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Encapsulation of CrabtreeQs Catalyst in Sulfonated MIL-101(Cr):
Enhancement of Stability and Selectivity between Competing Reaction
Pathways by the MOF Chemical Microenvironment

Alexios Grigoropoulos, Alasdair I. McKay, Alexandros P. Katsoulidis, Robert P. Davies,

Anthony Haynes, Lee Brammer, Jianliang Xiao, Andrew S. Weller,* and Matthew J. Rosseinsky*

In memory of G8rard F8rey

Abstract: CrabtreeQs catalyst was encapsulated inside the pores

of the sulfonated MIL-101(Cr) metal–organic framework

(MOF) by cation exchange. This hybrid catalyst is active for

the heterogeneous hydrogenation of non-functionalized

alkenes either in solution or in the gas phase. Moreover,

encapsulation inside a well-defined hydrophilic microenviron-

ment enhances catalyst stability and selectivity to hydrogena-

tion over isomerization for substrates bearing ligating func-

tionalities. Accordingly, the encapsulated catalyst significantly

outperforms its homogeneous counterpart in the hydrogena-

tion of olefinic alcohols in terms of overall conversion and

selectivity, with the chemical microenvironment of the MOF

host favouring one out of two competing reaction pathways.

Metal–organic frameworks (MOFs)[1] are crystalline and

permanently porous materials that have emerged as promis-

ing hosts for the immobilization of organometallic catalysts,[2]

since they allow control of the steric and chemical micro-

environment around the encapsulated catalytically active

species. This in turn could promote catalytic activity and

selectivity through extended coordination sphere interactions.

These concepts lie behind the exceptional reactivity and

selectivity of metalloenzymes,[3] however their transfer to the

design and synthesis of artificial catalysts is challenging.[4]

Several examples of MOF-supported catalysts showing

exceptional overall catalytic activity have been reported.[5,6]

Enhancement of selectivity between products of a single

reaction pathway by control of the steric[7] or the chemical[8]

microenvironment has also been demonstrated.

CrabtreeQs catalyst is one of the best commercially

available homogeneous catalysts for hydrogenation of

alkenes.[9] However, it is deactivated in solution under

hydrogenation conditions, forming catalytically inactive poly-

metallic hydride clusters.[10] This self-association reaction can

be attenuated via modification of the coordination sphere of

Ir[11] or employment of larger weakly coordinating anions.[12]

Substrates bearing ligating functionalities such as olefinic

alcohols show a more complicated behavior with CrabtreeQs

catalyst since isomerization[13] can also take place in parallel

with hydrogenation.[14]

Here we use the Na+ salt of sulfonatedMIL-101(Cr)MOF

(1-SO3Na) to provide the anionic framework host for

encapsulation of the cationic component of CrabtreeQs

catalyst [Ir(cod)(PCy3)(py)][PF6] (2-PF6) by cation

exchange,[15] forming 2@1-SO3Na (Scheme 1). Encapsulation

of cation 2 inside a well-defined, anionic and hydrophilic

microenvironment forms an efficient heterogeneous catalyst

for the hydrogenation of non-functionalized alkenes in

solution, enables hydrogenation in the gas phase, and most

importantly enhances the catalystQs activity and selectivity for

the hydrogenation of olefinic alcohols by suppressing the

Scheme 1. Encapsulation of the cationic component of Crabtree’s

catalyst (2, blue spheres) in sulfonated MIL-101(Cr) (1-SO3Na, cube)

by exchange of the charge-balancing Na+ cations (red spheres).
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competing isomerization reaction. The MOF chemical micro-

environment directs substrates along one of two distinct

reaction pathways.

The sulfonated analogue of MIL-101(Cr) (1-SO3H)[16] is

a robust, readily synthesized anionic MOF. It is isostructural

with pristine MIL-101(Cr)[17] with two charge-balancing

cations per formula unit, [HxNa2@x][Cr3(m3-O)(BDC-SO3)3]

(x= 1.8: 0.1, Figure S1, H2BDC-SO3Na= 2-sulfotereph-

thalic acid sodium salt). Each cubic unit cell (a= 87.63(3)c)

contains 8 bigger and 16 smaller mesopores, large enough to

accommodate 2 (Figures S2 and S3). The cations within 1-

SO3H can be partially exchanged with Ag+[18] or [Rh(cod)-

(dppe)]+ [dppe= 1,2-bis(diphenylphosphino)ethane].[19] To

increase the number of exchangeable Na+ cations, 1-SO3H

was treated with AcONa/AcOH buffer solution (pH 4.7),

forming [HyNa2@y][Cr3(m3-O)(BDC-SO3)3] (1-SO3Na, y=

0.2: 0.1, Table S1).

