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Robust Energy-Ef�cient Design for MISO
Non-Orthogonal Multiple Access Systems

Faezeh Alavi, Kanapathippillai Cumanan, Milad Fozooni, Zhiguo Ding, Sangarapillai Lambotharan and
Octavia A. Dobre

Abstract—Non-orthogonal multiple access (NOMA) has been
envisioned as a promising multiple access technique for 5G and
beyond wireless networks due to its signi�cant enhancement
of spectral ef�ciency. In this paper, we investigate a robust
energy ef�ciency design for multi-user multiple-input single-
output (MISO) NOMA systems where imperfect channel state
information is available at the base station. A clustering algorithm
is applied to group the users into different clusters, and then
NOMA technique is employed to share the available resources
fairly among the users in each cluster. To remove the interference
between clusters, two different types of zero-forcing (ZF) designs,
namely, hybrid-ZF and full-ZF are employed at the BS. The
full-ZF scheme completely removes the interference leakage at
the cost of more number of antennas and the hybrid-ZF scheme
partially mitigates the interference leakage. To solve the problem,
the Dinkelbach's algorithm is employed to convert the non-linear
fractional programming problem into a simple subtractive form.
Finally, simulation results reveal that hybrid-ZF outperforms the
full-ZF scheme with a few clusters, while full-ZF shows a better
performance with the higher number of clusters. The numerical
results con�rm that our proposed robust scheme outperforms the
non-robust scheme in terms of the rate-satisfaction ratio at each
user.

Index Terms—Convex optimization, Multiple-input single-
output (MISO), Non-orthogonal multiple access (NOMA), Robust
energy ef�ciency (EE), Worst-case performance optimization,
Zero-forcing (ZF).

I. I NTRODUCTION

In recent years, mobile communication technologies have
been facing various key challenges, such as increasing demand
for high data rate services, massive connectivity requirements
and scarcity of radio resources, which need to be addressed
in the next generation of wireless networks [1]–[6]. On the
other hand, this explosive growth of data traf�c has triggered a
rapid increase in energy consumption. The statistics show that
the information and communication technology infrastructures
consume more than3% of the world-wide energy consumption
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[7]. Hence, an appropriate performance metric is required
to strike a good balance between the achievable data rate
and power consumption. To this end, energy ef�ciency (EE),
de�ned as the number of bits that can be reliably transmitted
per Joule of energy consumption, has been recently consid-
ered as one of the key performance metrics to evaluate the
performance of communication networks [8], [9].

To accommodate a large number of connected devices with
higher data rates, non-orthogonal multiple access (NOMA) has
been recently advocated as a prospective candidate for multiple
access technique in the �fth generation (5G) and beyond wire-
less networks [10]–[16]. In NOMA, multiple users can share
the same wireless resources, i.e., time, frequency and code
domains by applying superposition coding (SC) and power do-
main multiplexing at the transmitter. More speci�cally, NOMA
allocates higher transmit power to the users with poor channel
conditions, while the users with better channel conditions are
served with less transmit power. Then, successive interference
cancellation (SIC) technique is employed at the receiver for
multi-user detection. In other words, NOMA mitigates the in-
terference through a non-orthogonal approach to signi�cantly
increase the system throughput while introducing an affordable
additional complexity at the receiver [12]. As a result, more
mobile terminals can be served simultaneously with higher
spectral ef�ciency (SE). Hence, NOMA has recently attracted
a considerable amount of research interests from both industry
and academia, thanks to its great potential capabilities in future
wireless networks.

A. Literature

Most of the existing works on NOMA in the literature
mainly focuses on improving the overall SE of communication
systems [17]–[22]. However, there is a dearth of literature
considering the EE which has been identi�ed as one of the
key performance metrics in future wireless networks. The
EE of NOMA systems was investigated in [23] for a given
statistical channel state information (CSI) at the transmitter. A
crucial step forward was followed in [24] to maximize the
EE of downlink NOMA systems by recalling a non-linear
fractional programming method. In addition, the authors in
[25] proposed a power allocation and subchannel assignment
to maximize the EE in NOMA networks by assigning only two
users per subchannel. The joint user scheduling and power
allocation in this context was further explored in [26], [27]
under the assumption of imperfect CSI. In [26], it was assumed
that only two users can be multiplexed on each subchannel
whereas a general case with more number of users on same
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subchannel was developed in [27]. These results con�rmed
that the NOMA system can achieve a better performance in
terms of sum rate and EE compared to the conventional orthog-
onal multiple access (OMA) systems, for example orthogonal
frequency-division multiple access (OFDMA). An energy-
ef�cient power and bandwidth allocations were derived in [28]
for a NOMA system which has multiple subchannels with
unequal bandwidth. Some other related works can be found in
[29], [30]. In [29], the authors proposed two user scheduling
schemes combined with a power allocation scheme to enhance
the EE in the multiple-input multiple-output (MIMO) NOMA
system. As such, another optimal power allocation strategy has
been proposed in [30] to solve the EE maximization problem
for a multi-cluster multi-user MIMO-NOMA system.

Most existing research works on NOMA scheme have
assumed that perfect CSI is available at the base stations (BSs)
[31]–[34] which is not a realistic assumption in practice due to
estimation and quantization errors, or inevitable delays in feed-
back links. Furthermore, the channel uncertainties can deteri-
orate the performance of SIC-based receivers where the users
are sorted with respect to their channel gains [35]. Hence, it is
of paramount importance to incorporate CSI uncertainties into
problem formulations of NOMA-based networks to guarantee
the required quality-of-service (QoS) at different users. To this
end, robust design is a standard approach to tackle the channel
uncertainties [36]–[38] and it can be categorized primarily
into two groups: I) worst-case design with norm-bounded
channel uncertainties, where CSI errors are bounded within
a known region [39], [40]; II) outage probability-based design
by assuming that the channel errors are random variables
with a known probability density function which is available
at the transmitter [41], [42]. In [43], [44], robust designs
for the multiple-input single-output (MISO) NOMA systems
have been developed to maximize the sum rate and minimize
the total transmit power, under the assumption of bounded
channel uncertainties. An outage probability-based design has
been proposed in [45] to minimize the total required transmit
power in MISO NOMA systems. Motivated by the above
discussion, we focus on robust resource allocation schemes
to appropriately address the impact of channel uncertainties
on EE of a MISO NOMA system. In [46], a worst-case
rate maximization problem is investigated in downlink MIMO
NOMA networks which is solved by using cutting-set method
with alternating optimization and pessimization steps.

