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Robust Energy-Ef cient Design for MISO
Non-Orthogonal Multiple Access Systems

Faezeh Alavi, Kanapathippillai Cumanan, Milad Fozooni, Zhiguo Ding, Sangarapillai Lambotharan and
Octavia A. Dobre

Abstract—Non-orthogonal multiple access (NOMA) has been [7]. Hence, an appropriate performance metric is required
envisioned as a promising multiple access technique for 5G and to strike a good balance between the achievable data rate
beyond wireless networks due to its signi cant enhancement and power consumption. To this end, energy ef ciency (EE),

of spectral efciency. In this paper, we investigate a robust . f -
energy efciency design for multi-user multiple-input single- de ned as the number of bits that can be reliably transmitted

output (MISO) NOMA systems where imperfect channel state Per Joule of energy consumption, has been recently consid-
information is available at the base station. A clustering algorithm ered as one of the key performance metrics to evaluate the
is applied to group the users into different clusters, and then performance of communication networks [8], [9].
NOMA technique is employed to share the available resources - 14 5:commodate a large number of connected devices with
fairly among the users in each cluster. To remove the interference | . .
between clusters, two different types of zero-forcing (ZF) designs, higher data rates, non-orthogonal multl-ple acce_ss (NOMA) has
namely, hybrid-ZF and full-ZF are employed at the BS. The been recently advocated as a prospective candidate for multiple
full-ZF scheme completely removes the interference leakage at access technique in the fth generation (5G) and beyond wire-
the cost of more number of antennas and the hybrid-ZF scheme |ess networks [10]-[16]. In NOMA, multiple users can share
partla_lly mitigates the |_nterft_arence leakage. To solve the pro_blem, the same wireless resources, i.e., time, frequency and code
the Dinkelbach's algorithm is employed to convert the non-linear - . Lo
fractional programming problem into a simple subtractive form. domams L‘_)y aplplylng SUperpOS'F'On coding (SC_) and power do-
Finally, simulation results reveal that hybrid-ZF outperforms the ~mMain multiplexing at the transmitter. More speci cally, NOMA
full-ZF scheme with a few clusters, while full-ZF shows a better allocates higher transmit power to the users with poor channel
performance with the higher number of clusters. The numerical conditions, while the users with better channel conditions are
results con rm that our proposed robust scheme outperforms the — g0\ with less transmit power. Then, successive interference
non-robust scheme in terms of the rate-satisfaction ratio at each . - - .
user. cancellation (SIC) technique is employed at the receiver for
multi-user detection. In other words, NOMA mitigates the in-
output (MISO), Non-orthogonal multiple access (NOMA), Robust .terference through a non_ortthon.al ?pproac.h to signi cantly
energy ef ciency (EE), Worst-case performance optimization, Increase the system throughput while introducing an affordable
Zero-forcing (ZF). additional complexity at the receiver [12]. As a result, more
mobile terminals can be served simultaneously with higher
spectral ef ciency (SE). Hence, NOMA has recently attracted
a considerable amount of research interests from both industry
In recent years, mobile communication technologies haaad academia, thanks to its great potential capabilities in future
been facing various key challenges, such as increasing demeatiretless networks.
for high data rate services, massive connectivity requirements
and scarcity of radio resources, which need to be addressed .
in the next generation of wireless networks [1]-[6]. On thé' Literature
other hand, this explosive growth of data traf c has triggered a Most of the existing works on NOMA in the literature
rapid increase in energy consumption. The statistics show thaainly focuses on improving the overall SE of communication
the information and communication technology infrastructureystems [17]-[22]. However, there is a dearth of literature
consume more thaBdo of the world-wide energy consumptionconsidering the EE which has been identied as one of the
key performance metrics in future wireless networks. The
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subchannel was developed in [27]. These results con rmed) Having de ned the system EE as the ratio between total
that the NOMA system can achieve a better performance in sum rate and total power consumption, we focus on the
terms of sum rate and EE compared to the conventional orthog- robust EE maximization problem for a downlink MISO
onal multiple access (OMA) systems, for example orthogonal system, relying on NOMA principles in each cluster.
frequency-division multiple access (OFDMA). An energy- The QoS requirement of each user is also included and
ef cient power and bandwidth allocations were derived in [28]  guaranteed by an individual minimum data rate.
for a NOMA system which has multiple subchannels with 2) To incorporate practical scenarios, we assume that only
unequal bandwidth. Some other related works can be found in the imperfect CSl is available at the BS and the channel
[29], [30]. In [29], the authors proposed two user scheduling uncertainties are bounded by prede ned ellipsoids. Then,
schemes combined with a power allocation scheme to enhance we consider the worst-case EE to ensure providing a
the EE in the multiple-input multiple-output (MIMO) NOMA required QoS at each user regardless of the channel
system. As such, another optimal power allocation strategy has uncertainties.
been proposed in [30] to solve the EE maximization problem3) To effectively mitigate mutual interferences among dif-
for a multi-cluster multi-user MIMO-NOMA system. ferent clusters, we present two different zero-forcing
Most existing research works on NOMA scheme have (ZF) schemes for the beamforming design, namely, 1)
assumed that perfect CSl is available at the base stations (BSs) hybrid-ZF and IlI) full-ZF. Although the full-ZF scheme
[31]-[34] which is not a realistic assumption in practice due to  can completely remove the interference between different
estimation and quantization errors, or inevitable delays in feed- clusters, it requires more number of transmit antennas at
back links. Furthermore, the channel uncertainties can deteri- BS than that of the hybrid-ZF scheme to serve the same
orate the performance of SIC-based receivers where the users number of users. By increasing the number of clusters,
are sorted with respect to their channel gains [35]. Hence, itis the residual interference increases, and hence, the full-ZF
of paramount importance to incorporate CSI uncertainties into approach can achieve a better performance in terms of EE
problem formulations of NOMA-based networks to guarantee as the residual interference can be completely cancelled.
the required quality-of-service (QoS) at different users. To this4) To solve the power allocation problem, we cast the orig-
end, robust design is a standard approach to tackle the channel inal problem in hand by considering the lower bound of
uncertainties [36]-[38] and it can be categorized primarily  SINR to present the constraints in a more tractable form.
into two groups: |) worst-case design with norm-bounded Then, an iterative algorithm is developed to transform
channel uncertainties, where CSI errors are bounded within the non-convex problem into sequential convex problems,
a known region [39], [40]; Il) outage probability-based design  which can be tackled by means of the standard power
by assuming that the channel errors are random variables allocation techniques in each iteration. In particular, the
with a known probability density function which is available  Dinkelbach's algorithm is employed in each iteration to
at the transmitter [41], [42]. In [43], [44], robust designs  convert the non-linear fractional programming problem
for the multiple-input single-output (MISO) NOMA systems into a simple subtractive form.
have been developed to maximize the sum rate and minimize
the total transmit power, under the assumption of bounded
channel uncertainties. An outage probability-based design t@asPaper Organization

