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Abstract 

Sleep deprivation increases rates of forgetting in episodic memory. Yet, whether an 

extended lack of sleep alters the qualitative nature of forgetting is unknown. We 

compared forgetting of episodic memories across intervals of overnight sleep, daytime 

wakefulness and overnight sleep deprivation. Item-level forgetting was amplified 

across daytime wakefulness and overnight sleep deprivation, as compared to sleep. 

Importantly, however, overnight sleep deprivation led to a further deficit in associative 

memory that was not observed after daytime wakefulness. These findings suggest that 

sleep deprivation induces fragmentation among item memories and their associations, 

altering the qualitative nature of episodic forgetting. 

Keywords: Memory, Forgetting, Sleep Deprivation, Wakefulness, Fragmentation  
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Why are some memories remembered and others forgotten? Retroactive interference 

accounts of forgetting argue that learning and mental activity that occurs after 

encoding contributes to memory loss (Wixted 2004). Consistent with this view, rates 

of forgetting are typically reduced across sleep relative to wakefulness (Jenkins and 

Dallenbach 1924; Newman 1938; Barrett and Ekstrand 1972; Plihal and Born 1997; 

Tucker et al. 2006; Gais et al. 2006; Tamminen et al. 2010; Payne et al. 2012; Atherton 

et al. 2016; Cairney et al. 2018a,b), as sleep shelters new memories from competing 

information. 

Given that forgetting is reduced by sleep, it is unsurprising that extended 

periods of sleep deprivation give rise to severe impairments in memory recall (Maquet 

et al. 2003; Gais et al. 2006; Tempesta et al. 2015, 2017; Harrington et al. 2018). In 

humans, empirical studies of sleep deprivation and memory often require participants 

to learn new information in the afternoon/evening, and then remain awake across the 

entire night (Maquet et al. 2003; Gais et al. 2006; Harrington et al. 2018). Hence, under 

these conditions, newly formed memories are subjected to a combination of retroactive 

interference and proactive interference (from events that occur prior to the encoding 

phase; Underwood 1957), leading to a substantial decline in recall accuracy.  

 To date, studies of sleep deprivation and memory have typically assessed 

forgetting for single items (e.g. images or words; Gais et al. 2006; Tempesta et al. 

2015; Harrington et al. 2018). Episodic memory retrieval, by contrast, is critically 

dependent on the ability to recall associations between disparate features of prior 

experience (Tulving 1985). In recent work, pairwise event associations between 

locations, people and objects were forgotten to a greater extent across daytime 

wakefulness than overnight sleep (Joensen et al. 2019). Yet, regardless of the post-

encoding delay (sleep or wake), forgetting invariably occurred in an all-or-none 

manner; when one element of an event (e.g. location) was remembered, the other 

elements of the same event (person and object) were also more frequently 

remembered than forgotten. Hence, although wakefulness increased overall rates of 

forgetting, it did not induce fragmentation among the memories that survived. 

 Sleep deprivation is known to amplify forgetting in episodic memory, but 

whether a protracted lack of sleep also leads to an irregular fragmentation of episodic 

representations has yet to be established. On account of the interference posed by 

waking activities occurring both before and after the critical learning episode (a 

deleterious combination of proactive and retroactive interference), sleep deprivation 
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might open the door to fragmented forms of memory loss and, ultimately, alter the 

qualitative nature of forgetting.   

Across two experiments, we investigated the impacts of sleep deprivation, as 

compared to sleep and routine daytime wakefulness, on memory for items and their 

associations. In Experiment 1, 27 healthy adults (10 male; mean±SD age=20.85±3.29 

years) entered a within-subjects crossover design (sleep vs. wake, Fig. 1A). 

Conditions were separated by one week and condition order was counterbalanced. 

Participants encoded adjective-object and adjective-scene pairs in the morning 

(08:00) or evening (20:00; Fig. 1B). The encoding phase included an immediate 

baseline test (T1), in which recognition memory (“old” or “new” judgements) for the 

adjectives was assessed. When an adjective was judged to be “old”, memory for the 

associated image category (object or scene) was also assessed. After T1, participants 

entered a 12 h delay of unsupervised daytime wakefulness (morning encoding) or 

overnight sleep at home (evening encoding). Participants were asked to refrain from 

caffeine and alcohol during this interval, and, if in the wake condition, refrain from 

napping. Adherence to these restrictions was confirmed via questionnaire. 

