, conceivably achieve a

higher accuracy by replacing the points with the same

number of hyperrectangles, placed to efficiently fill the
polytopes. As with the point method, but with hyper-

rectangles; we compute the covariance kFF between all

pairings of hyperrectangles from the different sets of
polytopes and then sum these to produce an estimate

for the covariance between the two sets of polytopes

(potentially correcting for the volume of the two sets

of polytopes if the two sets of hyperrectangles do not

completely fill them). Specifically, we compute,

kFF (X,X ′) ≈
N
∑

i=1

N ′

∑

j=1

AiA
′
j

aia′j
kFF (xi,x

′
j),

where Ai refers to the volume of the polytope associated

with hyperrectangle i (note other hyperrectangles may

also be associated with that polytope), and ai is the sum

of the volumes of all the hyperrectangles being used to

approximate the same polytope. Thus their ratio gives

us a correction for the hyperrectangle’s volume shortfall.

The placement of the hyperrectangles is a more com-

plex issue than the placement of the points in the pre-

vious section. For the purposes of this paper we use

a simple greedy algorithm for demonstration purposes.

Other work exists on the time complexity and efficient

placement of rectangles to fill a polygon, although many

either allow the rectangles to be non-axis-aligned or

requires the polygon to be an L shape (Iacob et al, 2003)

or orthogonal, or are only for a single rectangle (Daniels

et al, 1997) in a convex polygon (e.g. Knauer et al,

2012; Alt et al, 1995; Cabello et al, 2016). We found the

straightforward greedy algorithm to be sufficient.

5 Results

We illustrate and assess the above methods through a

series of experiments. We start, in Section 5.1 with a

simple one-dimensional example in which we have noisy

6 Michael Thomas Smith et al.

Algorithm 1 Pick a random point inside a polytope.
Require: T , the polytope we want to fill with samples -

described by a list of d× n matrices defining simplexes. d
spatial dimensions and n = d+ 1 vertices.

Require: ρ, density of points (points per unit volume)

1: function GetUniformSamples(T , ρ)
2: for Simplex, S in T do

3: V ← CalcVolume(S)
4: for 0 ≤ i < V ρ do

5: P ← P ∪ SimplexRandomPoint(S)
6: end for

7: end for

8: end function

9:
10: function CalcVolume(S made of vertices v0...vn−1)

⊲ modified from Stein (1966)
return

∣

∣

1
d!

det [v1 − v0, v2 − v0, . . . , vn−1 − v0]
∣

∣

11: end function

12:
13: function SimplexRandomPoint(S)

⊲ Algorithm duplicated from Grimme (2015)
14: z ← [1] ++ uniform(d) ++ [0] ⊲ see footnote†

15: li ← z
1/(n−i)
i 1 ≤ i ≤ n

return
∑n

i=1 (1− li)(
∏i

j=1 lj)vi

16: end function
†uniform(d) selects d uniformly random numbers. ++ is the
concatenation operator.

observations of a series of definite integrals and we want

to estimate the latent function. In Section 5.2 we use

another synthetic dataset to illustrate the non-negative

virtual point constraints on the posterior. In Section

5.3 we use a real dataset describing the age distribu-

tion of a census tract, with the individuals providing

the data made private through the differential privacy

framework (Dwork and Roth, 2014). We demonstrate

how the method can support inference on noisy, differen-

tially private data and test the non-negative constrained

integral. In Section 5.4 we consider another histogram

example, but this time with a higher dimensional input,

of the durations of hire bike users, given the start and

finish station locations. In Section 5.5 we extend the

method to predict other integrals (not just densities).
Finally in Section 5.6 we consider non-rectangular input

volumes and compare numerical approximations for GP

regression. In these later sections the latent function

output is far from zero, thus the non-negative constraint

had no effect (and is not reported).