Compound 1-SO3Na remains crystalline and mesoporous

(Figures 1a,b) with only a small change in the cubic unit cell

parameter (a= 87.99(4)c) and a slight increase in the

measured porosity (BET surface area= 2005 m2g@1, VP=

0.91 cm3g@1) and the pore size distribution, compared to 1-

SO3H (Figure S9).

After establishing an appropriate cation exchange proto-

col using [Cp*2Co]
+ as a cationic probe (Table S2 and

Figures S6, S9–S12), as we have shown previously,[15b] 2-PF6

was used as a cationic guest precursor. Since water can poison

the catalytically active species,[12] cation exchange was carried

out using desolvated 1-SO3Na as the anionic host in dry and

degassed acetone, producing 2@1-SO3Na. Crystallinity and

particle morphology were retained after cation exchange with

only a minor change in the cubic unit cell parameter (a=

87.74(3)c, Figure 1a, see Le Bail fit in Figure S7 and SEM

images in Figures S11 and S12), whereas BET surface area

(1570 m2g@1) and pore volume (0.70 cm3g@1) were reduced,

compared to 1-SO3Na (Figure 1b).

ICP-OES after digestion of 2@1-SO3Na gave an Ir content

of 2.28 wt%, indicating that 7% of the Na+ cations have been

exchanged with 2 (Table S3), which is close to the upper limit

of about 9% calculated by accounting for the guest-accessible

space of the host MOF and the size of the cationic guest

(Figures S1–S3). ICP-OES also showed an equimolar Ir/P

ratio, and only one broad peak was observed (dP= 15.65,

fwhm& 15 ppm) in the 31P{1H} MAS NMR spectrum of 2@1-

SO3Na, assigned to the PCy3 ligand (Figure 1c). Signals

arising from the [PF6]
@ anion were not observed either in the

31P{1H} MAS or the 19F{1H} solution NMR spectra of 2@1-

SO3Na after digestion, in contrast with the respective spectra

of 2-PF6 (Figures 1c and S13). The down-field chemical shift

and peak broadening observed for the signal due to the PCy3
ligand in the 31P{1H} MAS NMR spectrum of 2@1-SO3Na,

compared to 2-PF6, likely originate from the different anionic

environment surrounding 2.[20]

The 1H solution NMR spectrum of 2@1-SO3Na after

digestion showed three low intensity peaks at d= 8.22, 7.58

and 7.16 ppm, assigned to pyridine (Figure S14). Treatment of

2@1-SO3Na with D2 gas resulted in deuteration of the cod

ligand and formation of [D4]-cyclooctane, as detected by 2H

MAS NMR spectroscopy (Figure S15). These analytical and

spectroscopic data are consistent with cation 2 being encap-

sulated intact inside the mesopores of 1-SO3Na by a simple

cation exchange process.

To explore the possible interaction of the sulfonate groups

decorating the pore walls of 1-SO3Na with the Ir center of 2

after encapsulation, the tosylate anion [OTs]@ was selected to

model the BDC-SO3 linker. Two new complexes were

synthesized, [Ir(cod)(PCy3)(py)][OTs] (2-OTs) and [Ir(cod)-

(PCy3)(OTs)] (3), in which OTs@ acts as a counter anion or as

a ligand to Ir, respectively (Figures 2a,b, Figures S16, S17,

Table S4). 31P{1H} and 1H EXSY NMR spectroscopy in

CD2Cl2 (Figures S18–S20) revealed that a dynamic reversible

ligand exchange takes place between complexes 2-OTs and 3,

with OTs replacing pyridine in the coordination sphere of Ir

(Figure 2c). This suggests that the sulfonate groups in 2@1-

SO3Na may also play a non-spectator role, with potential

implications in catalysis, as discussed next.

The catalytic performance of 2@1-SO3Na was bench-

marked against 2-PF6 in the hydrogenation of non-function-

alized alkenes in CH2Cl2 under mild conditions (Table 1).