Participants in the sleep condition provided subjective estimations of hours slept 

(mean±SD=7.78±0.90 h). Following the delay, participants were re-tested (T2). 

Whereas adjective forgetting between T1 and T2 reflects item memory loss, category 

forgetting reflects associative memory loss, or memory fragmentation, as memory for 

the base item persists.  



5 

Figure 1. Experimental procedures, tasks, and example images. A. The delay between test 1 
(T1) and test 2 (T2) contained daytime wakefulness vs. overnight sleep (Experiment 1) or 
overnight sleep deprivation vs. overnight sleep (Experiment 2). A follow-up test (T3) occurred 
two days later. E = encoding. B. One-hundred and twenty adjective-image pairs were 
presented at encoding. For each pair, participants were instructed to visualise the adjective 
and image interacting. They then reported whether the resultant mental image was realistic or 
bizarre, and indicated whether the image was an object or a scene. The same 120 adjectives 
from encoding were intermixed with 60 foil adjectives at retrieval. Participants first indicated if 
they recognised the adjective (“old”) or not (“new”), or were uncertain (“?”). For adjectives 
identified as “old”, participants also indicated whether the associated image was an object or 
scene (or “?”) and, if applicable, briefly described the image. C. Example object and scene 
images (left side = negative; right side = neutral).  

Experiment 2 (n=28; 4 male; mean±SD age =19.43±1.32 years) followed identical 

procedures to Experiment 1, with the exception that re-testing (T2) always took place 

in the morning following a night of sleep or total sleep deprivation. In both conditions, 

participants rose by 08:00 on the morning of the first session (~12 h before encoding) 

and remained awake throughout the day (confirmed via wristwatch actigraphy). 

Resultantly, by T2 of the sleep deprivation condition, participants had been awake for 

~24 h. Across both experiments, we predicted that overnight sleep deprivation (vs. 
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sleep and routine daytime wakefulness) would amplify adjective and category 

forgetting.  

Sleep-deprived participants were monitored by a researcher throughout the 

overnight period. They were permitted to play games, watch movies and read. In the 

sleep condition, participants slept in a sleep laboratory and were monitored with 

polysomnography (Embla© N7000; sampling rate=200 Hz); permitting investigation of 

potential relationships between sleep stages and forgetting. Electrodes for 

electroencephalography (EEG) were attached at eight standardised locations: F3, F4, 

C3, C4, P3, P4, O1, and O2, each referenced to the contralateral mastoid (A1 or A2). 

Electrooculography (EOG) and electromyography (EMG) electrodes were also 

attached. Sleep data were segmented into 30 s epochs and scored as wake, N1, N2, 

N3 or REM sleep in accordance with standardised criteria (Iber et al. 2007; see 

Supplemental_Table_S1.docx). 

In both experiments, a follow-up test (T3) was administered two days after T2 

(~10:00) to assess item and associative memory loss following opportunities for 

recovery sleep. Participants completed the Stanford sleepiness scale (Hoddes et al. 

1972) and a psychomotor vigilance test (Gagnepain et al. 2017) at each test phase 

(see  Supplemental_Analysis_S1.docx and Supplemental_Table_S2.docx).  

All behavioural tasks were implemented on a PC with MATLAB 2017a and 

Psychtoolbox 3.0.13 (Brainard 1997). At encoding, participants viewed 60 adjective-

object pairs and 60 adjective-scene pairs in a randomised, intermixed order. 

Adjectives were selected from a database of 14,000 English lemmas (Warriner et al. 

2013). Objects and scenes were selected from standardised image batteries (Lang et 

al. 2005; Marchewka et al. 2014) and online resources. Because previous work has 

suggested that negative affect can circumvent the impacts of sleep loss on item-level 

forgetting (Sterpenich et al. 2007; Vargas et al. 2019), we also investigated whether 

the effects of sleep deprivation on associative memory were modulated by emotion. 

The objects and scenes were therefore evenly subcategorised as negative or neutral. 