5.1 Speed Integration Example

Before looking at a real data example, we illustrate the

kernel with a simple toy example. We want to infer

the speed of a robot that is travelling along a straight

line. The distance it has travelled between various time

points has been observed, as in Table 1. A question we

2 0 2 4 6 8 10
Time / s

2

0

2

4

6

8

10

Sp
ee

d
/ m

s
1

Fig. 1 Illustration of how the robot’s speed can be inferred
from a series of observations of its change in location, here
represented by the areas of the four rectangles. The blue lines
indicate the posterior mean prediction and its 95% confidence
intervals.

might ask, how fast was the robot moving at 5 seconds?

We enter as inputs the four integrals. We select the

lengthscale, kernel variance and Gaussian noise scale by

maximising the log marginal likelihood, using gradient

descent (Williams and Rasmussen, 2006, Section 5.4.1).

We now can make a prediction of the latent function at

five seconds using standard GP regression. Specifically

the posterior mean and variances are computed to be,

f̄∗ = k⊤
F∗(KFF + σ2I)−1y (7)

V[f∗] = k∗∗ − k⊤
F∗(KFF + σ2I)−1kF∗, (8)

where KFF is the covariance between pairs of integrals,

kF∗ is the covariance between a test point in latent

space and an integral. σ2 is the model’s Gaussian noise

variance. y are the observed integral outputs and k∗∗ is

the variance for the latent function at the test point.

The optimal hyperparameters that maximise the log

marginal likelihood, are for the kernel to have variance

of 12.9m2s−2 and lengthscale 7.1s, model likelihood

Gaussian noise, 0.6m2s−2.

Figure 1 illustrates the four observations as the areas

under the four rectangles, and shows the posterior pre-

diction of the GP. To answer the specific question above,

the speed at t = 5s is estimated to be 4.87± 1.70ms−1

(95% CI). We constructed the synthetic data with a

function that increases linearly at 1ms−2, with added
noise. So the correct value lies inside the prediction’s

CIs.

5.2 Non-negative constraint

As a simple demonstration of the non-negative con-
straint in operation, we consider a synthetic one di-

Gaussian Process Regression for Binned Data 7

Start location / m End location / m Time
0 8 33.47
2.5 3.5 3.49
4 6 9.56
7 8 8.27

Table 1 Simulated observations of robot travel distances.
Figure 1 illustrates these observations with rectangle areas.

Fig. 2 Synthetic dataset demonstrating the use of virtual
points (locations indicated by red ticks below axis) to enforce
non-negativity. Mean, solid blue line; 95%-CI, dashed blue line.
The upper figure uses a simple Gaussian likelihood without
virtual points. The lower figure has a grid of virtual points
and a probit likelihood function for these observations. Note
that the latent posterior mean and uncertainty is fed through
this link function to produce the mean and CIs plotted.

mensional dataset of eight observations arranged to

encourage the posterior mean to have a negative re-
gion. We then place a regular grid of fifty-three virtual

points over the domain. Figure 2 illustrates both the

standard Gaussian-likelihood prediction and the result

with these probit-likelihood virtual points. There are no

observations between output locations eight and eigh-

teen leaving the function largely unconstrained thus

there is large uncertainty in this part of the domain.

The reader may notice that the uncertainty in this part

of the domain is greater for our constrained model. This

is not directly a result of the constraints, but rather due
to shorter lengthscales. When the GP hyperparameters

were optimised for the constrained example, the length-

scales chosen by the ML procedure were significantly

shorter (4.36 instead of 10.37), one can see that this is

necessary, as any function that both fits the data but

also avoids becoming negative requires a relatively steep

change in gradient (around eight and eighteen in the

plot).

5.3 Differentially Private Age Data

We consider the age distribution of 255 people from a
single output area (E00172420) from the 2011 UK cen-

sus.5 We also make this histogram differentially private,

to demonstrate the improved noise immunity of the new
method. We group the people into a histogram with

equal ten year wide bins, and add differentially private

noise using the Laplace mechanism (Dwork and Roth,

2014, section 3.3). Specifically we take samples from a

scaled Laplace distribution and add these samples to

the histogram’s values. The Laplace noise is scaled such

that the presence or absence of an individual is provably
difficult to detect, using the ε-DP Laplace mechanism.