B. Contributions

In this paper, we consider a downlink transmission of
NOMA wireless network where a BS equipped with multiple
antennas serves a set of single-antenna users that are uniformly
distributed within a cell. By employing a clustering algorithm,
the users are grouped into several clusters with two users per
cluster. We consider a bounded channel uncertainty model to
de�ne the CSI errors, and design the beamfomers to optimize
the worst-case EE problem. To the best of the authors'
knowledge, the resource allocation problem that maximizes
the robust EE has not been studied in the literature for MISO
NOMA systems. The main contributions of this work are
summarized as follows:

1) Having de�ned the system EE as the ratio between total
sum rate and total power consumption, we focus on the
robust EE maximization problem for a downlink MISO
system, relying on NOMA principles in each cluster.
The QoS requirement of each user is also included and
guaranteed by an individual minimum data rate.

2) To incorporate practical scenarios, we assume that only
the imperfect CSI is available at the BS and the channel
uncertainties are bounded by prede�ned ellipsoids. Then,
we consider the worst-case EE to ensure providing a
required QoS at each user regardless of the channel
uncertainties.

3) To effectively mitigate mutual interferences among dif-
ferent clusters, we present two different zero-forcing
(ZF) schemes for the beamforming design, namely, I)
hybrid-ZF and II) full-ZF. Although the full-ZF scheme
can completely remove the interference between different
clusters, it requires more number of transmit antennas at
BS than that of the hybrid-ZF scheme to serve the same
number of users. By increasing the number of clusters,
the residual interference increases, and hence, the full-ZF
approach can achieve a better performance in terms of EE
as the residual interference can be completely cancelled.

4) To solve the power allocation problem, we cast the orig-
inal problem in hand by considering the lower bound of
SINR to present the constraints in a more tractable form.
Then, an iterative algorithm is developed to transform
the non-convex problem into sequential convex problems,
which can be tackled by means of the standard power
allocation techniques in each iteration. In particular, the
Dinkelbach's algorithm is employed in each iteration to
convert the non-linear fractional programming problem
into a simple subtractive form.

C. Paper Organization

The rest of the paper is structured as follows. In Section
II, we describe the system model and the hybrid-ZF scheme
for beamforming design, while the robust EE design under
the channel uncertainties is delineated in Section III. The full-
ZF scheme is motivated and developed in Section IV. Finally,
numerical results to validate the effectiveness of the proposed
schemes are provided in Section V, before concluding the
paper in Section VI.

D. Notation

Throughout this paper, we use lowercase boldface letters
for vectors and uppercase boldface letters for matrices. The
conjugate transpose and inverse of a matrix are denoted
by (�)H and (�) � 1, respectively. The symbolCn shows the
n-dimensional complex space, andR+ represents the non-
negative real numbers. The Euclidean norm of a vector is
denoted byk � k; and j � j represents the absolute value of
a complex number. The notation(x)+ stands formax(0; x),
while N andCN denote a real and complex Gaussian random
variable, respectively.
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Fig. 1. A MISO NOMA system withK clusters and two users per cluster.

II. SYSTEM MODEL

We consider a MISO NOMA downlink transmission where
a BS equipped withN antennas intends to communicate
with 2K single antenna users. All users are grouped intoK
clusters(K � N ) with two users per cluster by employing the
clustering algorithm [47], [48]. Note that the number of users
in a cluster can be more than two; however, we assume only
two users in each cluster for the sake of brevity. Thel th user
in the kth cluster is denoted byUl;k ; for all k 2 f 1; : : : ; K g
and l = 1 ; 2. Let h l;k 2 CN � 1 represent the channel vector

from the BS toUl;k ; which can be modeled as�
q

d� �
l;k [49],

where � denotes the Rayleigh fading channel gain,dl;k is
the distance between the BS andUl;k , and � represents the
path loss exponent. For user pairing, we apply the clustering
algorithm in [47] which is based on the channel correlation,

j h T
i h j j

kh i k k h j k , and gain difference,
�
� kh i k � k h j k

�
�, between two

usersi and j . This algorithm selects two users that have a
high correlation and a large channel gain difference in each
cluster.

Among two users in a cluster, we considerU2;k has a higher
channel gain thanU1;k , so thatkh1;k k � k h2;k k; 8k. The
users in each cluster are supported by a NOMA beamform-
ing vector to share the same time-frequency block but with
different power levels through power domain multiplexing.
Motivated by realistic scenarios in practice, we assume that
the perfect CSI is not available at the transmitter due to
quantization, channel estimation errors and feedback delays.
Hence, we model the actual channel by the worst-case model
[44], [50], [51], and incorporate the norm-bounded channel
uncertainties in our analysis such that

h l;k = ĥ l;k + � ĥ l;k ; (1)

whereĥ l;k is the estimated channel, and� ĥ l;k is the corre-
sponding channel uncertainty. In this model, it is assumed that
� ĥ l;k is con�ned in a certain region, i.e.,k� ĥ l;k k � " .

Let w k and pl;k denote the beamforming vector steering
towards thekth cluster and the transmit power allocated to
user Ul;k , respectively. From the NOMA protocol, the BS
broadcasts the superposition coded users' signals as

x =
KX

k=1

w k (
p

p1;k s1;k +
p

p2;k s2;k ); (2)

wheres1;k and s2;k are the unit power information symbols
for the weak and strong users, respectively. Thus, the received
signals at the weak userU1;k and the strong userU2;k are
given by

y1;k = hH
1;k x + n1;k ; (3)

y2;k = hH
2;k x + n2;k ; (4)

where nl;k � CN (0; � 2) for l = 1 ; 2 is zero-mean additive
white Gaussian noise with variance� 2. By utilizing the SIC
at the receivers,U2;k decodes and removes the data ofU1;k

from the aggregated received signaly2;k , and then, decodes
its own data.