Assignment of images to negative and neutral subcategories was validated by an 

independent sample of healthy adults (n=51, 4 male; mean±SD age=19.96±5.29 

years). Emotional ratings (1=highly negative, 5=neutral, 9=highly positive) were 

significantly lower for negative images (mean±SEM=2.98±0.09) than neutral images 

(mean±SEM=5.61±0.06; t(50)=26.00, p<.001, d=3.64). All adjectives were emotionally 

neutral.  
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Each encoding trial began with a 1.5 s fixation period. A randomly selected 

adjective was then displayed above a randomly selected object or scene image for 5 

s. Participants were instructed to visualise the adjective and image interacting, and 

then to indicate via keyboard press whether the mental image they generated was 

realistic or bizarre (to facilitate deep encoding; Craik and Lockhart 1972). To ensure 

that participants were able to differentiate between image categories, they were then 

asked to indicate whether the presented image was an object or scene. Image 

categorisation performance was very high (both experiments: 

mean±SEM=96.83±0.62%), and there were no differences in categorisation accuracy 

between the sleep and wake conditions in Experiment 1 [t(26)=0.43, p=.67] or 

Experiment 2 [t(27)=1.14, p=.26]. Each adjective-image pair was presented once, and 

participants were required to make each of their responses within 10 s. 

A hierarchical approach was employed at each test phase, permitting a 

distinction between item memory (adjectives) and associative memory (images 

associated with adjectives). T1 included 180 adjectives: 120 targets presented at 

encoding and 60 foils. Each trial began with a 1.5 s fixation period, after which a 

randomly selected adjective was displayed for 3 s. Participants were required to 

indicate whether the adjective was “old” (they recognised the adjective from encoding) 

or “new” (they did not recognise the adjective) within 10 s. They were also able to 

indicate uncertainty by pressing “?”. This ensured that participants were reasonably 

confident in their “old”/”new” responses and discouraged guessing. Note that inclusion 

of the “uncertain” response at adjective recognition precluded calculation of the 

sensitivity index (d’) for item memory. Uncertainty data and analyses are available in 

Supplemental_Table_S3.docx and Supplemental_Analysis_S2.docx, respectively.  

For each “old” response, participants indicated whether the image associated 

with that adjective at encoding was an object or scene, or pressed “?” if they were 

uncertain. After each “object” or “scene” response, participants provided a brief typed 

description of the image (e.g. “Pewter Mug” for Figure 1C; see 

Supplemental_Analysis_S3.docx). For “new” or “uncertain” responses to adjectives, 

participants moved immediately to the next trial. The procedures for T2 and T3 were 

identical to those of T1, except that a new set of foil adjectives were used in each test.  

Drawing on data from Experiment 1, we first investigated whether item 

memories were forgotten to a greater extent across a day of wakefulness relative to a 

night of sleep. To address this question, we isolated adjectives that were correctly 
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recognised at the immediate test (T1) and then calculated the proportion of these 

adjectives that were forgotten (incorrect or “uncertain” responses) at the delayed test 

(T2). As expected, the resultant item loss proportion scores were greater after 

wakefulness than sleep [t(26)=2.44, p=.02, d =.47; Fig. 2A]. Behavioural data is 

displayed in Table 1. 

Table 1. Memory Performance at T1, and Losses at T2 and T3.

A Experiment 1 Experiment 2 

T1 T2 T3  T1 T2 T3 

                Sleep 68.58  

(± 2.46) 

16.58  

(± 1.79) 

18.71  

(± 1.77) 

69.61  

(± 2.77) 

17.55  

(± 1.75) 

16.06  

(± 1.89) 

                Wake* 67.10  

(± 2.54) 

20.56  

(± 2.14) 

21.42  

(± 2.53) 

71.10  

(± 2.62) 

26.64  

(± 2.60) 

19.37  

(± 1.74) 

B Experiment 1 Experiment 2 

T1 T2 T3  T1 T2 T3 

Sleep Negative 62.88  

(± 2.85) 

17.43  

(± 2.37) 

12.31  

(± 1.52) 

63.79  

(± 2.76) 

15.30  

(± 2.46) 

13.29  

(± 2.21) 

 Neutral 63.35  

(± 2.51) 

18.44  

(± 2.76) 

10.77  

(± 1.60) 

65.46  

(± 2.96) 

11.26  

(± 1.82) 

9.50  

(± 1.91) 

Wake* Negative 65.82  

(± 2.92) 

19.48  

(± 1.65) 

13.80  

(± 1.93) 

65.34  

(± 2.47) 

21.17  

(± 2.26) 

16.09  

(± 3.27) 

 Neutral 63.85  

(± 2.98) 

17.83  

(± 1.66) 

10.72  

(± 1.64) 

66.98  

(± 2.67) 

17.92  

(± 3.02) 

14.31  

(± 2.67) 

A. Left columns: Item memory performance (correctly recognised adjectives) at T1. Middle 
and right columns: Item losses at T2 and T3, respectively. B. Left columns: Associative 
memory performance (correctly retrieved image categories) at T1. Middle and right columns: 
Associative memory losses (memory fragmentation) at T2 and T3, respectively. Note that 
item/associative memory losses at T2 are calculated relative to T1, whereas item/associative 
memory losses at T3 are calculated relative to T2. *For Experiment 2, “Wake” refers to the 
sleep deprivation condition. Data are shown as percentages (mean±SEM).  