One can increase the scale of the noise (by reducing ε)

to make it more private, or increase ε, sacrificing privacy

for greater accuracy. The aim is to predict the number

of people of a particular age. We use four methods; (i)

simply reading off the bin-heights, (ii) fitting a standard

GP (with an EQ kernel) to the bin centroids, (iii) using
a GP with the integral kernel or (iv) using the integral

kernel, constrained to be non-negative.

Figure 3 demonstrates these results. Note that the

GP with an integral kernel will attempt to model the

area of the histogram, leading to a more accurate pre-

diction around the peak in the dataset. The figure also

indicates the uncertainty quantification capabilities pro-
vided by using a GP. Not all applications require or will

use this uncertainty, but we have briefly quantified the

accuracy of the uncertainty by reporting in Table 2 the

proportion of the original training data that lies outside

the 95% CI (one would expect, ideally, that this should

be about 5%).

To explore the interaction of the methods with the

addition of noise to the data, we manipulate the scale

of the DP noise (effectively increasing or decreasing the

scale of the Laplace distribution) and investigate the

effect on the RMSE of the four methods. Remember

5 a peak of students at age 18 was removed, so the graph
only includes the permanent residents of the area.

8 Michael Thomas Smith et al.

ε Simple Centroid Integral Non-Neg 95% CI
0.01 15.505 6.165 [16%] 5.236 [7%] 5.282 [54%] 0.024
0.10 5.242 2.139 [25%] 2.158 [9%] 2.826 [35%] 0.051
0.20 5.087 1.916 [22%] 1.735 [8%] 1.966 [12%] 0.046
0.50 5.032 1.874 [19%] 1.652 [7%] 1.715 [11%] 0.012
1.00 5.033 1.835 [16%] 1.611 [7%] 1.696 [12%] 0.005
not-DP 5.030 1.962 [7%] 1.604 [7%] 1.690 [12%] 0.000

Table 2 RMSE for all 100 age bins, for the simple (directly read off histogram), centroid (EQ GP fit to bin centres), integral
method and the integral method with the non-negative constraint, for various levels of differential privacy. Computed RMSE
using 30 DP samples. 10,000 bootstrap resamples used to compute 95% CI estimate (to 1 significant figure), value quoted is
largest of four columns for simplicity. In [brackets] we have recorded the percentage of predictions that lay outside the 95% CI
of the posterior. Bin size, 10 years.

0 20 40 60 80 100
Age / years

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

simple
centroid
integral
non-neg

Fig. 3 Various fits to an age histogram of 255 people in
which the data has been aggregated into ten-year wide bins
(in this case we have not added DP noise), with the original
data plotted as grey bars. The dotted, green line uses the bin
heights to make predictions directly. The dashed, blue line
fits an EQ GP to the centroids of the bins. The red solid line
is the prediction using the integral kernel. The solid green
line is the integral kernel constrained to be positive. The 95%
confidence intervals are indicated with fainter lines.

that decreasing the value of ε makes the prediction more

private (but more noisy). This is not cross-validated

leave-one-out, as the use-case includes the test point in

the aggregation.

Table 2 illustrates the effect of the DP noise scale

on the RMSE. We find that the integral method per-
forms better than the others for all noise-scales tested.

Intriguingly the simple method seems to be less affected

by the addition of DP noise, possibly as the two GP
methods effectively try to use some aspect of the gra-

dient of the function, an operation which is vulnerable

to the addition of noise. The integral method seems

particular useful in the most commonly used values of ε,

with meaningful reductions in the RMSE of 13%. The

non-negative method does not perform as well. We have

set to zero all the negative training data (by default

adding the DP noise will make some of the training
points negative). If one considers the portion of the

domain over 60 years, one can see that the mean of the

non-negative-constrained integral-kernel posterior is a

little above the others. This occurs as, if one imagines

the effect of the non-negative constraint on all possible

functions, they will all lie above zero, thus the constraint
pushes the mean upwards, i.e. even if the mean without

the constraint was non-negative, this mean would have

included negative examples. The effect is a worsening

of the RMSE/MAE, as many of the training points are

zero (which is now further from the posterior mean).