Control experiments verified that 1-SO3Na does not catalyze

Figure 1. a) Comparison of PXRD patterns and unit cell parameter (Fd3̄m space group) for 2@1-SO3Na (magenta), 1-SO3Na (red), 1-SO3H

(green) and MIL-101(Cr) (calculated, black).[17] Le Bail fits are included in the supporting information. b) N2 uptake of the desolvated materials at

77 K (BET= surface area, VP=pore volume). c) 31P{1H} MAS NMR spectrum of 2-PF6 (black) and 2@1-SO3Na (red). Spinning side bands are

marked with an asterisk.
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the hydrogenation of oct-1-ene (4). Introduction of 2@1-

SO3Na as the catalyst afforded complete hydrogenation of 4

to n-octane, at loadings as low as 50 ppm (entries 1–3). When

the loading was reduced to 10 ppm (entry 4), conversion of 4

to n-octane reached 83% (TON= 8.3X 104). Homogeneous

catalyst 2-PF6 under identical conditions produced compara-

ble results, demonstrating that encapsulation is not detrimen-

tal to catalytic activity.

The branched, but unhindered, aliphatic alkene, 3-meth-

ylhex-1-ene (5) was also completely hydrogenated using 2@1-

SO3Na at 1000 ppm loading (entries 5 and 6). The hindered

aliphatic alkene, 2-methylhex-1-ene (6) was only partially

hydrogenated with either catalyst after 20 h (entries 7 and 8).

Conversion did not increase any further after 72 h in either

system, reflecting catalyst deactivation. When cyclohexene

(7) was employed as a substrate, conversion reached 69% in

3 h with 2@1-SO3Na as the catalyst but increased only to 81%

after 20 h. On the contrary, 100% conversion was observed

with 2-PF6 in 3 h (entries 9 and 10).

The different response observed for this bulkier substrate

is consistent with hydrogenation taking place within the pores

and not on the surface of 2@1-SO3Na. The heterogeneity of

the reaction was further established by carrying out a leaching

test (Figure S21). Recycling of 2@1-SO3Na was also possible

with a small decrease in activity (82% conversion) during the

third cycle (Figure S22).

Compound 2@1-SO3Na is a versatile catalyst which can

also be employed in a gas/solid reaction,[21] as demonstrated

by the complete hydrogenation of but-1-ene over 2@1-SO3Na

in 2.5 h (4000 mmol of but-1-ene hydrogenated per 1 mg of Ir).

Although finely ground solid 2-PF6 was also active, dispersion

of 2 in the porous anionic solid-state support increases the

number of accessible catalytic sites in 2@1-SO3Na, resulting in

a sixfold increase in activity compared to the non-porous solid

2-PF6 (Figure 3). Recycling of 2@1-SO3Na was also successful

upon exposure to fresh but-1-ene (Figure S23).

The mesopores of 2@1-SO3Na are hydrophilic due to the

presence of H-bond accepting sulfonate groups as well as

Lewis acidic CrIII sites and Na+ cations. Therefore, the

reactivity of CrabtreeQs catalyst with substrates bearing

functional groups that can interact with such an environment

could significantly change due to encapsulation. We chose to

explore this by using olefinic alcohols as substrates, whose

fundamental characteristic is the competition between hydro-

genation and isomerization upon turnover.[22] Hydrogenation

of a series of olefinic alcohols was carried out under a & 20-

fold excess of H2 (Table 2).

Complete hydrogenation of pent-4-en-1-ol (8a), pent-4-

en-2-ol (9a), and 2-methylbut-3-en-1-ol (10a) to the respec-

tive alcohols 8b–10b was observed with 2-PF6 in 3 h. Isomer-

ization products were not detected (Figure S24), as reported

for 2-PF6 using similar substrates.[23] Complete hydrogenation

Figure 2. a) Single crystal structure of 2-OTs (OTs@ counter anion is

not shown for clarity). b) Single crystal structure of 3. c) Reversible

ligand exchange between 2-OTs and 3 in CD2Cl2.

Table 1: Hydrogenation of non-functionalized alkenes with heterogene-

ous 2@1-SO3Na and homogeneous 2-PF6 catalysts.
[a]

Entry Substrate Loading t 2@1-SO3Na 2-PF6

[ppm] [h] Conv[b] TON Conv[b] TON

[%] [%]

1

4

1000[c] 3 >99 >990 100 1000

2 100[d] 20 100 10000 100 10000

3 50[e] 24 100 20000 – –

4 10[f ] 24 83 83000 94 94000

5
5 1000[c]

3 >99 >990 100 1000

6 20 100 1000 – –

7
6 1000[c]

3 10 100 12 120

8 20 26 260 37 370

9
7 1000[c]

3 69 690 100 1000

10 20 81 810 – –

[a] CH2Cl2 solvent, T=20 88C. [b] Conversion (%) based on GC. [c] [alke-

ne]=0.5m, V=1 mL, 8 mmol of H2. [d] [alkene]=1.0m, V=4 mL,

16 mmol of H2. [e] [alkene]=1.0m, V=10 mL, 48 mmol of H2.