Next, we utilize the ZF beamformer at the BS to eliminate
the interference between clusters by deployingN � K
antennas at the BS. To this end, the beamforming vector is
designed based on the user's channel,ĥ l;m , and ful�lls the
following conditions:

ĥH
l;m w k = 0 ; 8m 6= k: (5)

Note that when there areK � N < 2K � 1 antennas at
the BS, it is not possible to simultaneously satisfy (5) for both
channel vectorŝh i;m andĥ2;m . Therefore, if it is assumed that
the channel̂h l;m is aligned with one of these users' channels,
while the other user will suffer from the interference caused
by transmission of signals to other clusters. Consequently, this
residual interference can severely degrade the performance of
SIC at the strong user to decode the weaker user's signal [47].
Therefore, to ef�ciently implement SIC, beamforming vectors
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are generated based on the channels of the stronger usersĥ2;m ,
to satisfy the condition in (5) such that

ĥH
2;m w k = 0 ; 8m 6= k: (6)

However, note that̂hH
1;m w k 6= 0 ; for any m 6= k; which

is the source of residual interference. Since there is residual
interference for the the weak user, we refer this scheme as
a hybrid-ZF scheme. By de�ningH = [ ĥ2;1 � � � ĥ2;K ], the
beamforming vector can be obtained as

W = [ w1 � � � wK ] = H y = H (H H H ) � 1; (7)

where H y denotes the pseudo-inverse of the matrixH , and
w k is the beamforming vector for thekth cluster. Therefore,
the received signal atU2;k can be written as

y2;k = hH
2;k w k (

p
p1;k s1;k +

p
p2;k s2;k )

+ � ĥ
H
2;k

X

j 6= k

w j (
p

p1;j s1;j +
p

p2;j s2;j ) + n2;k ;

(8)

where the second term in (8) refers to the residual interference
which cannot be completely removed during the ZF process
due to imperfect CSI [43]. Overall, the signal-to-interference-
and-noise ratio (SINR) at the strong user to decode the weak
user's signal is given by

SINR(1)
2;k =

p1;k jhH
2;k w k j2

p2;k jhH
2;k w k j2

| {z }
intra-cluster interference

+
X

j 6= k

j� ĥ
H
2;k w j j2(p1;j + p2;j )

| {z }
residual interference due to imperfect CSI

+� 2
;

(9)

and after removing the weak user's signal via SIC technique,
the strong user achieves the SINR in (10). The �rst term of
the denominator in (10) is considered due to the fact that the
stronger user cannot completely remove the detected weaker
user's signal during the SIC process. At the other end, the
SINR of weak user to decode its own signal is given by

SINR(1)
1;k =

p1;k jhH
1;k w k j2

p2;k jhH
1;k w k j2

| {z }
intra-cluster interference

+
X

j 6= k

jhH
1;k w j j2(p1;j + p2;j )

| {z }
residual interference

+� 2
:

(11)

Thus, the achievable rate atU1;k and U2;k can be respec-
tively de�ned as follows [17]:

R1;k = log 2

�
1 + min f inf

� ĥ 1;k

SINR(1)
1;k ; inf

� ĥ 2;k

SINR(1)
2;k g

�
;

(12)

R2;k = log 2(1 + inf
� ĥ 2;k

SINR(2)
2;k ): (13)

III. ROBUST ENERGY EFFICIENCY MAXIMIZATION

In this section, we develop a robust energy-ef�cient power
allocation scheme for a MISO NOMA system by incorporating
the inevitable channel uncertainties. First, we de�ne the EE
formulation and then use it to model the worst-case power
optimization problem. After applying a set of appropriate lem-
mas to transform the non-convex problem into a convex one,
we solve the obtained problem by employing the Dinkelbach's
algorithm.

A. Problem Formulation

To design an energy-ef�cient system, we consider a global
EE which is de�ned as the ratio of the achievable sum rate
of the system (bits/s/Hz) and the total power consumption
(Watt). The overall EE of the NOMA system with the worst-
case performance design can be mathematically expressed
in (14), wherePc is the power dissipated in circuit blocks.
Accordingly, the optimization problem can be formulated
to determine the transmit power allocation that maximizes
the worst-case EE under limited power budget and the QoS
constraint for each user as follows:

max
p1;k ;p2;k

EE; (15a)

s:t:
KX

k=1

(p1;k + p2;k ) � Pmax; (15b)

R1;k � Rmin; R2;k � Rmin; 8k; (15c)

wherePmax is the maximum transmit power available at the
BS andRmin is the minimum required data rate for each user.

This optimization problem is a non-convex and non-linear
fractional programming problem. To solve this EE maximiza-
tion problem, we present an iterative approach, where the
Dinkelbach's algorithm is employed to optimize an approx-
imated convex problem.

B. Power Allocation Design

In this subsection, we propose a power allocation scheme
that maximizes the robust EE through an iterative algorithm.
First, we introduce variablesf 
 1;k ; 
 2;k g 2 R+ to further
simplify the optimization problem in (15) as follows:

max

 1;k ;
 2;k ;p1;k ;p2;k

P K
k=1

�
log2(1 + 
 1;k ) + log 2(1 + 
 2;k )

�

P K
k=1 (p1;k + p2;k ) + Pc

;

(16a)

s:t:
KX

k=1

(p1;k + p2;k ) � Pmax; (16b)


 min � 
 1;k � minf inf
� ĥ 1;k

SINR(1)
1;k ; inf

� ĥ 2;k

SINR(1)
2;k g; 8k;