been proposed in [45] to minimize the total required transmit The rest of the paper is structured as follows. In Section

power in MISO NOMA systems. Motivated by the abov ) o
discussion, we focus on robust resource allocation sche Iéswe describe the system model and the hybrid-ZF scheme

to appropiately address the impact of channel unceriantgl, FETATI CA AL S BRI (L (EROR
on EE of a MISO NOMA system. In [46], a worst-cas .

rate maximization problem is investigated in downlink MIM F scheme is motivated and developed in Section IV. Finally,

NOMA networks which is solved by using cutting-set methogg;]ne ?ﬁ:ggl ;(re;ultrso;t/(i) d\(/aa(ljlIﬁitestehc?ic?:e\(/:tl\gee?‘sf: ggahc?u?jri(;potshe:
with alternating optimization and pessimization steps. P ' 9

paper in Section VI.
B. Contributions

In this paper, we consider a downlink transmission ctf)
NOMA wireless network where a BS equipped with multiple
antennas serves a set of single-antenna users that are uniformiyhroughout this paper, we use lowercase boldface letters
distributed within a cell. By employing a clustering algorithmfor vectors and uppercase boldface letters for matrices. The
the users are grouped into several clusters with two users penjugate transpose and inverse of a matrix are denoted
cluster. We consider a bounded channel uncertainty modelbp ()" and () !, respectively. The symbdC" shows the
de ne the CSI errors, and design the beamfomers to optimimedimensional complex space, arrl, represents the non-
the worst-case EE problem. To the best of the authomsegative real numbers. The Euclidean norm of a vector is
knowledge, the resource allocation problem that maximizdenoted byk k; andj | represents the absolute value of
the robust EE has not been studied in the literature for MIS®complex number. The notatidix)* stands formax(0; x),
NOMA systems. The main contributions of this work arevhile N andCN denote a real and complex Gaussian random
summarized as follows: variable, respectively.

. Notation
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Fig. 1. A MISO NOMA system withK clusters and two users per cluster.

II. SYSTEM MODEL Let wy and p.x denote the beamforming vector steering

] ) o towards thek™ cluster and the transmit power allocated to

a BS equipped withN antennas intends to communicatgyoadcasts the superposition coded users’ signals as

with 2K single antenna users. All users are grouped Kito

clusters(K  N) with two users per cluster by employing the X p___ p___

clustering algorithm [47], [48]. Note that the number of users x = wi(" Pk Suk * T P2k S2k); @)

in a cluster can be more than two; however, we assume only k=1

two users in each cluster for the sake of brevity. Theuser wheres;x ands,x are the unit power information symbols

in the k™ cluster is denoted by ; for all k 2 f 1;:::;K g for the weak and strong users, respectively. Thus, the received
andl = 1;2. Lethy, 2 CN ! represent the Q!ﬂémél vectorsignals at the weak uséd; and the strong used,y are
from the BS toU;y ; which can be modeled as d,, [49], given by
where denotes the Rayleigh fading channel gadly, is

— hH .
the distance between the BS ablg, and represents the Yk _hﬁkx ek (3)
path loss exponent. For user pairing, we apply the clustering Yo =hggX + Nay; (4)
algorithm in [47] which is based on the channel correlation, . »
,—%; hj [47] whereni  CN (0; 2) for | = 1;2 is zero-mean additive

Khy kKA K and gain difference, khik k h;k , between two

usersi andj. This algorithm selects two users that have
high correlation and a large channel gain difference in ea
cluster.

white Gaussian noise with variancé. By utilizing the SIC

the receiversU,x decodes and removes the datalify

m the aggregated received signalc, and then, decodes
) ) ) its own data.

