

This is a repository copy of Comparison of technical and systems-based approaches to managing pesticide contamination in surface water catchments.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/155037/

Version: Accepted Version

Article:

Villamizar Velez, Martha Lucia orcid.org/0000-0002-6545-3807, Stoate, Chris, Biggs, Jeremy et al. (3 more authors) (2020) Comparison of technical and systems-based approaches to managing pesticide contamination in surface water catchments. Journal of Environmental Management. 110027. ISSN 0301-4797

https://doi.org/10.1016/j.jenvman.2019.110027

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Comparison of technical and systems-based approaches to managing pesticide contamination in surface water catchments

Martha L. Villamizar^a, Chris Stoate^b, Jeremy Biggs^c, Carol Morris^d, John Szczur^b, Colin D. Brown^{a*}

^a Department of Environment & Geography, University of York, Heslington, York, YO10 5NG, UK

^b The Game & Wildlife Conservation Trust, Allerton Project, Loddington, Leicestershire, LE7 9XE, UK

^c Freshwater Habitats Trust, Bury House, North Place, Oxford, OX3 9HY, UK

^d School of Geography, University of Nottingham, Clive Grainger Building, University Park, Nottingham, NG7 2RD, UK

^{*} Corresponding author: Department of Environment & Geography, University of York, Heslington, York, YO10 5NG, UK; colin.brown@york.ac.uk

 Table S1 Sensitivity analysis for hydrology parameters in the Stonton Brook catchment

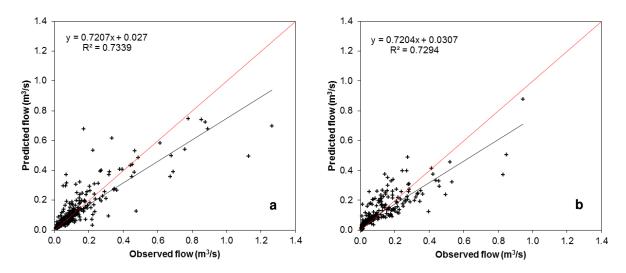

SA Rank	Parameter name	Definition	t-stat	p- value	Fitted value	Min value	Max value
1	v_GWQMN.gw	Threshold depth of water in the shallow aquifer for return flow to occur (mm H ₂ O)	-26.91	0.00	1167	0	5000
2	v_RCHRG_DP.gw	Deep aquifer percolation fraction	19.20	0.00	0.1	0	1
3	v_GW_DELAY.gw	Groundwater delay (days)	-17.42	0.00	40.7	0	500
4	v_LAT_TTIME.hru	Lateral flow travel time (days)	-2.77	0.01	2.0	0	180
5	r_CN2.mgt_BARR	Initial SCS runoff curve number for moisture condition II for barren land	2.01	0.04	88	-0.1	0.1
6	v_REVAPMN.gw	Threshold depth of water in the shallow aquifer for "revap" to occur (mm)	-1.44	0.15	300	0	500
7	v_GW_REVAP.gw	Groundwater "revap" coefficient.	-1.35	0.18	0.02	0.02	0.2
8	r_CN2.mgt_PAST	Initial SCS runoff curve number for moisture condition II for pasture	1.29	0.20	78	-0.1	0.1
9	r_CN2.mgt_FRST	Initial SCS runoff curve number for moisture condition II for forest	1.28	0.20	66	-0.1	0.1
10	r_CN2.mgt_URBN	Initial SCS runoff curve number for moisture condition II for built areas	-1.24	0.22	90	-0.1	0.1
11	v_EPCO.bsn	Plant uptake compensation factor	-1.17	0.24	0.99	0.6	1
12	v_SURLAG.bsn	Surface runoff lag time	-0.66	0.51	0.2	0	24
13	v_ALPHA_BF.gw	Baseflow alpha factor (1/days)	-0.54	0.59	0.1	0	1
14	v_ESCO.bsn	Soil evaporation compensation factor	0.46	0.65	0.66	0.6	1
15	r_CN2.mgt_CANA,WWHT	Initial SCS runoff curve number for moisture condition II for oilseed rape and winter wheat (crop land)	-0.42	0.67	83	-0.1	0.1
16	v_SLSOIL.hru	Slope length for lateral subsurface flow (m)	0.27	0.79	65	0	150

Table S2 Goodness-of-fit results for calibration (2012-2013), validation (2013-2014) and post-measurement flow periods including Nash-Sutcliffe model efficiency (NSE), coefficient of determination (r2) and percentage bias (PBIAS) and total annual simulated flow as a percentage of the observed flow.

	NSE	r^2	PBIAS	Simulated flow (% of observed flow)
2012-2013	0.73	0.73	4.4	96
2013-2014	0.73	0.73	-6.6	107
2014-2015	0.61	0.65	-3.3	103
2015-2016	0.60	0.62	-7.6	108
2016-2017	0.74	0.76	-6.0	106
2014-2017	0.64	0.67	-5.9	106

Table S3 Mass balance for the transfer of propyzamide to the stream network.

	2013-2014	2014-2015	2015-2016	2016-2017
Annual pesticide exported (kg/crop year)	0.0360	0.2626	0.0398	0.2214
Application rate (kg/ha)	0.708	0.650	0.840	0.840
OSR area (ha)	33	209	26	57
Total propyzamide applied to OSR (kg)	23.4	136	21.8	47.9
Pesticide exported to surface water (% of applied)	0.154	0.193	0.182	0.462

Figure S1 Observed vs. predicted plots and fitted line for the a) calibrated and b) validated flow in the Stonton Brook catchment together with the 1:1 line and model performance statistics.