Turning to Experiment 2, we next examined whether overnight sleep 

deprivation also increased item forgetting relative to sleep. Indeed, when participants 

were deprived of sleep they exhibited a ~50% proportional increase in item memory 

loss, as compared to when they slept [t(27)=4.58, p<.001, d=.87; Fig. 2B].  
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Figure 2. Item forgetting. A. Experiment 1: Item forgetting was greater after a day of 
wakefulness relative to a night of sleep. B. Experiment 2: Item forgetting was also greater after 
overnight sleep deprivation relative to sleep. Data points represent individual participants. 

Data are shown as mean±SEM. ★ p<.05; ★★★ p<.001.

To assess whether overnight sleep deprivation was more conducive to item 

forgetting than routine daytime wakefulness, item loss proportion scores from both 

experiments were applied to a 2 (Delay: Sleep/Wake) x 2 (Experiment: One/Two) 

mixed ANOVA. A trend for the Delay*Experiment interaction suggested that the effects 

of wakefulness (vs. sleep) on item forgetting were amplified in Experiment 2 (overnight 

sleep deprivation) relative to Experiment 1 (daytime wakefulness; F(1,53)=3.93, 

p=.05, ƞp
2=.07). Unsurprisingly, the overall effect of wakefulness on item forgetting 

was highly significant [F(1,53)=25.72, p<.001, ƞp
2=.33], whereas general rates of item 

forgetting were comparable between experiments [F(1,53)=1.73, p=.19].  

Next, we investigated whether sleep deprivation induced fragmentation among 

item memories and their associations. To probe this question, we first isolated 

adjectives that were correctly recognised at T1 and T2, and for which the associated 

image category (object or scene) was correctly retrieved at T1. We then calculated the 

proportion of these adjectives for which the image category was forgotten (incorrect or 

“uncertain” responses) at T2. The resultant fragmentation scores for Experiments 1 

and 2 were submitted to separate 2 (Delay: Sleep/Wake) x 2 (Image Emotion: 

Negative/Neutral) repeated-measures ANOVAs.   

In Experiment 1, fragmentation scores were comparable after daytime 

wakefulness and overnight sleep [F(1,26)=0.15, p=.71; Fig. 3A). Hence, although item 

forgetting was increased after a day of wakefulness (vs. overnight sleep), the waking 
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delay had no impact on memory fragmentation. The fragmentation scores were 

unaffected by image emotion [Emotion main effect: F(1,26)=0.03, p=.86; 

Emotion*Delay interaction: F(1,26)=0.74, p=.40].  

 Strikingly, however, fragmentation scores in Experiment 2 were significantly 

higher after sleep deprivation than sleep [F(1,27)=10.23, p=.004, ƞp
2=.28; Fig. 3B]. 

Thus, in contrast to routine daytime wakefulness (Experiment 1), overnight sleep 

deprivation appeared to induce fragmentation among item memories and their 

associations. Negative images were associated with greater fragmentation than 

neutral images [F(1,27)=4.45, p=.04, ƞp
2=.14], but this effect was not modulated by 

delay condition [F(1,27)=0.05, p=.83]. 

Figure 3. Memory fragmentation. A. Experiment 1: Memory fragmentation did not differ after 
a day of wakefulness and a night of sleep. B. Experiment 2: Memory fragmentation was 
greater after overnight sleep deprivation relative to sleep. Data points represent individual 

participants. Data are shown as mean±SEM. ns not significant; ★★ p<.01.