Among two users in a cluster, we considéry has ahigher ot \e utilize the ZF beamformer at the BS to eliminate
channel gain thaJyy, so thatkhyyk k hoxki 8k. The o interference between clusters by deployiNg K

users in each cluster are suppprted by a NOMA beamfor_@ﬁtennas at the BS. To this end, the beamforming vector is
ing vector to share the same time-frequency block but wi signed based on the user's chanffiel, , and ful lls the
different power levels through power domain multiplexingfouowmg conditions: o

Motivated by realistic scenarios in practice, we assume that

the perfect CSI is not available at the transmitter due to h‘:jm wy, =0; 8m6 k: (5)
guantization, channel estimation errors and feedback delays.

Hence, we model the actual channel by the worst-case modeNote that when there ark N < 2K 1 antennas at
[44], [50], [51], and incorporate the norm-bounded chann#hie BS, it is not possible to simultaneously satisfy (5) for both

uncertainties in our analysis such that channel vectorﬁi;m andﬁg;m . Therefore, if it is assumed that
the channeﬁkm is aligned with one of these users' channels,
hix = ﬁl;k + h\|;|<; (1) while the other user will suffer from the interference caused

by transmission of signals to other clusters. Consequently, this

Whereﬁ\m< is the estimated channel, ancﬁkk is the corre- residual interference can severely degrade the performance of

sponding channel uncertainty. In this model, it is assumed tt&IC at the strong user to decode the weaker user's signal [47].
ﬁkk is con ned in a certain region, i.ek ﬁkk k ™. Therefore, to ef ciently implement SIC, beamforming vectors



are generated based on the channels of the strongelﬁg@er,s 1. ROBUSTENERGY EFFICIENCY MAXIMIZATION

to satisfy the condition in (5) such that In this section, we develop a robust energy-ef cient power
allocation scheme for a MISO NOMA system by incorporatin

ﬁ;mwk =0; 8mék © the inevitable channel uncertainties. I¥irst, Wey de nepthe E?E
However, note thafi! w, 6 0; for any m & k; which formulation and then use it to model the worst-case power
is the source of residual interference. Since there is resid@afimization problem. After applying a set of appropriate lem-
interference for the the weak user, we refer this scheme 88s to transform the non-convex problem into a convex one,
a hybrid-ZF scheme. By de ningd = [f2 fiox ], the we solve the obtained problem by employing the Dinkelbach's
beamforming vector can be obtained as algorithm.

W =[w; wg]=HY=HH"H) 4 () A. Problem Formulation

where HY denotes the pseudo-inverse of the matdx and  To design an energy-ef cient system, we consider a global
wy is the beamforming vector for the" cluster. Therefore, EE which is de ned as the ratio of the achievable sum rate
the received signal dl,, can be written as of the system (bits/s/Hz) and the total power consumption
(Watt). The overall EE of the NOMA system with the worst-
Ny P P case performance design can be mathematically expressed
Y2 =hg Wi (" Prk Sk + 7 Pak S2i) in (14), whereP. is the power dissipated in circuit blocks.
H P L P— . Accordingly, the optimization problem can be formulated
* ﬁz;k .ekW'( Pui Suj + " P2j Szj) *+ Nzics to determine the transmit power allocation that maximizes
. 8) the worst-case EE under limited power budget and the QoS

constraint for each user as follows:
where the second term in (8) refers to the residual interference

which cannot be completely removed during the ZF process

due to imperfect CSI [43]. Overall, the signal-to-interference- ,Max ~ EE; (152)
and-noise ratio (SINR) at the strong user to decode the weak X
user's signal is given by sit: (Prk + P2x) p max. (15b)
. . k=1
prijhb, wyj? A .
SINRS) = X Zf%kH - ; Rix  R™; Ry  R™; 8k;  (15c)
' Kiho wijs+ Wi 2P P2 ) + 2
Fz’kj fzk < oW1 (Ps * Pai ) where P ™ is the maximum transmit power available at the
intra-cluster imerferemé — {z _ } BS andR™" is the minimum required data rate for each user.
residual interference due to imperfect CSl This optimization problem is a non-convex and non-linear

( fractional programming problem. To solve this EE maximiza-
and after removing the weak user's signal via SIC techniquéon problem, we present an iterative approach, where the
the strong user achieves the SINR in (10). The rst term dpinkelbach's algorithm is employed to optimize an approx-
the denominator in (10) is considered due to the fact that tifBated convex problem.
stronger user cannot completely remove the detected weaker
user's signal during the SIC process. At the other end, tBe Power Allocation Design

SINR of weak user to decode its own signal is given by In this subsection, we propose a power allocation scheme
that maximizes the robust EE through an iterative algorithm.
" pQ(thlkaJ First, we introduce variable$ 1x; 2xkg 2 R: to further
SINRy = -+ simplify the optimization problem in (15) as follows:
sz]h{g_kaJ + jhiw;j2(pyj + P2 )t
intra-cluster |nterferen&e {z } P K log,(1+ 1x)+log,(1+ 2x)
residual inten‘erence ~ max k=1 P K . . X
(11) 1k 2k PPk k=1 (P1x + P2x) + Pc
(16a)
Th h hievabl du b X
~ Thus, the achievable rate Bl and Uz can be respec- g = (pi, + poy)  P™% (16b)
tively de ned as follows [17]: k=1
mno . minf |£1f SINREY ; |f§1f SINRS) g; 8
Rix =log, 1+minf inf SINRY: |nf SINR} g ; LK
2 » 1k Rok | (16¢)
(12) ™ok inf SINRZ); 8k; (16d)
Roy = l0g,(1+ mf SINRD)): (13) o
fizi where ™n = 2R™ 1 is the minimum required SINR at

each user. The equivalent problem in (16) is still hon-convex



P«

k=1 (Rux + Rax)