(16c)


 min � 
 2;k � inf
� ĥ 2;k

SINR(2)
2;k ; 8k; (16d)

where 
 min = 2 R min
� 1 is the minimum required SINR at

each user. The equivalent problem in (16) is still non-convex
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SINR(2)
2;k =

p2;k jhH
2;k w k j2

p1;k j� ĥ
H
2;k w k j2

| {z }
intra-cluster interference due to imperfect CSI

+
X

j 6= k

j� ĥ
H
2;k w j j2(p1;j + p2;j )

| {z }
residual interference due to imperfect CSI

+ � 2
: (10)

EE =
P K

k=1 (R1;k + R2;k )
P K

k=1 (p1;k + p2;k ) + Pc

=

P K
k=1

�
log2

�
1 + min f inf

� ĥ 1;k

SINR(1)
1;k ; inf

� ĥ 2;k

SINR(1)
2;k g

�
+ log 2(1 + inf

� ĥ 2;k

SINR(2)
2;k )

�

P K
k=1 (p1;k + p2;k ) + Pc

:

(14)

and NP-hard. As there is a common parameter� ĥ l;k in both
numerator and denominator of the SINR expression, the con-
straints in (16c) and (16d) are intractable. To circumvent this
issue, we consider their lower bounds through the following
lemma:

Lemma 1: Consider

SINR( j )
i;k =

pj j(ĥ i;k + � ĥ i;k )H w k j2
P

n pn j(ĥ i;k + � ĥ i;k )H wn j2 +
P

m pm j� ĥH
i;k wm j2 + � 2

which represents the SINR at thei th user in thekth clus-
ter to decode thej th user's signal. A lower bound of
inf � ĥ i;k

(SINR( j )
i;k ) can be expressed as

' i;k =
pj f k

i;kP
n pn gn

i;k +
P

m pm gm
i;k + � 2 ; (17)

where

f k
i;k =

�
�
�
�

� �
� ĥH

i;k w k
�
� � "kw k k

� +
�
�
�
�

2

; (18)

gn
i;k =

�
�
�
�
�
� ĥH

i;k wn
�
� + "kwn k

�
�
�
�

2

; (19)

gm
i;k =

�
"kwm k

� 2
: (20)

Proof: Please refer to Appendix A.

By applying the lower bound function' i;k in (17), to the
main problem (16) the following optimization problem can be
formulated:

max

 1;k ;
 2;k ;p1;k ;p2;k

P K
k=1

�
log2(1 + 
 1;k ) + log 2(1 + 
 2;k )

�

P K
k=1 (p1;k + p2;k ) + Pc

;

(21a)

s:t:
KX

k=1

(p1;k + p2;k ) � Pmax; (21b)


 1;k �
p1;k f k

1;k

p2;k gk
1;k +

P
m 6= k (p1;m + p2;m )gm

1;k + � 2
; 8k;

(21c)


 1;k �
p1;k f k

2;k

p2;k gk
2;k +

P
m 6= k (p1;m + p2;m )gm

2;k + � 2
; 8k;

(21d)


 2;k �
p2;k f k

2;k

p1;k gk
2;k +

P
m 6= k (p1;m + p2;m )gm

2;k + � 2
; 8k;

(21e)


 min � 
 1;k ; 
 min � 
 2;k ; 8k: (21f)

Although all the constraints in (21) can be rearranged as
standard posynomials, this problem cannot be formulated as
a geometric program (GP) as the objective function cannot
be written as a posynomial function. To solve this fractional
programming problem, we employ the Dinkelbach's algorithm
which converts a non-linear fractional optimization problem
into an equivalent and a tractable problem. For more details,
please refer to Appendix B.

TABLE I
DINKELBACH ' S ALGORITHM

Algorithm 1 Dinkelbach's Algorithm
1. Initialization: Set� > 0; n = 0 ; � n = 0 ;
2. repeat
3. x �

n = arg max
x

f f (x n ) � � n g(x n )g,
4. F (� n ) = f (x �

n ) � � n g(x �
n ),

5. � n +1 =
f (x �

n )

g(x �
n )

,

6. n = n + 1 ,
7. until F (� n ) < � .

According to the requirement of Dinkelbach's algorithm, we
have to reformulate the problem in (21) in a concave-convex
fractional problem (CCFP) form to apply this algorithm. To
deal with the non-convex nature of constraints in (21c)-(21e),
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we introduce new variables#1;k ; #2;k and#k and rede�ne the
corresponding constraints in the following inequalities:

(21c))
�


 1;k #1;k � p1;k f k
1;k ;

p2;k gk
1;k +

P
m 6= k (p1;m + p2;m )gm

1;k + � 2 � #1;k ;
8k;

(22)

(21d))
�


 1;k #2;k � p1;k f k
2;k ;

p2;k gk
2;k +

P
m 6= k (p1;m + p2;m )gm

2;k + � 2 � #2;k ;
8k;

(23)

(21e))
�


 2;k #k � p2;k f k
2;k ;

p1;k gk
2;k +

P
m 6= k (p1;m + p2;m )gm

2;k + � 2 � #k ;
8k:

(24)

Next, to deal with the product of optimization variables in
(22)-(24), we utilize the following expression:


 i;k #j;k =
1
4

�
(
 i;k + #j;k )2 � (
 i;k � #j;k )2�

: (25)

Then, the second quadratic term can be approximated by
the �rst order Taylor series around
 ( t )

i;k and #( t )
j;k . As such,

the product of two variables can be transformed into a convex
term as


 i;k #j;k �
1
4

(
 i;k + #j;k )2 �
1
4

[(
 ( t )
i;k � #( t )

j;k )2

+ 2( 
 ( t )
i;k � #( t )

j;k )( 
 i;k � 
 ( t )
i;k � #j;k + #( t )

j;k )]

, G(
 i;k #j;k ; 
 ( t )
i;k #( t )

j;k ): (26)

By recalling the above approximation and applying the Dinkel-
bach's algorithm, we should treat the following optimization
problem in thet th iteration:

max
p1;k ;p2;k ;A

KX

k=1

�
log2(1 + 
 1;k ) + log 2(1 + 
 2;k )

�

� � n

 
KX

k=1

(p1;k + p2;k ) + Pc

!