The proportion that fall inside the 95% CI is also low

as many of the test points are zero, and this model’s

95% CI typically will not quite include zero itself.

To describe the DP noise (and potentially differences
in the expected noise if the integrals represent means,
for example) we added a white noise heteroscedastic

kernel to our integral kernel. This effectively allows

the expected Gaussian noise for each observation to

be specified separately. One could for example then

specify the Gaussian noise variance as σ2/ni where ni

is the number of training points in that histogram bin

(if finding the mean of each bin). If the histogram is the

sum of the number of items in each bin we should use a

constant noise variance.

5.4 Citibike Data (4d hyperrectangles)

The above example was for a one-dimensional dataset.

We now consider a 4d histogram. The New York based

citibike hire scheme provides data on the activities of its

users. Here we use the start and end locations (lat and

long) to provide the four input dimensions, and try to

predict journey duration as the output. To demonstrate

the integral kernel we bin these data into a 4-dimensional

grid, and find the mean of the data points that lie within

each bin. To investigate the integral kernel’s benefits we

vary the number of bins and the number of samples in

these bins. As before we compare against an alternative

Gaussian Process Regression for Binned Data 9

method in which we fit a GP (using an EQ kernel) to

the centroids of the bins. Note that bins that contain no

datapoints were not included as training data (as their

mean was undetermined). We chose the two models’

hyperparameters using a grid search on another sample

of citibike data and assess the models by their ability

to predict the individual training points that went into

the aggregation.

Table 3 illustrates these results. One can see obvious

features; more samples leads to more accurate predic-

tions and small numbers of bins causes degradation in
the prediction accuracy. However, most interesting is

how these interact with the two methods. We can see
that for low numbers of bins the integral method does

better than the centroid method. With, for example,

54 = 625 bins, the integral method provides no addi-

tional support as the data is spread so thinly amongst

the bins. The integral kernel will simply act much like

the latent EQ kernel. Specifically, these first two exper-

iments suggest that when there are many data points

the two methods are fairly comparable, but the integral

kernel is of greatest utility when there either are few

samples (as shown in Table 3), or they contain con-

siderable noise (as shown in Table 2, for low values of

ε).

5.5 Audience Size Estimation (predicting integrals not

densities)

We may also wish to produce predictions for new bins.

A motivating, real, example is as follows. Imagine you

work for a market research company and have a cohort

of citizens responding to your surveys. Each survey re-

quires a particular audience answers it. For example the

company’s first survey, in January, required that respon-

dents were aged between 30 and 40 of any income. They

had 320 replies. In February a second survey required

that the respondents were aged between 25 and 35 and

earned at least $30k, and had 210 replies. In March

their third survey targeted those aged 20 to 30 with an

income less than $40k. How many respondents might

they expect? The latent function is population density

across the age and income axes, while the outputs are

population counts. We can use expressions (2) & (3) as

described at the start of Section 2 but use kFF instead

of kFf when making predictions (the inputs at the test

points now consist of the boundaries of an integral, and

not just the location to predict a single density). Figure

4 illustrates this with a fictitious set of surveys targeting

sub-groups of the population.

We simulated a population of 5802 survey-takers by

sampling from the US census bureau’s 2016 family in-

come database. We distribute the start dates randomly,

with a skew towards younger participants. For the ex-

ample in Figure 4 we computed a prediction for the
test region using the integral kernel. We compared this

to a model in which the counts had been divided by

the volumes of the cuboids to estimate the density in

each, and used these with the centroid locations to fit a
normal GP (with an EQ kernel) to estimate the density

(and hence count) in the test cuboid. For this case we
found that both methods underestimated the actual
count (of 1641). The centroid method predicted 1263

(95% CI: 991-1535), while the integral method predicted
1363 (95% CI: 1178-1548). The shortfalls are probably

due to the skew in the participant start times towards

the older portion. The previous training cuboids would

have had lower densities, leading to the underestimates

here. Intriguingly the integral method still produces a

more accurate prediction.

To test this more thoroughly, we simulate 1998 sets

of surveys (between 6 and 19 surveys in each set) over

this data, and compare the RMSE (and MAE) of the

two methods when predicting the number of respondents
to a new survey. Table 4 shows that the integral method
produces more accurate results in this simulated dataset.