SINRE, -

pz;kjh?;kvwka
N\

i

1;kj

= )
2:k Wk)

intra-cluster interference due to imperfect CSI

2

}

: (10)
. H .
+j RgwyiP(pyy + p2y) + 2

e {z }

residual interference due to imperfect CSI

k., log, 1+minf inf SINRE; inf SINRGYg +log,(1+ inf SIN )
k

EE = p 1k D 2| 2;k
- - r
K1 (P + Pax) + Pe k1 (P + Pax) + Pe
14)
and NP-hard. As there is a common parametén;k in both
numerator and denominator of the SINR expression, the con- K
L . ) ' : 1 log,(L+ 1) +log,(1+ o
straints in (16¢) and (16d) are intractable. To circumvent this ~ max k=1 Png( k) 92 2k) ;
issue, we consider their lower bounds through the following®*‘ 2% Ptk P2« k=1 (P1x + P2i) + Pc
lemma: (21a)
X
sttt (P + p2x)  P™ (21b)
k=1
Lemma 1: Consider o Puc fry - 8k:
Lk o+ m + Pam)gl + 20
P2;k 91k mek(pl,m p2,m)gl;k
(21¢)
(i) — K TX
SINR} = » o Pk Tax - 8k:
- pjj(ﬁi-k + ﬁi'lﬁ)H ij2 Y p2;kgl§;k + mgk(pl:m + P2:m )grzr:k + 2
P : ' ——Pp . - 21d
npnl(ﬁi;k + ﬁi;k HWnj2+ ) Pm] ﬁ.Hk Wnj2+ 2 K (21d)
P2:k fz;k - 8k:
2;k oK ¥ T n . n 4 2 ’
P1k G2« me k (P1m + P2m )gz;k
which represents the SINR at th® user in thek™ clus- (21e)
ter to decode the™ users signal. A lower bound of min . mino . -gk: (21f)

inf 4 (SINRi(;’k)) can be expressed as o
' Although all the constraints in (21) can be rearranged as
standard posynomials, this problem cannot be formulated as

‘ 5 pjpf il;<k a geometric program (GP) as the objective function cannot

ik =7 b g + bm O + 5 (17)  pe written as a posynomial function. To solve this fractional

n Sk m Fm Sk programming problem, we employ the Dinkelbach's algorithm

which converts a non-linear fractional optimization problem

where into an equivalent and a tractable problem. For more detalils,

please refer to Appendix B.

2
+
ko= H " . TABLE |
Pk Al wi kwick (18) DINKELBACH'S ALGORITHM
2
_ H " . Algorithm 1 Dinkelbach's Algorithm
gir;]k - ﬁi;k Wn + "kwpk 19) 1. Initialization: Set > O;n=0;  =0;
m 2 2. repeat
Ok = "kwpk “: (20) 3. Xy =argmax ff(xn)  ng(xn)g,
w " 4 F(n)= 1) n8(xn),
f(xn
5. n+#l = ———r
. 9(xp)
Proof: Please refer to Appendix A. 6. n=n+1,
7.untilF( n) < .

According to the requirement of Dinkelbach's algorithm, we
By applying the lower bound functiohix in (17), to the have to reformulate the problem in (21) in a concave-convex
main problem (16) the following optimization problem can bé&actional problem (CCFP) form to apply this algorithm. To
formulated: deal with the non-convex nature of constraints in (21c)-(21e),



we introduce new variable$, « ; #,.« and#, and rede ne the
corresponding constraints in the following inequalities:

cHie P S
21c Lk L Lk 8k;
(210) P2:k glf;k +  nek(Pum * P2m )l + #H1x;
(22)
2 Ho. k-
21d 1k F2:k Fpl,k 2k B 8k
(21d) P2;k glz(;k +  e(Pum + P2m )00k * #axk;
(23)
k Hx wF X
21e) X 2k 8k:
( ) pl;kgé;k*’ me  (PLm + P2;m )g?;k"' 2
(24)

Next, to deal with the product of optimization variables iQZl) around O

(22)-(24), we utilize the following expression:

1
ik ik = 2 Ci +#Hx)? (i H#Hu)? e (25)

Then, the second quadratic term can be approximated
the rst order Taylor series aroundi(.tk) and #-(.tk). As such,

TABLE 1l
ENERGY EFFICIENCY MAXIMIZATION
ALGORITHM

Algorithm 2 Energy Ef ciency Maximization Algorithm
1. Initialize (@ to a feasible value of (21), and set 0;
2. repeat
Solve (27a) by using Dinkelbach's algorithm,
Set (t+1) = A |
Updatet = t +1,
3. until required accuracy or maximum number of iterations.

whereA |, f 1x; 2x;#1xk; #2x; #c Q. For notational simplic-
ity, all the variables that are used in the approximations of the
product of two variables in™ iteration are de ned as