; (27a)

s:t:
KX

k=1

(p1;k + p2;k ) � Pmax; (27b)

G(
 1;k #1;k ; 
 ( t )
1;k #( t )

1;k ) � p1;k f k
1;k ; 8k; (27c)

p2;k gk
1;k +

X

m 6= k

(p1;m + p2;m )gm
1;k + � 2 � #1;k ; 8k; (27d)

G(
 1;k #2;k ; 
 ( t )
1;k #( t )

2;k ) � p1;k f k
2;k ; 8k; (27e)

p2;k gk
2;k +

X

m 6= k

(p1;m + p2;m )gm
2;k + � 2 � #2;k ; 8k; (27f)

G(
 2;k #k ; 
 ( t )
2;k #( t )

k ) � p2;k f k
2;k ; 8k; (27g)

p1;k gk
2;k +

X

m 6= k

(p1;m + p2;m )gm
2;k + � 2 � #k ; 8k; (27h)


 min � 
 1;k ; 
 min � 
 2;k ; 8k; (27i)

TABLE II
ENERGY EFFICIENCY MAXIMIZATION

ALGORITHM

Algorithm 2 Energy Ef�ciency Maximization Algorithm
1. Initialize � ( 0 ) to a feasible value of (21), and sett = 0 ;
2. repeat

Solve (27a) by using Dinkelbach's algorithm,
Set � ( t + 1 ) = A � ,
Updatet = t + 1 ,

3. until required accuracy or maximum number of iterations.

whereA , f 
 1;k ; 
 2;k ; #1;k ; #2;k ; #k g. For notational simplic-
ity, all the variables that are used in the approximations of the
product of two variables int th iteration are de�ned as

� ( t ) , f 
 ( t )
1;k ; 
 ( t )

2;k ; #( t )
1;k ; #( t )

2;k ; #( t )
k g: (28)

Since the problem in (27a) approximates the problem in
(21) around� ( t ) , we should iteratively solve the problem
in (27a) for different values of� ( t ) and update the ap-
proximations to obtain the best local solution. Towards this
end, if the solution of problem (27a) in thet th iteration is
A � , f 
 �

1;k ; 
 �
2;k ; #�

1;k ; #�
2;k ; #�

k g, it is considered as the initial
point of the next iteration, i.e.,� ( t +1) , until the algorithm
converges. The pseudo-code of the proposed iterative algo-
rithm is summarized in Table II. Furthermore, the minimum
threshold to terminate the algorithm is chosen as the difference
between two successive values of achieved EE or the number
of iterations is reached to a prede�ned maximum value.

C. Feasibility of Problem(15)

It is worth mentioning that before solving the problem in
(15), it is important to check the feasibility of the problem.
Note that the minimum data rate constraints in (15c) might
be unattainable at all users if the available total power is
not suf�cient at the BS. Hence, there exists a minimum
required transmit powerPmin which satis�es minimum data
rate requirement for each user and makes the problem in
(15) feasible only under the conditionPmax � Pmin. Thus,
it is important to determine a feasible range ofPmax that
should be able to provide the data rate requirements at each
user. To obtainPmin, we formulate an auxiliary optimization
problem that determines the minimum required transmit power
to satisfy the minimum data rate requirement for all users as

Pmin = min
p1;k ;p2;k

KX

k=1

(p1;k + p2;k ); (29a)

s:t: R1;k � Rmin; R2;k � Rmin; 8k: (29b)

This optimization problem can be converted into a linear pro-
gramming problem by invoking the same technique discussed
for solving the main problem in (15). By obtaining thePmin

from the problem (29), the feasibility of problem in (15) can be
determined. WithPmax � Pmin, the problem in (15) is feasible
and the power allocation can be determined to maximize the
EE of the system while satisfying all the constraints.
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IV. FULL -ZF BEAMFORMING SCHEME

In this section, we present the full-ZF beamforming scheme
to completely mitigate the interference between clusters. In
particular, it is assumed that the number of antennas employed
at the BS isN � 2K � 1, which provides suf�cient degrees
of freedom for the ZF beamformer to completely remove the
residual interference [52]:

ĥH
l;j w k = 0 ; 8j 6= k; l = 1 ; 2: (30)

To design the beamforming vector by satisfying the conditions
in (30), we de�ne

H k = [ Ĥ 1 � � � Ĥ k � 1 Ĥ k+1 � � � Ĥ K ]; (31)

whereĤ k = [ ĥ1;k ĥ2;k ]. Then, the null space of the matrix
H k can be utilized for the beamforming vectorw k which
results inH H

k w k = 0. By exploiting this condition, referred
to as full-ZF beamformer, the aggregated received signal at
Ul;k is given by

yl;k = hH
l;k w k (

p
p1;k s1;k +

p
p2;k s2;k )

+� ĥ
H
l;k

X

j 6= k

w j (
p

p1;j s1;j +
p

p2;j s2;j ) + nl;k ; l = 1 ; 2;

(32)

where the second term in (32) shows the impact of imperfect
CSI on ZF design. Hence, the SINR at the weak user to decode
its own signal can be de�ned as

]SINR
(1)

1;k =
p1;k jhH

1;k w k j2

p2;k jhH
1;k w k j2

| {z }
intra-cluster interference

+
X

j 6= k

j� ĥ
H
l;k w j j2(p1;j + p2;j )

| {z }
residual interference due to imperfect CSI

+ � 2
:

(33)
Similarly, the SINR at the strong user to decode the weak

user's signal is given by

]SINR
(1)

2;k =
p1;k jhH

2;k w k j2

p2;k jhH
2;k w k j2

| {z }
intra-cluster interference

+
X

j 6= k

j� ĥ
H
2;k w j j2(p1;j + p2;j )

| {z }
residual interference due to imperfect CSI

+ � 2
;

(34)
and the strong user achieves the following SINR to decode
its own message after performing SIC in (35). Based on these
de�nitions of SINRs at both users, the worst-case EE of the
full ZF scheme can be expressed in (36).