5.6 Population Density estimates (2d non-rectangular
disjoint inputs)

In earlier sections we assumed rectangular or cuboid in-

put regions in the training set. However many datasets

contain more complicated shapes. In this section we
briefly apply the numerical approximation devised by

Kyriakidis (2004) and extended in section 4 to use hy-

perrectangles to fill the polytopes. In this example we

use the population density of areas from the UK cen-

sus. In particular those output areas lying within a

16km2 square, centred at Easting/Northing 435/386

km (Sheffield, UK). We assume, for this demonstration,

that we are given the total population of a series of

40 groupings of these output areas (the output areas
have been allocated to these sets uniformly and ran-

domly). This simulates a common situation in which

we know the aggregate of various subpopulations. The

task then is to predict the population density of the

individual output areas that make up the aggregates.

Figure 5 demonstrates example placement results, while

Table 5 demonstrates the effect of changing the num-
ber of points/rectangles on the MAE. For the lowest

numbers of approximating points the hyperrectangle

approximation had a lower MAE for an equal number

of approximating points. Significantly more points were

needed (approximately 3-4 times as many) when using

points to approximate the MC integration than when

using the hyperrectangles, to reach the same accuracy.

10 Michael Thomas Smith et al.

Number of bins
24 34 44 54 64

Samples Centroid Integral Centroid Integral Centroid Integral Centroid Integral Centroid Integral
80 487.4 465.1 494.9 482.8 485.9 469.9 478.5 452.8 471.3 474.7
160 487.4 475.5 471.1 481.6 451.0 464.2 425.5 435.7 406.9 408.9
320 473.1 466.2 453.4 438.3 422.4 388.9 408.9 431.9 378.8 374.0

640 468.6 465.5 449.5 435.5 413.4 374.7 372.5 379.9 366.7 365.2

1280 469.8 467.5 450.7 446.3 418.1 375.2 382.1 385.3 375.6 370.1

2560 468.9 467.7 456.9 436.4 420.3 373.1 363.1 360.3 353.0 359.3

Table 3 Mean Absolute Error in predictions of journey duration (in seconds) for the citibike dataset using the integral and
centroid methods, over a variety of sample counts and bin counts. 1000 randomly chosen journeys were used in the test set,
experiment performed once for each configuration. Bold highlights best of each pair.

Fig. 4 A demonstration of the audience-size estimation problem. Within the 3d volume lie the individuals that make up the
population subscribed by the company. Their location in 3d specified by the date they joined, their income and age. Seven
previous surveys (in blue) have been performed over a growing group of clients. Each survey is indicated by a rectangle to
indicate the date it occurred and the age/income of participants recruited. All the participants within the cuboid projected
backwards from the rectangle are those that had already registered by the date of the survey and so could have taken part.
Each volume is labelled with the number of people which took part in each survey. In red is a new survey we want to estimate
the count for.

Method
Integral Centroid

RMSE 126.3 ± 10.74 223.1 ± 14.88
MAE 73.1 ± 4.52 143.5 ± 7.51

Table 4 RMSE and MAE for 1998 randomly generated au-
dience survey requests. 95% CIs for these statistics was calcu-
lated using non-parametric Monte Carlo bootstrapping with
100,000 samples with replacement.

The lower-discrepancy sampling did not appear to signif-

icantly improve the results of the point approximation.

As another example we look at the covariance com-

puted between three sets of polygons illustrated in Fig-

ure 5. We test both the point- and hyperrectangle- ap-

proximations. Table 6 shows the MAE when computing

the covariance between these three sets of polygons. Us-
ing the rectangle approximation reduces the error by

Gaussian Process Regression for Binned Data 11

433 434 435 436 437
Easting / km

383

384

385

386

387

388

No
rth

in
g

/ k
m

Fig. 5 Example of both rectangular and point approximation
to three sets of polygons (from the census output areas of
Sheffield). With approximately 30 rectangles or points used
for each set.