Consistent with the view that memory fragmentation was more prevalent after 

sleep deprivation than daytime wakefulness, a 2 (Delay: Sleep/Wake) x 2 (Experiment: 

One/Two) mixed ANOVA (collapsed across image emotion) revealed a significant 

Delay*Experiment interaction [F(1,53)=4.16, p=.05, ƞp
2=.07]. The overall effect of 

wakefulness on fragmentation scores was significant [F(1,53)=6.59, p=.01, ƞp
2=.11], 

whereas general rates of fragmentation were comparable between experiments 

[F(1,53)=0.62, p=.44]. Sleep duration (mean±SEM) was 430.20±6.45 min in the sleep 

condition of Experiment 2. There were no significant correlations between item or 

associative forgetting and time (min) spent in any stage of sleep [all p>.05].  
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In Experiment 2, alertness levels at T2 were reduced in the sleep deprivation 

(vs. sleep) condition, as indicated by the Stanford sleepiness scale and psychomotor 

vigilance test (see Supplemental_Analysis_S1.docx). The foregoing findings might 

thus be explained by an effect of between-condition differences in tiredness (and/or 

associated stress) on retrieval performance at T2. To address this possibility, we 

asked whether the effects of sleep deprivation on item forgetting and memory 

fragmentation observed at T2 were maintained two days later at T3 (when between-

condition differences in tiredness were eliminated). Item loss proportion scores 

calculated between T1 and T3 (the proportion of correctly recognised adjectives at T1 

that were forgotten at T3) were indeed higher in the sleep deprivation (vs. sleep) 

condition in Experiment 2 [t(1,27)=2.50, p=.02, d=0.47]. Note that the same effect was 

observed when comparing the wake and sleep conditions in Experiment 1 [t(26)=2.06, 

p=.05, d=0.40]. To compute fragmentation scores between T1 and T3 in Experiment 

2, we first isolated adjectives that were correctly recognised at T1 and T3, and for 

which the associated image category was correctly retrieved at T1. We then calculated 

the proportion of these adjectives for which the image category was forgotten at T3. 

Importantly, fragmentation scores were higher in the sleep deprivation (vs. sleep) 

condition [F(1,27)=8.71, p=.01, ƞp
2=.24]. As before, a main effect of Emotion emerged 

[F(1,27)=5.47, p=.03, ƞp
2=.17], but there was no Emotion*Delay interaction 

[F(1,27)=1.60, p=.22]. Taken together, our findings suggest that the memory deficits 

associated with sleep deprivation were not simply due to excessive tiredness or stress 

at T2. It is nevertheless possible that high stress levels during consolidation 

contributed to a long-lasting fragmentation of memory.  

We next investigated whether post-learning wakefulness or sleep deprivation 

(vs. sleep) led to any further impairment in item or associative memory two days later 

(i.e. impairments beyond those observed at T2). Item loss proportion scores calculated 

between T2 and T3 (the proportion of correctly recognised adjectives at T2 that were 

forgotten at T3) were comparable between the wake and sleep conditions in 

Experiment 1 [t(26)=1.22, p=.23]. However, sleep deprivation (vs. sleep) led to a trend 

towards additional item forgetting in Experiment 2 [t(27)=1.89, p=.07, d=.36]. 

Fragmentation scores calculated between T2 and T3 (the proportion of correctly 

retrieved image categories at T2 that were forgotten at T3, when the base adjective 

was correctly recognised at T2 and T3) were applied to a 2 (Delay: Sleep/Wake) x 2 

(Emotion: Negative/Neutral) repeated-measures ANOVA. However, no significant 
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effects emerged in Experiment 1 [Emotion: F(1,26)=2.17, p=.15; Delay: F(1,26)=0.25, 

p=.62; Emotion*Delay: F(1,26)=0.32, p=.58] or Experiment 2 [Emotion: F(1,27)=2.05, 

p=.16; Delay: F(1,27)=1.52, p=.23; Emotion*Delay: F(1,27)=0.36, p=.55].  

Finally, we examined item and associative memory performance at T1 to 

ensure that the above effects were not driven by between-condition differences at 

baseline. Item memory performance was calculated as the proportion of “old” 

adjectives that were correctly identified as “old”. No differences were observed 

between the sleep and wake conditions in Experiment 1 [t(26)=0.79, p=.44] or 

Experiment 2 [t(27)=0.85, p=.41]. Associative memory performance was calculated as 

the proportion of correctly identified “old” adjectives for which the associated image 

category was also correctly retrieved. A 2 (Delay: Sleep/Wake) x 2 (Emotion: 

Negative/Neutral) repeated-measures ANOVA revealed no significant effects in 

Experiment 1 [Emotion: F(1,26)=0.32, p=.57; Delay: F(1,26)=0.59, p=.45; 

Emotion*Delay: F(1,26)=0.80, p=.38] or Experiment 2 [Emotion: F(1,27)=1.49 p=.23; 

Delay: F(1,27)=.58, p=.45; Emotion*Delay: F(1,27)<0.001, p=.99].  