Accordingly, we solve the following optimization problem
to determine the best power allocation that maximizes the
worst-case EE:

max
p1;k ;p2;k

EE full-ZF; (37a)

s:t:
KX

k=1

(p1;k + p2;k ) � Pmax; (37b)

8
>><

>>:

log2

�
1+min

n
inf

� ĥ 1;k

]SINR
(1)

1;k ; inf
� ĥ 2;k

]SINR
(1)

2;k

o�
� Rmin; 8k;

log2(1 + inf
� ĥ 2;k

]SINR
(2)

2;k ) � Rmin; 8k:

(37c)

To solve the fractional programming problem in (37), we
apply the same procedure as in Section III.B. Towards this end,
we equivalently reformulate the problem in (37) by introducing
variablese
 1;k ande
 2;k as follows:

max
e
 1;k ;e
 2;k ;p1;k ;p2;k

P K
k=1

�
log2(1 + e
 1;k ) + log 2(1 + e
 2;k )

�

P K
k=1 (p1;k + p2;k ) + Pc

;

(38a)

s:t:
KX

k=1

(p1;k + p2;k ) � Pmax; (38b)


 min � e
 1;k � minf inf
� ĥ 1;k

]SINR
(1)

1;k ; inf
� ĥ 2;k

]SINR
(1)

2;k g; 8k;

(38c)


 min � e
 2;k � inf
� ĥ 2;k

]SINR
(2)

2;k ; 8k: (38d)

By invoking Lemma 1, we have

max
e
 1;k ;e
 2;k ;p1;k ;p2;k

P K
k=1

�
log2(1 + e
 1;k ) + log 2(1 + e
 2;k )

�

P K
k=1 (p1;k + p2;k ) + Pc

;

(39a)

s:t:
KX

k=1

(p1;k + p2;k ) � Pmax; (39b)

e
 1;k �
p1;k

ef k
i;k

p2;k eg k
i;k +

P
m 6= k (p1;m + p2;m )eg

m
i;k + � 2

;

8k; i = 1 ; 2; (39c)

e
 2;k �
p2;k

ef k
2;k

p1;k eg
k

2;k +
P

m 6= k (p1;m + p2;m )eg
m

2;k + � 2
; 8k;

(39d)


 min � e
 1;k ; 
 min � e
 2;k ; 8k; (39e)

where

ef k
i;k =

�
�
�
�

� �
� ĥH

i;k w k
�
� � "kw k k

� +
�
�
�
�

2

; (40)

eg k
i;k =

�
�
�
�
�
� ĥH

i;k w k
�
� + "kw k k

�
�
�
�

2

; (41)

eg
m

i;k =
�
"kwm k

� 2
: (42)

Finally, the fractional programming problem in (39) can be
solved by leveraging Dinkelbach's algorithm which converts
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]SINR
(2)

2;k =
p2;k jhH

2;k w k j2

p1;k j� ĥ
H
2;k w k j2

| {z }
intra-cluster interference due to imperfect CSI

+
X

j 6= k

j� ĥ
H
2;k w j j2(p1;j + p2;j )

| {z }
residual interference due to imperfect CSI

+ � 2
: (35)

EE full-ZF =

P K
k=1

�
log2

�
1+min f inf

� ĥ 1;k

]SINR
(1)

1;k ; inf
� ĥ 2;k

]SINR
(1)

2;k g
�
+log 2(1 + inf

� ĥ 2;k

]SINR
(2)

2;k )
�

P K
k=1 (p1;k + p2;k ) + Pc

: (36)

a non-linear fractional optimization problem to an equivalent
but more tractable problem. For more details, please refer
to Appendix B. According to the condition in Dinkelbach's
algorithm, we have to reformulate the problem in a CCFP form
to apply this algorithm. To deal with the non-convex nature
of constraints in (39c) and (39d), we introduce new variables
e#1;k ; e#2;k and e#k and rede�ne the corresponding constraints
in the following inequalities:

(39c))

(
e
 1;k

e#i;k � p1;k
ef k
i;k ;

p2;k eg k
i;k +

P
m 6= k (p1;m + p2;m )eg

m
i;k + � 2 � e#i;k ;

8k; i = 1 ; 2; (43)

and

(39d))

(
e
 2;k

e#k � p2;k
ef k
2;k ;

p1;k eg
k

2;k +
P

m 6= k (p1;m + p2;m )eg
m

2;k + � 2 � e#k ;

8k: (44)

In order to deal with the product of optimization variables in
(43) and (44), we utilize the expression in (25). Similar to the
previous section, the quadratic term can be approximated by
the �rst order Taylor series in (45) arounde
 ( t )

i;k and e#( t )
j;k , to

transform it into a convex term. As such, the product of two
variables can be transformed into a convex term as

e
 i;k
e#j;k �

1
4

(e
 i;k + e#j;k )2 �
1
4

[(e
 ( t )
i;k � e#( t )

j;k )2

+ 2( e
 ( t )
i;k � e#( t )

j;k )(e
 i;k � e
 ( t )
i;k � e#j;k + e#( t )

j;k )]

, eG(e
 i;k
e#j;k ; e
 ( t )

i;k
e#( t )

j;k ): (45)

By recalling the above approximation and applying the Dinkel-
bach's algorithm, we should treat the following optimization

problem in thet th iteration

max
p1;k ;p2;k ; eA

KX

k=1

�
log2(1 + e
 1;k ) + log 2(1 + e
 2;k )

�

� � n

 
KX

k=1

(p1;k + p2;k ) + Pc

!