[f ] [alkene]=1.5m, V=12 mL, 48 mmol of H2.

Figure 3. Conversion of but-1-ene into n-butane in a gas/solid hydro-

genation reaction over 2@1-SO3Na (red) and 2-PF6 (blue). Conditions:

T=20 88C, PH2
<4 bar, 0.5 mg of solid catalyst used.
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of 8a–10a to 8b–10b was also achieved with 2@1-SO3Na,

albeit in 24 h (Table 2, entries 1–6). Isomerization products

were again not detected. Conversion in 3 h correlates well

with the steric hindrance around the double bond of the

substrate: 10% for 10a (more hindered), increasing to 22%

for 9a (less hindered), and reaching 34% for 8a (linear).

Olefinic alcohols 8a–10a were hydrogenated considerably

slower with 2@1-SO3Na, compared to the sterically compa-

rable non-functionalized alkenes 4 and 5 (Table 1). This is

consistent with a strong interaction between the hydroxyl

group of the olefinic alcohols and the chemical microenviron-

ment of 2@1-SO3Na.

Substrates which are intrinsically more susceptible to

isomerization, such as the homoallylic (11a) and allylic (12a,

13a) alcohols,[23,24] revealed a significant enhancement of

reactivity and selectivity to hydrogenation with 2@1-SO3Na,

compared to its homogeneous counterpart. The homogene-

ous catalyst 2-PF6 afforded 56% conversion of 11a in 3 h and

57% in 24 h, indicative of catalyst deactivation (Table 2,

entries 7 and 8, Figure S25). Moreover, isomerization of 11a

was also observed, producing a non-negligible amount of the

internal olefinic alcohol 11c and traces of the aldehyde 11d.

As a result, selectivity to hydrogenation and formation of n-

butanol (11b) was only 86% for the homogeneous system.

By contrast, the heterogeneous catalyst 2@1-SO3Na

afforded complete conversion and 100% selectivity to hydro-

genation and formation of 11b (Table 2, entries 7 and 8,

Figure S26). Monitoring conversion over time for both

systems (Figure S27) verified that 2-PF6 is deactivated after

3 h, whereas 2@1-SO3Na remained productive, affording full

conversion in 6 h. Although traces

of the internal olefin 11c were

detected in short reaction times,

11c was subsequently also hydro-

genated to 11b. The encapsulated

catalyst is thus more stable, more

active with respect to overall con-

version, and more selective.

The superior performance of

2@1-SO3Na was even more pro-

nounced in the hydrogenation of

allylic alcohols that can isomerize

directly to the respective alde-

hydes. Conversion under hydroge-

nation conditions for trans-pent-2-

en-1-ol (12a, entries 9 and 10) and

trans-crotyl alcohol (13a,

entries 11 and 12) in 3 h with 2-

PF6 was 69% and 54%, respec-

tively (Figure S28). Conversion did

not increase after 24 h, indicating

catalyst deactivation. Selectivity to

hydrogenation was poor: 61% for

alcohol 12b in 3 hwith a substantial

amount of the aldehyde 12d

formed (35% selectivity), and

31% for alcohol 13b in 3 h with

the aldehyde 13d now being the

main product (54% selectivity). By

contrast, overall conversion with 2@1-SO3Na as the catalyst

reached 96% for 12a and 82% for 13a in 24 h (Figure S29).

Isomerization to the aldehydes 12d and 13d was significantly

suppressed, resulting in + 90% selectivity for the alcohols

12b and 13b.

To probe the effect of the sulfonate group on stability and

selectivity, we also investigated the homogeneous hydro-

genation of crotyl alcohol using 2-OTs and 3 as catalysts

(Figure S30). Higher conversions were observed compared to

2-PF6 (77% for 2-OTs and 83% for 3 in 24 h) in accordance

with OTs@ being a more strongly coordinating anion, hence

prolonging the catalystQs lifetime.[25] By contrast, selectivity to

hydrogenation did not significantly improve (39% for 2-OTs

and 53% for 3), remaining considerably lower than that of

2@1-SO3Na (+ 90%).