().
1k

(t).
2k

) f

# #oe #B0e (29)
Since the problem in (27a) approximates the problem in
, we should iteratively solve the problem

in (27a) for different values of (V' and update the ap-
proximations to obtain the best local solution. Towards this
end, if the solution of problem (27a) in th& iteration is

A f o oo #uk #axo #4¢O, itis considered as the initial
Bint of the next iteration, i.e., **1) , until the algorithm
converges. The pseudo-code of the proposed iterative algo-

the product of two variables can be transformed into & cONVgihm is summarized in Table II. Furthermore. the minimum

term as

1 1
ik Hik Z( ik T #jx )? Z[( I(L) #i(JL))Z
+2( i(;tk) #j(;L))( ik i(;tk) Hik + #j(;tk) )

v G( ik #Hix ,(tk) #j(;:())i (26)

By recalling the above approximation and applying the Dinker{

bach's algorithm, we should treat the following optimizatio
problem in thet™ iteration:

X
max log,(1+ 1x)+log,(1+ 2k)
P1ik P2k ;A _
k=1 |
» !
n (P1k + P2x) + Pc (27a)
k=1
X
st (puk + p2x)  P™ (27b)
k=1
G( uxthy: fut) Pufiic 8k; (27¢)
PGkt (Pum + P2m )0k + #1x;8Kk; (27d)
mé k
G( utag: fic#on) Pl 8k; (27e)
P2;k 9§;k+ (Prm + P2m)Tok + 2 #ou;8K; (27f)
mé k
G( 2 #k);( ét& #) o f K 8k; (279)
PrcTs+  (Pum + P2m)U0+ 2 # 8k (27h)
m6 k
min 1k, MmN 2K 8k; (27i)

threshold to terminate the algorithm is chosen as the difference
between two successive values of achieved EE or the number
of iterations is reached to a prede ned maximum value.

C. Feasibility of Problen{15)

_ It is worth mentioning that before solving the problem in
15), it is important to check the feasibility of the problem.
Note that the minimum data rate constraints in (15¢) might
be unattainable at all users if the available total power is
not sufcient at the BS. Hence, there exists a minimum
required transmit poweP ™" which satis es minimum data
rate requirement for each user and makes the problem in
(15) feasible only under the conditioR™  P™n Thus,

it is important to determine a feasible range PBf"®* that
should be able to provide the data rate requirements at each
user. To obtairP™", we formulate an auxiliary optimization
problem that determines the minimum required transmit power
to satisfy the minimum data rate requirement for all users as

. X
P™ = min (Puk + P2i); (29a)
P1k P2k k=1
sitt Rix  R™ Rye  R™™ 8k: (29b)

This optimization problem can be converted into a linear pro-
gramming problem by invoking the same technique discussed
for solving the main problem in (15). By obtaining tiRe""
from the problem (29), the feasibility of problem in (15) can be
determined. WitlP ™3  P™ the problem in (15) is feasible
and the power allocation can be determined to maximize the
EE of the system while satisfying all the constraints.



IV. FULL-ZF BEAMFORMING SCHEME

) ) ) max EE ", 37a

In this section, we present the full-ZF beamforming scheme: ipzx (372)
to completely mitigate the interference between clusters. In X

particular, it is assumed that the number of antennas employt (P + p2x)  P™ (37b)

atthe BSisN 2K 1, which provides suf cient degrees g k=1

n 1 10 .
of f.reedo.m for the ZF bef';\mformer to completely remove ths log, 1+min inf $INR(1.,)<; inf $INR(2')I< R™N: gk:
residual interference [52]: " ’ 2k '
_ 2 log,(1+ inf $INReL) R™: 8k:
Al w,=0; 8 6k I=1;2 (30) A2k '
(37¢c)
TO design the beamforming vector by satisfying the conditions To solve the fractional programming problem in (37), we
in (30), we de ne apply the same procedure as in Section 1I1.B. Towards this end,
we equivalently reformulate the problem in (37) by introducing
He=[A: Ay 1B Akl (31) variablese;x andeyy as follows:
Ay = [Ar A | P K
whereH = [A1x Nak]. Then, the null space of the matrix k=1 100x(1 + eqy) +10g (1 + ezx) |
H, can be utilized for the beamforming vectar, which el_k.EZT%)f_k .. PR o + ;
. H N . . .. k€2 Pk P2 k=1 (P1;k P2k ) + Pec
results inH ' wy = 0. By exploiting this condition, referred (38a)
to as full-ZF beamformer, the aggregated received signal at
U s given by st (Puc+ pa) P (38b)
k=1
min ; ; 1) . (1 . .
ik = hij Wk(pm Sk * pﬂ S2;k) S minf IF?IK élNRl;k’ lf?j;k $|NR2;kg’ 8k
H _ _
+ A ow ° P1j Su;j + P P2 S2; ) + Nix; 1 =152 " (38¢)
ik min - g,. inf $INR,.,; 8k: 38d
32) 2k o 2:k (38d)
By invoking Lemma 1, we have
where the second term in (32) shows the impact of imperfect y g
CSl on ZF design. Hence, the SINR at the weak user to decode P«
its own signal can be de ned as max k=1 !r_?gz(l + e1x) t1og (1 + exx)
€1k ;€2 ;P1k P2k Ezl (pl;k + p2;k) + P¢ '
o it w2 (39a)
$INR1;k _ _ _ Xl,k.J 1;kH kl . : . .)(( N pma 39b
pasdngyows + | Awjj2(pyy +p2g) + 2 ST (P * Pai) ! (39b)
k=1
intra-cluster interferencei {z } fex
residual interference due to imperfect CSI Pk ik .
elyk K ™ m 2 ’
o (33) Pok8k ¥ ms k(Prm + P2m )8y +
Similarly, the SINR at the strong user to decode the weak 8k;i=1:2, (39c)
user's signal is given by ’ ’ T
P2;k Tez;k . .
€2,k K P m ;o 8k;
2
. 5 PrkBok +  mex(Pum + P2im)8oi +
@) Prk N2 Wi _ (39d)
$INR;., = X - : A .
Pz;kjh{E'.kajZ +f Agwy Py +p2y) + 2 m™Mooen; ™ e 8k; (39e)
. : [6k
intra-cluster |nterferenc4 {z } where
residual interference due to imperfect CSI .2
. _ (34) k= AR w,  kwek (40)
and the strong user achieves the following SINR to decode ’ '
its own message after performing SIC in (35). Based on these K = pH . 2_
de nitions of SINRs at both users, the worst-case EE of the 8k = Nikwk + "kwik (41)
full ZF sch b d in (36).
u scheme can be expressed in (36) @i;r: = "kwok 2. (42)