Taken together, our findings suggest that sleep deprivation prompts a 

qualitative change in the nature of episodic forgetting. In Experiment 1, a routine day 

of wakefulness increased item-level forgetting relative to a night of sleep, but had no 

impact on associative memory when the base items survived. In Experiment 2, by 

contrast, overnight sleep deprivation (vs. sleep) not only increased item-level 

forgetting, but also increased associative memory loss when the base items remained 

unscathed. Hence, sleep deprivation appears to induce fragmentation among episodic 

representations that are typically forgotten in an all-or-none manner (Joensen et al. 

2019). 

Proactive and retroactive interference are thought to contribute to forgetting 

(Underwood 1957; Wixted 2004). Hence, a combination of these two sources of 

interference could have particularly deleterious effects on memory performance. In the 

sleep deprivation condition of Experiment 2, the encoding session was bookended by 

12 h waking intervals (see Fig. 1A), providing scope for both proactive and retroactive 

interference. In the wake condition of Experiment 1, by contrast, encoding and re-

testing took place in the morning and following evening, respectively, meaning that the 

novel adjective-image associations were subjected only to retroactive interference. 

Across both experiments, sleep occurred soon after the evening encoding phase and 

seemingly ameliorated the impacts of proactive interference.  
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Wakeful experience is associated with a net increase in synaptic strength (De 

Vivo et al. 2017; Spano et al. 2019). A putative synaptic renormalisation during sleep 

serves to globally downscale synaptic weights and, consequently, improve signal-to-

noise ratios for synapses that were strongly potentiated as a result of prior learning 

(Tononi and Cirelli 2006). It has been suggested that this renormalisation process 

constitutes an “efficient and smart” means of avoiding runaway potentiation and, 

importantly, separating meaningful information from unwanted interference (Tononi 

and Cirelli 2014). Amplified and fragmented forgetting following sleep deprivation 

could therefore be driven by excessive synaptic potentiation, which results from 

wakeful interference occurring before and after learning together with an absence of 

sleep-associated synaptic renormalisation. Yet, it should be noted that time in N3 – 

the sleep stage primarily implicated in synaptic renormalisation (Tononi and Cirelli 

2006, 2014) – was not correlated with item or associative memory performance in 

Experiment 2 of the current study. 

 Previous work has suggested that emotionally-salient memories are more 

resistant to the effects of sleep deprivation than neutral memories (Sterpenich et al. 

2007; Vargas et al. 2019). In the current study, by contrast, the impacts of sleep 

deprivation on memory fragmentation were comparable for negative and neutral 

images. This discrepancy may relate to the nature of the affective representation under 

scrutiny. Whereas previous studies have investigated the effects of sleep deprivation 

on central aspects of emotional memory (Sterpenich et al. 2007; Vargas et al. 2019), 

our findings relate to affective associations, which might be more susceptible to 

deterioration with sleep loss. Interestingly, memory fragmentation was generally 

greater for negative than neutral images in Experiment 2, which is consistent with 

earlier work (Bisby and Burgess 2013; Bisby et al. 2016), and the view that negative 

emotional content disrupts coherence among episodic representations (Bisby et al. 

2018). Because the adjective stimuli used in this study were emotionally neutral, we 

could not determine how the emotional properties of item memories influence the 

susceptibility of their associations to sleep deprivation, although this is an interesting 

question for future research.  

 In conclusion, our findings suggest that sleep deprivation not only amplifies 

item-level forgetting, but induces fragmentation among item memories and their 

associations. Such fragmented memory loss might be due to a combination of 

proactive and retroactive interference, leading to severe and irregular impairments in 
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episodic memory retrieval. More broadly, our findings offer novel insights into the 

cognitive impairments posed by insufficient sleep; an issue that is particularly pertinent 

when considering the global prevalence of chronic sleep deprivation (Bonnet and 

Arand 1995; Stranges et al. 2012; Liu et al. 2016), which is arguably at epidemic 

proportions.  

Acknowledgements 

This work was supported by Medical Research Council (MRC) Career Development 

Award (MR/P020208/1) to S.A.C. We are very grateful to two anonymous reviewers 

for their helpful comments on an earlier version of this manuscript.  