The reaction pathways for the hydrogenation or isomer-

ization of olefinic alcohols with the homogeneous catalyst 2-

PF6 likely share the same starting point, the formation of

a cationic IrIII-dihydride complex in which the hydroxyl group

is also coordinated to Ir (Scheme 2, intermediate I), followed

by migratory insertion (intermediate II).[13,14] Bifurcation into

separate, competitive pathways then occurs: i) hydrogenation

to the respective alcohol via reductive elimination (pathway

A) or ii) isomerization to the internal olefin via b-elimination,

which requires an appropriately orientated vacant coordina-

tion site, followed by off-cycle tautomerization to the

aldehyde (pathway B).

The significantly improved selectivity to hydrogenation

observed with 2@1-SO3Na suggests that isomerization is

suppressed. We propose that this could take place due to

Table 2: Substrate conversion[a] and product selectivity[a,b] for hydrogenation of olefinic alcohols with

heterogeneous 2@1-SO3Na and homogeneous 2-PF6 catalysts.
[c]

Entry Substrate t 2@1-SO3Na 2-PF6

[h] Conv

[%]

b c d Conv

[%]

b c d

1
8a

3 34 100 n.d.[d] n.d. 100 100 n.d. n.d.

2 24 100 100 n.d. n.d. – – – –

3
9a

3 22 100 n.d. n.d. 100 100 n.d. n.d.

4 24 100 100 n.d. n.d. – – – –

5
10a

3 10 100 n.d. n.d. 100 100 n.d. n.d.

6 24 100 100 n.d. n.d. – – – –

7
11a

3 33 95 5 n.d. 56 85 13 2

8 24 100 100 n.d. n.d. 57 86 12 2

9
12a

3 41 93 n.d. 7 69[e] 61 n.d. 35

10 24 96 92 n.d. 8 62[e] 55 n.d. 19

11
13a

3 26 92 n.d. 8 54[e] 31 n.d. 54

12 24 82 90 n.d. 10 53[e] 28 n.d. 26

[a] Based on 1H NMR using mesitylene as standard for verifying mass-balance. [b] Yield of each product

over total conversion. [c] 0.1 mol% loading, [substrate]=0.5m in CH2Cl2, V=0.7 mL, &8 mmol of H2.

[d] Not detected. [e] Formation of ill-defined condensation products was also observed, especially in

24 h.
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extended coordination sphere interactions between the

hydroxyl group of the olefinic alcohols and the chemical

microenvironment around 2, such as H-bonding to the

sulfonate groups. This disfavors coordination of the hydroxyl

group to Ir and enables formation of the dihydrogen complex

III, in preference to I (pathway C). Productive hydrogenation

occurs via an octahedral IrV-trihydride species (IV), as

proposed for non-functionalized alkenes with Crabtree-type

catalysts[26] and b-elimination is suppressed since Ir is

coordinatively saturated throughout.

Catalyst 2@1-SO3Na also resulted in higher overall

conversions for the hydrogenation of olefinic alcohols,

compared to 2-PF6. A series of selective poisoning experi-

ments revealed that the isomerization products are not

responsible for catalyst deactivation (Table S7). We thus

suggest that 2@1-SO3Na has a longer lifetime due to: i) spatial

isolation of the positively charged catalytically active species

inside the pores of the anionic MOF which hinders the

formation of catalytically inactive clusters and/or ii) reversible

coordination of the sulfonate anion, as shown with 2-OTs and

3.

In summary, we demonstrate that the hybrid catalyst 2@1-

SO3Na is capable of hydrogenating non-functionalized

alkenes at low loadings in solution and in the gas phase

under mild conditions. It outperforms its homogeneous

counterpart in the hydrogenation of olefinic alcohols, showing

significantly higher conversions under otherwise identical

conditions. In addition, encapsulation results in a pronounced

selectivity enhancement in favor of hydrogenation by sup-

pressing the competing isomerization reaction due to

extended coordination sphere interactions of the catalytic

center with the chemically functionalized internal surface of

the MOF. Capitalizing on such stability and selectivity

enhancements is likely to be important in catalytic applica-

tions in continuous flow.[27] In metalloenzymes, it is well-

established that well-positioned amino acid residues around

the active site control reactivity and selectivity.[3] Here, the

well-defined, readily engineered MOF chemical microenvir-

onment controls reactivity and selectivity of the encapsulated

catalyst, allowing discrimination between two distinct reac-

tion pathways.
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