Accordingly, we solve the following optimization problem
to determine the best power allocation that maximizes theFinally, the fractional programming problem in (39) can be
worst-case EE: solved by leveraging Dinkelbach's algorithm which converts



P2k ihb Wi
N\

2
S]SINR(z;)k = — — ; (35)
Fl;k] ?Zz;kal} + J ﬁ2;|<WjJ (P + p2j) + 2
intra-cluster interference due to imperfect CSI 16 K {7
residual interference due to imperfect CSI
P 1 1 2
K, log, 1+minf inf S]SINR(l;)k; inf $INR(2;)kg +log,(1 + inf $INR(2;)k)
EE fuII-ZF: 1k P < ﬁz;k ﬁz;k : (36)
k=1 (pl;k + p2:k) + Pc
a non-linear fractional optimization problem to an equivalemroblem in thet™" iteration
but more tractable problem. For more details, please refer
to Appendix B. According to the condition in Dinkelbach's X
algorithm, we have to reformulate the problem in a CCFP formmax l0g,(1 + e1x) +1log (1 + exx)
to apply this algorithm. To deal with the non-convex natutes Pzx & (= |
of constraints in (39c) and (39d), we introduce new variables X '
£1.;%, and®, and rede ne the corresponding constraints n (P1k + P2x) + Pc (46a)
in the following inequalities: k=1
X
st (Puk *+ pax)  P™ (46b)
k=1
( G(e1x ﬁi% : eﬁl)( #i(;:()) pucfS; 8k; i =1;2 (46c)
oy otk A pPu B m Dokt (PrmtPom)E + 2 #uc8k i=1:2:
P28+ mek(Pum * P2m)8x + 7 B P mé k . e .
8k; i=1;2 (43) (46d)
Slea B e A P B (46e)
k
and PukBact  (Pum + P2m)Blic+ 2 A 8k (460)
mé6 k
( MmN er: ™ ey 8k; (460)
304 ek B x 5 where& , feix;exx;#1k; #ox; #g. For notational simplic-
(39d)) |01-k92k-k + o (Pm + pz-m)gzr-nk + 2 B ity, all variables that are used in the approximations of the
T " ' 8k: ' ’ (a4) product of two variables in theé" iteration are de ned as
U, fefy: ek Aki Bk AVg ()

Finally, we iteratively solve the approximated problem in
rQ46a) for different values of () and update the approxima-

In order to deal with the product of optimization variables i ) ) .
(43) and (44), we utilize the expression in (25). Similar to thTéonS to obtain the best local solution similar to the proposed

previous section, the quadratic term can be approximated |B%;at|ve algorithm in Table II.
the rst order Taylor series in (45) arouref,) and £}, to
transform it into a convex term. As such, the product of two
variables can be transformed into a convex term as

V. COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze the computational complexity of the proposed
algorithm by quantifying the required number of arithmetic

operations in the worst-case at each iteration, along with the
required number of iterations to achieve the solutions with

1 1
ek Fix Z(ei;k + &y )? Z[(ei(;f() #j(;tk))z a certain accuracy [53]', [54]. We de ne t.he computgtional
® () ys ® _ ) complexity for the algorithm as presented in the oowing:
*2(ep Fuew ey o+ Fy)l In each iteration of Algorithm 2, a fractional program
. G(e Bk ei(_tk) #J.(,L) ): (45) dened in (27a) and (46a) is solved via the Dinkelbach's algo-

rithm in Algorithm 1. In particular, the Dinkelbach's algorithm

solves a fractional program by solving a series of auxiliary

problems. Hence, the main contributions to the computational
By recalling the above approximation and applying the Dinketomplexity of the proposed algorithm come from the com-
bach’'s algorithm, we should treat the following optimizatiomlexities introduced by solving problems de ned in (27a)
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Fig. 2. Robust EE performance versus the maximum available power at the