Data availability 

Study data are freely available via the following link: https://osf.io/s35f9/

References 

Atherton, K. E., A. C. Nobre, A. S. Lazar, K. Wulff, R. G. Whittaker, V. Dhawan, Z. I. 
Lazar, A. Z. Zeman, and C. R. Butler. 2016. Slow wave sleep and accelerated 
forgetting. Cortex 84:80–89. 

Barrett, T. R., and B. R. Ekstrand. 1972. Effect of sleep on memory: III. Controlling 
for time-of-day effects. J. Exp. Psychol. 92:321–327. 

Bisby, J. A., and N. Burgess. 2013. Negative affect impairs associative memory but 
not item memory. Learn. Mem. 21:21–27. 

Bisby, J. A., A. J. Horner, D. Bush, and N. Burgess. 2018. Negative Emotional 
Content Disrupts the Coherence of Episodic Memories. J. Exp. Psychol. Gen. 
147:243–256. 

Bisby, J. A., A. J. Horner, L. D. Hørlyck, and N. Burgess. 2016. Opposing effects of 
negative emotion on amygdalar and hippocampal memory for items and 
associations. Soc. Cogn. Affect. Neurosci. 11:981–990. 

Bonnet, M. H., and D. L. Arand. 1995. We are chronically sleep deprived. Sleep 
18:908–911. 

Brainard, D. H. 1997. The Psychophysics Toolbox. Spat. Vis. 10:433–436. 

Cairney, S. A., A. á. V. Guttesen, N. El Marj, and B. P. Staresina. 2018a. Memory 
Consolidation Is Linked to Spindle-Mediated Information Processing during 
Sleep. Curr. Biol. 28:948–954. 

Cairney, S. A., S. Lindsay, K. A. Paller, and M. G. Gaskell. 2018b. Sleep preserves 
original and distorted memory traces. Cortex 99:39–44. 



15 

Craik, F. I. M., and R. S. Lockhart. 1972. Levels of processing: A framework for 
memory research. J. Verbal Learning Verbal Behav. 11:671–684. 

De Vivo, L., M. Bellesi, W. Marshall, E. A. Bushong, M. H. Ellisman, G. Tononi, and 
C. Cirelli. 2017. Ultrastructural evidence for synaptic scaling across the 
wake/sleep cycle. Science. 355:507–510. 

Gagnepain, P., Hulbert, J. and M.C. Anderson. 2017. Parallel Regulation of Memory 
and Emotion Supports the Suppression of Intrusive Memories. J. Neurosci. 
37:6423-6441. 

Gais, S., B. Lucas, and J. Born. 2006. Sleep after learning aids memory recall. 
Learn. Mem. 13:259–262. 

Harrington, M. O., K. M. Nedberge, and S. J. Durrant. 2018. The effect of sleep 
deprivation on emotional memory consolidation in participants reporting 
depressive symptoms. Neurobiol. Learn. Mem. 152:10–19. 

Hoddes, E., W. Dement, and V. Zarcone. 1972. The development and use of the 
Stanford sleepiness scale (SSS). Psychophysiology 9:150. 

Iber, C., S. Ancoli-Israel, A. Chesson, and S. F. Quan. 2007. The AASM manual for 
the scoring of sleep and associated events rules, terminology, and technical 
specifications. American Academy of Sleep Medicine, Westchester, IL. 

Jenkins, J. G., and K. M. Dallenbach. 1924. Obliviscence during Sleep and Waking. 
Am. J. Psychol. 35:605–612. 

Joensen, B. H., M. G. Gaskell, and A. J. Horner. 2019. United we fall: All-or-none 
forgetting of complex episodic events. J. Exp. Psychol. Gen. 

Lang, P. J., M. M. Bradley, and B. N. Cuthbert. 2005. International Affective Picture 
System (IAPS): Technical Manual and Affective Ratings. University of Florida, 
Gainesville, FL. 

Liu, Y., A. G. Wheaton, D. P. Chapman, T. J. Cunningham, H. Lu, and J. B. Croft. 
2016. Prevalence of Healthy Sleep Duration among Adults — United States, 
2014. MMWR. Morb. Mortal. Wkly. Rep. 65:137–141. 