; (46a)

s:t:
KX

k=1

(p1;k + p2;k ) � Pmax; (46b)

eG(e
 1;k
e#i;k ; e
 ( t )

1;k
e#( t )

i;k ) � p1;k
ef k
i;k ; 8k; i = 1 ; 2; (46c)

p2;k egk
i;k +

X

m 6= k

(p1;m+p2;m )eg
m
i;k + � 2 � #i;k ; 8k; i = 1 ; 2;

(46d)

eG(e
 2;k
e#k ; e
 ( t )

2;k
e#( t )

k ) � p2;k
ef k
2;k ; 8k; (46e)

p1;k eg
k
2;k +

X

m 6= k

(p1;m + p2;m )eg
m
2;k + � 2 � e#k ; 8k; (46f)


 min � e
 1;k ; e
 min � e
 2;k ; 8k; (46g)

where eA , f e
 1;k ; e
 2;k ; e#1;k ; e#2;k ; e#k g. For notational simplic-
ity, all variables that are used in the approximations of the
product of two variables in thet th iteration are de�ned as

e� ( t ) , f e
 ( t )
1;k ; e
 ( t )

2;k ; e#( t )
1;k ; e#( t )

2;k ; e#( t )
k g: (47)

Finally, we iteratively solve the approximated problem in
(46a) for different values ofe� ( t ) and update the approxima-
tions to obtain the best local solution similar to the proposed
iterative algorithm in Table II.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze the computational complexity of the proposed
algorithm by quantifying the required number of arithmetic
operations in the worst-case at each iteration, along with the
required number of iterations to achieve the solutions with
a certain accuracy [53], [54]. We de�ne the computational
complexity for the algorithm as presented in the �oowing:

In each iteration of Algorithm 2, a fractional program
de�ned in (27a) and (46a) is solved via the Dinkelbach's algo-
rithm in Algorithm 1. In particular, the Dinkelbach's algorithm
solves a fractional program by solving a series of auxiliary
problems. Hence, the main contributions to the computational
complexity of the proposed algorithm come from the com-
plexities introduced by solving problems de�ned in (27a)
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Fig. 2. Robust EE performance versus the maximum available power at the
BS in hybrid-ZF, full-ZF and OMA schemes. System parameters areK = 2
clusters,Rmin = 1 and error bound" = 0 :001.

and (46a). These problems are in fact linear programming
(LP) after applying the Dinkelbach's algorithm which turns
the fractional program into a simple subtractive form. The
complexity of solving an LP isO

�
n2

LP mLP
�
, wheremLP is

the number of linear constraints andnLP is the dimension
of optimization variables. For both problems in (27a) and
(46a), we havemLP = 6K + 1 and nLP = 7K . Thus, the
complexity of solving these problems isO

�
49K 2(6K + 1)

�
.

Furthermore, the complexity of alternating optimization-based
solution isO

�
L I

�
L D

�
49K 2(6K + 1)

���
, whereL D andL I

denote the numbers of iterations required for the Dinkelbach's
algorithm in Algorithm 1 and alternating optimization itera-
tions in Algorithm 2, respectively. The parametersL D andL I

depend on the prede�ned tolerance set for the algorithms.L I

can be determined by a numerical analysis since no formula
is available for the sequential method in Algorithm 2 to
calculate the number of required iterations. From [55], the
number of required iterations in the Dinkelbach's algorithm
(i.e., L D in Algorithm 1) to solvemax f (x )

g(x ) with tolerance�
can be expressed aslog2

�
U � L

�

�
, whereL andU are a lower-

bound and an upper-bound for the objective functionf (x )
g(x ) ,

respectively.

VI. SIMULATION RESULTS

We evaluate the performance of the proposed robust EE
design for the MISO NOMA system by generating1000
Monte-Carlo realizations of the �at fading channels. A down-
link transmission is considered in a single cell with one
BS equipped withN antennas andK clusters with two
single-antenna users per cluster. The small-scale fading of the
channels is assumed to be Rayleigh fading which represents
an isotropic scattering environment. The large-scale fading
effect is modelled bydlk

� � to incorporate the path-loss effects,
wheredlk is the distance betweenUl;k and BS, measured in
meters and� is the path-loss exponent . Hence, the channel
coef�cients between BS and userUl;k are generated using
h l;k = �

p
dlk

� � , where � � CN (0; I ) and � = 3 :8
[56]. Throughout the simulations, it is assumed that users are
uniformly distributed within a circle with a radius of50 meters
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Exhaustive Search, Hybrid-ZF EE Maximization, N=2

Exhaustive Search, Hybrid-ZF SE Maximization, N=2

Fig. 3. Robust EE performance versus the maximum available power at the
BS in hybrid-ZF and full-ZF schemes by using Dinkelbach's algorithm and
exhaustive-search. System parameters areK = 2 clusters,Rmin = 1 and
error bound" = 0 :001.

around the BS, but no closer than1 meter. In addition, we
assume that the users' locations are �xed and the average is
taken over the small-scale fading of the propagation channels.
In addition, we assume that the noise power is� 2 = 0 :01 at
each receiver, and the minimum QoS requirement for all users
is the same. Herein, the term non-robust scheme refers to the
scheme where the beamforming vectors are designed based
on imperfect CSI without incorporating channel uncertainty
information.

The achievable robust EE against maximum available trans-
mit power at the BS is presented in Fig. 2 for both full-ZF
and hybrid-ZF schemes and conventional OMA scheme. In
this �gure, the EE maximization represents the solution to
the original optimization problems in (27a) and (46a), while
SE maximization represents the EE obtained by maximizing
the sum rate of the system. In other words, the sum rate
maximization problem is solved and then the allocated power
are used to calculate the EE of the de�ned SE problem. As
shown in Fig. 2, the achievable EE reaches a maximum with
a certain available power (referred to as green power in the
literature) and then it remains constant for any available power
which is more than the green power. Hence, one can conclude
that just a portion of the power budget contributes achieving
the maximum EE, and using more power will deteriorate the
performance of the system in terms of EE, which is the case
in the SE maximization-based design. In addition, it illustrates
that NOMA outperforms the conventional OMA scheme in
terms of EE by sharing resources in an ef�cient way.

For a given transmit power and with minimum required
transmit antennas in each scheme (i.e. 2 antennas in hybrid-
ZF scheme and 3 antennas in full-ZF scheme), the full-ZF
can achieve more EE than that of the hybrid-ZF scheme.
In fact, the full-ZF scheme can provide higher data rate by
completely removing other clusters interference at the cost of
more required transmit antennas at the BS.