Number of
approximating Mean Abs. Error Std.
points points low-disc hyperrects. error
2 242.3 242.0 198.0 2.1
4 209.2 207.7 183.8 2.5
8 194.4 193.6 185.1 1.8
16 187.3 189.4 187.1 1.1
32 186.1 187.6 185.7 0.9
64 185.5 185.9 185.4 0.4

Table 5 Number of integration approximation features per
input for points, lower-discrepancy points and hyperrectangle
shape integral methods, and the effect this has on the MAE of
the output area density predictions (population density, people
per km2). Reported MAE based on average of twenty point
placement iterations. Maximum std. error for each row shown
(computed from 14 runs of each). Lengthscale = 160m. kernel
variance = 160. Gaussian likelihood variance = 1, variances
originally in units of people2 but the outputs were normalised.

approximately 4 times, for the same number of training
points/rectangles.

Number of points Mean Abs Error
or rectangles Points Rectangles
16 0.0197 0.0049
32 0.0084 0.0018
64 0.0007 0.0002
128 0.0004 < 0.00015

Table 6 Mean Absolute Error in estimates of the covariance
matrix values between the three sets of polygons illustrated
in Figure 5. The estimated 95% error is ±0.0001 due to un-
certainty in true covariance. Isotropic EQ kernel, lengthscale
= 1km.

We experimented briefly at higher dimensions, look-

ing at the estimates of the covariance between a pair of

4-dimensional hyperspheres of radii one and two placed

with centres three units apart, so just touching. Using

an isotropic EQ kernel (lengthscale=2.0) we compared

ten points to ten rectangles in each sphere and found

that the estimated covariance using points (instead of
hyper-rectangles) had roughly double the MAE (specifi-

cally the correct value was 314, with MAEs for points

and rectangles were 50.0 and 25.1 respectively).

6 Discussion

In this paper we have derived both an analytical method

for inference over cuboid integrals and an approximate

method for inference over arbitrary inputs consisting

of arbitrary sets of polytopes. In all the experiments,

the integral kernels were able to improve on widely

used alternatives. However, the improvement was most

pronounced when the training data was binned into

relatively few bins. The first example, using age data

from a census area, demonstrated most clearly why

this method may perform more accurately than the

‘centroid’ alternative; when the dataset has a peak or

trough, the centroid method will fail to fully explain
the bin integrals, and will have shallower responses

to these changes than the data suggests is necessary.
Using the method to predict integrals (Section 5.5) was

particularly effective, when compared to the centroid

alternative. One immediate use case would be estimating

the number of young adults from the age histogram, for
example, for making local-shop stocking decisions, etc;

the centroid method would massively underestimate the

number of people in their mid-20s.

In some of the examples we model count data, this

typically is non-negative, so we incorporate the work of

Riihimäki and Vehtari (2010) to enforce a non-negative

latent function. This changes the posterior considerably

and the ML estimates of the hyperparameters, thus

influencing the entire domain. The practical utility of
this operation probably depends on the dataset, for the

12 Michael Thomas Smith et al.

example we used, the less-principled Gaussian-likelihood-

only method performed slightly better.

Other kernels could be substituted for the EQ. Al-

though this requires some analytical integration work,

we have found for other popular kernels the derivation

straightforward. The supplementary contains an exam-
ple of the exponential and linear kernel.

Finally, in Section 4, we looked at approximation
methods for non-cuboid, disjoint input regions. First

we implemented the point-based approximation of Kyr-

iakidis (2004). Although it did not achieve a particu-
larly practical RMSE on the census dataset, it beat the

centroid alternative, and provides a principled method

for handling such data. However it is likely to be re-

stricted to lower-dimensional spaces due to the increas-

ing number of approximation points required in higher

dimensions. We then replaced the approximation built

of points with one built of rectangular patches, and

used the covariance computed using the integral kernel.