Maquet, P., S. Schwartz, R. Passingham, and C. Frith. 2003. Sleep-Related 
Consolidation of a Visuomotor Skill: Brain Mechanisms as Assessed by 
Functional Magnetic Resonance Imaging. J. Neurosci. 23:1432–1440. 

Marchewka, A., Ł. Żurawski, K. Jednoróg, and A. Grabowska. 2014. The Nencki 
Affective Picture System (NAPS): Introduction to a novel, standardized, wide-
range, high-quality, realistic picture database. Behav. Res. Methods 46:596–
610. 

Newman, E. B. 1938. Forgetting of Meaningful Material during Sleep and Waking. 
Am. J. Psychol. 52:65–71. 

Payne, J. D., M. A. Tucker, J. M. Ellenbogen, E. J. Wamsley, M. P. Walker, D. L. 
Schacter, and R. Stickgold. 2012. Memory for semantically related and 
unrelated declarative information: The benefit of sleep, the cost of wake. PLoS 
One 7:e33079. 



16 

Plihal, W., and J. Born. 1997. Effects of early and late nocturnal sleep on declarative 
and procedural memory. J. Cogn. Neurosci. 9:534–547. 

Spano, G. M., S. W. Banningh, W. Marshall, L. De Vivo, M. Bellesi, S. S. Loschky, G. 
Tononi, and C. Cirelli. 2019. Sleep deprivation by exposure to novel objects 
increases synapse density and axon-spine interface in the hippocampal CA1 
region of adolescent mice. J. Neurosci. 39:6613–6625. 

Sterpenich, V., G. Albouy, M. Boly, G. Vandewalle, A. Darsaud, E. Balteau, T. T. 
Dang-Vu, M. Desseilles, A. D’Argembeau, S. Gais, G. Rauchs, M. Schabus, C. 
Degueldre, A. Luxen, F. Collette, and P. Maquet. 2007. Sleep-related 
hippocampo-cortical interplay during emotional memory recollection. PLoS Biol. 
5:2709–2722. 

Stranges, S., W. Tigbe, F. X. Gómez-Olivé, M. Thorogood, and N.-B. Kandala. 2012. 
Sleep Problems: An Emerging Global Epidemic? Findings From the INDEPTH 
WHO-SAGE Study Among More Than 40,000 Older Adults From 8 Countries 
Across Africa and Asia. Sleep 35:1173–1181. 

Tamminen, J., J. D. Payne, R. Stickgold, E. J. Wamsley, and M. G. Gaskell. 2010. 
Sleep Spindle Activity is Associated with the Integration of New Memories and 
Existing Knowledge. J. Neurosci. 30:14356–14360. 

Tempesta, D., L. De Gennaro, V. Natale, and M. Ferrara. 2015. Emotional memory 
processing is influenced by sleep quality. Sleep Med. 16:862–870. 

Tempesta, D., V. Socci, G. Dello Ioio, L. De Gennaro, and M. Ferrara. 2017. The 
effect of sleep deprivation on retrieval of emotional memory: a behavioural study 
using film stimuli. Exp. Brain Res. 235:3059–3067. 

Tononi, G., and C. Cirelli. 2014. Sleep and the Price of Plasticity: From Synaptic and 
Cellular Homeostasis to Memory Consolidation and Integration. Neuron 81:12–
34. 

Tononi, G., and C. Cirelli. 2006. Sleep function and synaptic homeostasis. Sleep 
Med. Rev. 10:49–62. 

Tucker, M. A., Y. Hirota, E. J. Wamsley, H. Lau, A. Chaklader, and W. Fishbein. 
2006. A daytime nap containing solely non-REM sleep enhances declarative but 
not procedural memory. Neurobiol. Learn. Mem. 86:241–247. 

Tulving, E. 1985. Elements of Episodic Memory. Oxford, UK. 

Underwood, B. J. 1957. Interference and forgetting. Psychol. Rev. 64:49–60. 

Vargas, I., J. D. Payne, A. Muench, K. R. Kuhlman, and N. L. Lopez-Duran. 2019. 
Acute sleep deprivation and the selective consolidation of emotional memories. 
Learn. Mem. 26:176–181. 

Warriner, A. B., V. Kuperman, and M. Brysbaert. 2013. Norms of valence, arousal, 
and dominance for 13,915 English lemmas. Behav. Res. Methods 45:1191–
1207. 

Wixted, J. T. 2004. The Psychology and Neuroscience of Forgetting. Annu. Rev. 
Psychol. 55:235–269. 