In Fig. 3, we compare the performance of the Dinkelbach's
algorithm with the exhaustive-search algorithm. As seen in this
�gure, the proposed algorithm can offer a similar performance
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Fig. 4. Robust EE performance versus the maximum available power in
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the BS. System parameters areRmin = 1 and error bound" = 0 :001.
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Fig. 5. The EE-SE trade-off for full-ZF and hybrid-ZF schemes. System
parameters areK = 2 clusters,N = 3 antennas.

to that of the exhaustive-search. Note that the complexity and
computation time of exhaustive-search is signi�cantly higher
than that of the Dinkelbach's algorithm, particularly with a
large number of variables.

To draw a fair comparison, it is assumed that an equal
number of transmit antennas is employed for both hybrid-
ZF and full-ZF schemes. As seen in Fig. 4, the hybrid-ZF
scheme outperforms the full-ZF in terms of EE when there
are a few clusters. This is due to the fact that the full-
ZF requires more transmit power to completely remove the
residual interference, while this type of interference has less
impact in the systems with a few clusters. In other words, the
rate improvement in full-ZF is not as much as the required
power, which degrades the system performance in terms of
EE. However, by increasing the number of clusters, the full-
ZF scheme outperforms the hybrid-ZF scheme because the
residual interference increases, which has a signi�cant impact
on the overall performance of the system.

Next we evaluate the trade-off between the SE and EE of
the proposed schemes. Fig. 5 depicts the EE-SE trade-off of
both full-ZF and hybrid-ZF schemes. As shown in Fig. 5, both
SE and EE increase up to a maximum level which is known
as the best trade-off point, and then EE decreases while SE
increases. Beyond this best trade-off point, the EE should be
sacri�ced to achieve higher SE for which the BS requires more
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transmit power. On the other hand, the impact of different
channel uncertainty on the achieved EE is represented in Fig.
6. It can be observed from Fig. 6 that the EE decreases for
both schemes as the variance of the channel uncertainty in the
CSI increases.

Next, we demonstrate the impact of the proposed robust
design on the achievable EE and rate by comparing with
the performance of the non-robust scheme. The achieved EE
for robust and non-robust designs are depicted in Fig. 7
for different available transmit power at the BS. As shown,
the results of the robust and non-robust schemes are almost
identical for " = 0 :001. To have a fair comparison, we
compare the performance of the robust and the non-robust
schemes in term of rate-satisfaction ratio, which is de�ned
as the ratio between the achieved rate and the target rate
at each user. Hence, a rate-satisfaction ratio greater than1
indicates that the rate requirement is satis�ed at each user.
Fig. 8 depicts the histogram of the rate-satisfaction ratio for the
robust and non-robust schemes. The simulation result implies
that the rate constraint in the robust design is satis�ed all
the time regardless of the channel uncertainties. However, the
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1.

non-robust design cannot satisfy the target rate requirement
for many cases since it does not take channel uncertainties
into account.

VII. C ONCLUSIONS

In this paper, we have studied the robust EE maximization
problem for a MISO NOMA systems with clustering, under
total transmit power constraint and minimum rate requirement
at each user. In these robust schemes, the inevitable channel
uncertainties are taken into account to reduce their impact
on the overall system performance. For beamforming design,
the ZF approach is employed to mitigate the inter-cluster
interference. In particular, we proposed two different ZF
schemes, namely: I) hybrid-ZF and II) full-ZF. The objective
function that de�nes the EE of the system is a non-convex and
a non-linear function which formulates the original problem
into a fractional programming. To deal with the non-convexity
issues introduced by both objective function and constraints,
an iterative algorithm which exploits the �rst order Taylor
series approximations was applied to transform the original
intractable problem into a more tractable and equivalent one.
In each iteration, the Dinkelbach's algorithm was employed to
convert the non-linear fractional programming problem into
a simple subtractive form. Simulation results validated the
performance of the proposed schemes in terms of the achieved
EE and SE. Despite the fact that the full-ZF scheme can
completely remove the interference between different clusters,
it requires more transmit antennas than the hybrid-ZF scheme
to serve the same number of users. However, by increasing the
number of clusters, the inter-cluster interference increases, and
consequently, the full-ZF approach shows a better performance
in terms of EE. In addition, results con�rmed that the proposed
robust approach outperforms the non-robust scheme in terms
of the rate-satisfaction ratio at each user.

APPENDIX A
PROOF OFLEMMA 1

Let us assume that the numerator and denominator of
SINRj

i;k are independent and derive their worst-case terms

separately. Based on this assumption, we introduce a function
' i;k as a lower bound forinf � ĥ i;k

(SINRj
i;k ) in (A.1).

Invoking the triangle inequality followed by the Cauchy-
Schwartz inequality, one can conclude that
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where it is assumed that the channel uncertainty is upper
limited by k� ĥ i;k k � " . Then, after plugging (A.2) and (A.3)
into the numerator and the denominator of (A.1), we obtain
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which completes the proof. �

APPENDIX B
DINKELBACH ' S ALGORITHM

Dinkelbach's algorithm is a well-known technique to tackle
the following concave-convex fractional problem (CCFP):

max
x

f (x)
g(x)

; (B.1)

s:t: ci (x) � 0; 8 i = 1 ; : : : ; I; (B.2)

hj (x) = 0 ; 8 j = 1 ; : : : ; J; (B.3)

wheref (x) is a non-negative differentiable concave function,
g(x) is a positive differentiable convex function,ci is convex
for all i = 1 ; : : : ; I , and hj is an af�ne function for all j =
1; : : : ; J .

Dinkelbach's algorithm has been originally introduced in
[57], [58]. Furthermore, it belongs to the class of parametric
algorithms. The fundamental concept of this algorithm is to
obtain the solution of a CCFP by solving a sequence of simple
subproblems which converge to the global optimal solution
of the CCFP. The pseudo-code of Dinkelbach's algorithm is
provided in Table I.
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