We found we needed considerably fewer rectangles than

points to achieve similar accuracies. It is important to

note though that the benefit from reduced numbers of

training points is likely to be cancelled by the complexity

of the integral kernel’s covariance function, specifically

the computation of four erfs in (2) and (3). However

the relative advantages depend on the shape being ap-

proximated. Clearly an L shape will probably be more

efficiently approximated by two rectangles than by many

randomly placed points. Further improvements are pos-

sible for more complex shapes, as we have not used

the most efficient rectangle placement algorithm. The

rectangles could extend beyond the shape being approx-

imated. One could introduce rectangles that contribute
a negative weight, to delete those outlying regions, or

cancel out patches where two rectangles have overlapped.

We leave such enhancements for future researchers.

In this paper we have proposed and derived princi-

pled and effective methods for analytical and approx-

imate inference over binned datasets. We have tested
these methods on several datasets and found them to be

effective and superior to alternatives. This provides an

easy, useful and principled toolkit for researchers and

developers handling histogrammed or binned datasets,

who wish to improve their prediction accuracies.

References

Alt H, Hsu D, Snoeyink J (1995) Computing the largest

inscribed isothetic rectangle. In: Canadian Conference

on Computational Geometry, pp 67–72

Alvarez M, Luengo D, Lawrence N (2009) Latent force

models. In: Artificial Intelligence and Statistics, pp

9–16

Ažman K, Kocijan J (2005) Comprising prior knowledge

in dynamic Gaussian process models. In: Proceedings

of the International Conference on Computer Systems
and Technologies, vol 16

Beranger B, Lin H, Sisson SA (2018) New mod-

els for symbolic data analysis. arXiv preprint
arXiv:180903659

Cabello S, Cheong O, Knauer C, Schlipf L (2016) Find-

ing largest rectangles in convex polygons. Computa-

tional Geometry 51:67–74

Calder CA, Cressie N (2007) Some topics in convolution-
based spatial modeling. Proceedings of the 56th Ses-

sion of the International Statistics Institute pp 22–29

Daniels KL, Milenkovic VJ, Roth D (1997) Finding

the largest area axis-parallel rectangle in a polygon.

Computational Geometry 7:125–148

Dwork C, Roth A (2014) The algorithmic foundations

of differential privacy. Foundations and Trends in

Theoretical Computer Science 9(3-4):211–407

Gosling JP, Oakley JE, O’Hagan A, et al (2007) Non-

parametric elicitation for heavy-tailed prior distribu-

tions. Bayesian Analysis 2(4):693–718

Grimme C (2015) Picking a uniformly ran-

dom point from an arbitrary simplex. https:

//www.researchgate.net/profile/Christian_

Grimme/publication/275348534_Picking_a_

Uniformly_Random_Point_from_an_Arbitrary_

Simplex/links/553a08800cf247b858815a6b.pdf,

University of Münster [Online; accessed 31-July-2018]

Iacob P, Marinescu D, Luca C (2003) Covering with

rectangular pieces. Analele Stiintifice ale Universitatii

Ovidius Constanta 11(2):75–86

Knauer C, Schlipf L, Schmidt JM, Tiwary HR (2012)
Largest inscribed rectangles in convex polygons. Jour-

nal of discrete algorithms 13:78–85

Kyriakidis PC (2004) A geostatistical framework for

area-to-point spatial interpolation. Geographical Anal-

ysis 36(3):259–289
Le-Rademacher J, Billard L (2017) Principal component

analysis for histogram-valued data. Advances in Data

Analysis and Classification 11(2):327–351

Oakley JE, O’Hagan A (2007) Uncertainty in prior

elicitations: a nonparametric approach. Biometrika
94(2):427–441

O’Hagan A (1991) Bayes–Hermite quadrature. Journal

of statistical planning and inference 29(3):245–260

Ramsay JO (2006) Functional data analysis, Chapter

16. Wiley Online Library

Riihimäki J, Vehtari A (2010) Gaussian processes with

monotonicity information. In: Proceedings of the Thir-

teenth International Conference on Artificial Intelli-

gence and Statistics, pp 645–652

Gaussian Process Regression for Binned Data 13

Stein P (1966) A note on the volume of a simplex. The

American Mathematical Monthly 73(3):299–301

Williams CK, Rasmussen CE (2006) Gaussian processes

for machine learning. the MIT Press