BS in hybrid-ZF, full-ZF and OMA schemes. System parameterare2  Fig. 3. Robust EE performance versus the maximum available power at the

clusters,RM" =1 and error bound = 0:001. BS in hybrid-ZF and full-ZF schemes by using Dinkelbach's algorithm and
exhaustive-search. System parameterskare= 2 clusters,R™" = 1 and
error bound" = 0:001.

and (46a). These problems are in fact linear programming
(LP) after applying the Dinkelbach's algorithm which turns

the fractional program into a simple subtractive form. Thground the BS, but nol close_r thanmeter. In addition, we .
complexity of solving an LP i© nZ, mip , wheremp is assume that the users' locations are xed and the average is
LP )

the number of linear constraints amde is the dimension taken over the small-scale fading of the propagation channels.

of optimization variables. For both problems in (27a) an addltlor_1, We assume t.hf'ﬂ the noise power fs= 0:01 at
(46a), we havemp = 6K +1 andn,p = 7K. Thus, the each receiver, and the minimum QoS requirement for all users

complexity of solving these problems @ 49K 2(6K +1) . is the same. Herein, the term non-robust scheme refers to the

Furthermore, the complexity of alternating optimization-baseS&h_eme where the _beamfgrmlng veptors are designed pased
solution isO L, Lp 49K 2(6K +1) , whereLp andL, on imperfect CSI without incorporating channel uncertainty

denote the numbers of iterations required for the Dinkelbacﬂ%fo[]mat'c;:," ble rob ) : ilabl
algorithm in Algorithm 1 and alternating optimization itera- The achievable robust EE against maximum available trans-

tions in Algorithm 2, respectively. The parametérs andL mit power at the BS is presented in I_:ig. 2 for both full-zF
depend on the prede ned tolerance set for the algoritHns. and hybrid-ZF schemes and conventional OMA scheme. In

can be determined by a numerical analysis since no formd Is gure, the ,EI,E maximization rgpresents the solution -to
is available for the sequential method in Algorithm 2 &€ Original optimization problems in (272) and (46a), while
calculate the number of required iterations. From [55], t E maximization represents the EE obtained by maximizing

number of required iterations in the Dinkelbach's algorith € sum r_ate of the gystem. In other words, the sum rate
(i.e., Lo in Algorithm 1) to solvemax -9 with tolerance maximization problem is solved and then the allocated power

UL 9(x) are used to calculate the EE of the de ned SE problem. As
can be expressed &y, —— , wherelL "’_‘”dp are a Iowsr— shown in Fig. 2, the achievable EE reaches a maximum with
bound and an upper-bound for the objective functf&%ﬁh a certain available power (referred to as green power in the
respectively. literature) and then it remains constant for any available power
which is more than the green power. Hence, one can conclude
that just a portion of the power budget contributes achieving

We evaluate the performance of the proposed robust Bfe maximum EE, and using more power will deteriorate the
design for the MISO NOMA system by generatii00 performance of the system in terms of EE, which is the case
Monte-Carlo realizations of the at fading channels. A downin the SE maximization-based design. In addition, it illustrates
link transmission is considered in a single cell with onthat NOMA outperforms the conventional OMA scheme in
BS equipped withN antennas andK clusters with two terms of EE by sharing resources in an ef cient way.
single-antenna users per cluster. The small-scale fading of thgcor a given transmit power and with minimum required
channels is assumed to be Rayleigh fading which represemghsmit antennas in each scheme (i.e. 2 antennas in hybrid-
an isotropic scattering environment. The large-scale fadi@ scheme and 3 antennas in full-ZF scheme), the full-ZF
effectis modelled byl to incorporate the path-loss effectscan achieve more EE than that of the hybrid-ZF scheme.
wheredy is the distance betweedx and BS, measured in In fact, the full-ZF scheme can provide higher data rate by
meters and is the path-loss exponent . Hence, the channgbmpletely removing other clusters interference at the cost of
coef cientsp between BS and uséix are generated usingmore required transmit antennas at the BS.
hx = dx , where CN (0;1) and = 3:8 In Fig. 3, we compare the performance of the Dinkelbach's
[56]. Throughout the simulations, it is assumed that users agorithm with the exhaustive-search algorithm. As seen in this
uniformly distributed within a circle with a radius 80 meters gure, the proposed algorithm can offer a similar performance

VI. SIMULATION RESULTS
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to that of the exhaustive-search. Note that the complexity amchybrid-zF and full-ZF schemes. System parameterskare 2 clusters,

computation time of exhaustive-search is signi cantly highe¥ =3 antennas an®™" =1.
than that of the Dinkelbach's algorithm, particularly with a
large number of variables.

To draw a fair comparison, it is assumed that an equ@&nsmit power. On the other hand, the impact of different
number of transmit antennas is employed for both hybrighannel uncertainty on the achieved EE is represented in Fig.
ZF and full-ZF schemes. As seen in Fig. 4, the hybrid-ZE. It can be observed from Fig. 6 that the EE decreases for
scheme outperforms the full-ZF in terms of EE when thefeoth schemes as the variance of the channel uncertainty in the
are a few clusters. This is due to the fact that the fulESI increases.

ZF requires more transmit power to completely remove the Next, we demonstrate the impact of the proposed robust
residual interference, while this type of interference has ledssign on the achievable EE and rate by comparing with
impact in the systems with a few clusters. In other words, thiee performance of the non-robust scheme. The achieved EE
rate improvement in full-ZF is not as much as the requirddr robust and non-robust designs are depicted in Fig. 7
power, which degrades the system performance in termsfof different available transmit power at the BS. As shown,
EE. However, by increasing the number of clusters, the fullhe results of the robust and non-robust schemes are almost
ZF scheme outperforms the hybrid-ZF scheme because itlentical for " = 0:00L To have a fair comparison, we
residual interference increases, which has a signi cant impammpare the performance of the robust and the non-robust
on the overall performance of the system. schemes in term of rate-satisfaction ratio, which is de ned

Next we evaluate the trade-off between the SE and EE & the ratio between the achieved rate and the target rate
the proposed schemes. Fig. 5 depicts the EE-SE trade-offabfeach user. Hence, a rate-satisfaction ratio greater than
both full-ZF and hybrid-ZF schemes. As shown in Fig. 5, botimdicates that the rate requirement is satis ed at each user.
SE and EE increase up to a maximum level which is knowkig. 8 depicts the histogram of the rate-satisfaction ratio for the
as the best trade-off point, and then EE decreases while @bBust and non-robust schemes. The simulation result implies
increases. Beyond this best trade-off point, the EE should that the rate constraint in the robust design is satis ed all
sacri ced to achieve higher SE for which the BS requires motbe time regardless of the channel uncertainties. However, the
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‘ separately. Based on this assumption, we introduce a function
Robust Design | "ik as a lower bound fomf g (SINR},) in (A.1).

Invoking the triangle inequality followed by the Cauchy-
Schwartz inequality, one can conclude that

0.2

Probability

! o ¥ Rate satisfaction ratio o e (ﬁi;k + ﬁi;k )H Wi ﬁtik Wi ﬁrlk Wi
0.2 T T
Non-robust Desi " .
Ems on-ropust Design | iI?|k Wk kak, (AZ)
e}
©
g oy 1 (Aix + A wn  Alow, + A w,
O o005 i
A wn + "kwpk;  (A.3)
0
08 088 Raté Satisfaction fatio 108 11 . . .
where it is assumed that the channel uncertainty is upper
Fig. 8. Histogram for the rate-satisfaction ratio in the robust and non-robdmited by k ﬁi;k k ". Then, after plugging (A.2) and (A.3)
NOMA scheme with channel estimation error bounhd 0:001 andR™" = into the numerator and the denominator Of (Al), we Obtain
1.
2
. 2 +
. . . inf (f'\li;k + ﬁi;k)HWk = ﬁlHk Wk "kw k ;
non-robust design cannot satisfy the target rate requiremerit, « - ’
for many cases since it does not take channel uncertainties (A.4)
into account. 2
2
sup (Bix + RAu)Pwn = = Awn + "kwok ;
VIl. CONCLUSIONS ki k (A5)
In this paper, we have studied the robust EE maximization 2 N 2
pap sup A wm = = "kwnk 5 (A.6)

problem for a MISO NOMA systems with clustering, underk A
total transmit power constraint and minimum rate requirement
at each_ user. In these rqbust schemes, the inevitabl_e _ChaWﬁEh completes the proof.
uncertainties are taken into account to reduce their impact
on the overall system performance. For beamforming design,
the ZF approach is employed to mitigate the inter-cluster
interference. In particular, we proposed two different ZF
schemes, namely: I) hybrid-ZF and II) full-ZF. The objective Dinkelbach's algorithm is a well-known technique to tackle
function that de nes the EE of the system is a non-convex attige following concave-convex fractional problem (CCFP):

a non-linear function which formulates the original problem

kK k"

APPENDIXB
DINKELBACH'S ALGORITHM

into a fractional programming. To deal with the non-convexity f(x)
issues introduced by both objective function and constraints, max @; (B.1)
an iterative algorithm which exploits the rst order Taylor .

9 b y sttt c(x) O 8i=1;:::;1; (B.2)

series approximations was applied to transform the original .
intractable problem into a more tractable and equivalent one. hj(x)=0; 8j =1;:::7J; (B.3)

In each iteration, the Dinkelbach's algorithm was employed to : . : : .
. X . .~ Wheref (x) is a non-negative differentiable concave function,
convert the non-linear fractional programming problem intg, . . L . : o
X) is a positive differentiable convex functiog, is convex

a simple subtractive form. Slmulatlon_ results validated _t ralli=1;:::;1, andh; is an af ne function for allj =
performance of the proposed schemes in terms of the achle\ied_ -3
EE and SE. Despite the fact that the full-ZF scheme CalX]Dinkelbach‘s algorithm has been originally introduced in

pomplgtely remove the interference between diffgrent cluste §7] [58]. Furthermore, it belongs to the class of parametric
it requires more transmit antennas than the hybrid-ZF sche (;rithms. The fundar,nental concept of this algorithm is to
0
n%a

e

X . . b

number of clusters, the inter-cluster interference increases, a . : X

subproblems which converge to the global optimal solution

consequently, the full-ZF approach shows a better performan . \ : .

. o of the CCFP. The pseudo-code of Dinkelbach's algorithm is
in terms of EE. In addition, results con rmed that the propose ovided in Table |

robust approach outperforms the non-robust scheme in teriis
of the rate-satisfaction ratio at each user.

to serve the same number of users. However, by increasing in the solution of a CCFP by solving a sequence of simple
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