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Abstract. Kuramoto oscillators have been proposed earlier as a model for interacting systems

that exhibit synchronization. In this article, we study the difference between networks with sym-

metric and asymmetric distribution of natural frequencies. We first indicate that synchronization

frequency of oscillators in a completely connected network is always equal to the mean of the nat-

ural frequency distribution. In particular, shape of the natural frequency distribution does not affect

the synchronization frequency in this case. Then, we analyse the case of oscillators in a directed

ring network, where asymmetry in the natural frequency distribution is seen to shift the synchro-

nization frequency of the network. We also present an estimate of the shift in the frequencies for

slightly asymmetric distributions.

Keywords. Kuramoto; synchronization; asymmetry; frequency distribution.
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1. Introduction

The phenomenon of synchronization is seen in interacting oscillatory systems in nature.

Most striking examples include the regular flashing of light by fireflies [1], simultane-

ous clapping by the audience in a theatre during an applause [2,3], Josephson junctions

[4,5] and chemical oscillations [6]. Collective synchronization was first studied mathe-

matically by Wiener [7,8]. He realized the ubiquity of the phenomenon and speculated

its involvement in the generation of alpha rhythms in the brain. Unfortunately, Wiener’s

mathematical approach based on Fourier integrals [7] has turned out to be a dead end

[9]. In 1975, Kuramoto introduced a model, which took into consideration oscillators,

which were coupled to each other and showed the phenomenon of synchronization for

sufficiently large coupling strengths.
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The dynamics of a general ith oscillator in a system of N Kuramoto oscillators is given

as

θ̇i = ωi +

N
∑

j=1

Kij sin(θj − θi) ∀i = 1, 2, . . . , N, (1)

where θi and ωi are the phase and natural frequencies of the ith oscillator, respectively,

and Kij is the coupling strength between the ith and j th oscillators. The coupling depends

on the sine of the phase difference between the oscillators and hence, is nonlinear. For

simplicity, we set Kij = K/N for all 1 ≤ i, j ≤ N .

In this paper, we analyse the Kuramoto model with an aim to study the difference in

dynamics of the oscillators, as the distribution from which natural frequencies of the oscil-

lators are chosen, changes from symmetric to asymmetric form. In particular, we study

the change in synchronization frequency as the symmetry is changed under the limit of

large N . We first analyse a complete network of oscillators and show that symmetry of

natural frequency distribution has no effect on the synchronization frequency. We then

consider a network of oscillators connected in a directed ring and obtain qualitative dif-

ferences between the dynamics of the system, when natural frequencies are chosen from

symmetric and asymmetric distributions, respectively. These differences are presented as

numerical results. We also analyse the differences analytically and present an estimate of

the shift in synchronization frequency.

2. Synchronization in completely connected network

To show the independence of synchronization frequency on the symmetry of natural fre-

quency distribution, we consider the dynamical eq. (1) for the completely synchronized

state of oscillators under the mean-field approximation. In such a scenario, all oscillators

have the same effective frequency, θ̇i = �, and the equation transforms as

� = ωi +
K

N

N
∑

j=1

sin(θj − θi) ∀i = 1, 2, . . . , N. (2)

Adding the equations for all i’s together gives

� = ω̄i +
K

N2

N
∑

i=1

N
∑

j=1

sin(θj − θi). (3)

The second term in the equation drops out due to its antisymmetry in i and j and leads

to the synchronization frequency � to be equal to the mean frequency ω̄i . Hence, we

conclude that the synchronization frequency is determined solely by the mean of the

distribution and not its shape.

3. Synchronization in directed ring network

To construct a general system whose synchronization frequency can be changed by alter-

ing the shape of the distribution, we consider a ring topology in the oscillators, where each
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oscillator interacts in a unidirectional fashion, with its immediate neighbour only and the

last oscillators interacts with the first oscillator. This is described mathematically as

θ̇i = ωi + K sin(θi+1 − θi) ∀i = 1, 2, . . . , N, (4)

with the boundary condition θN+1 = θN .

As in the previous case, the natural frequencies ωi’s are chosen from a general distri-

bution g(ω). From here on, we assume without any loss of generality that the mean of

g(ω) is zero because if the mean is different (say �), we can always apply a change of

variables θ ′ = θ − �t . In such a rotating frame, the apparent frequencies would seem to

have zero as the mean.

3.1 Numerical results on synchronization condition

To analyse synchronization phenomenon in the directed ring network, numerical sim-

ulations are performed by RK4 method for numerical integration at double precision.

Ensembles of oscillators with random natural frequencies are constructed [10,11]. Nat-

ural frequencies are chosen from symmetric (Gaussian and uniform) and asymmetric

(χ2 and log-normal) distributions. For the simulations, the distributions are chosen to

have mean zero and sampling is performed using inverse Fourier and rejection methods

[12,13].

For each simulation, the time evolution of the order parameter [6]

O = reιψ =
1

N

N
∑

j=1

eιθj , (5)

is also computed. Here the coherence parameter

r(t) =
1

N

√

√

√

√

(

N
∑

i=1

cos θi

)2

+

(

N
∑

i=1

sin θi

)2

, (6)

lies between 0 and 1 and measures the phase coherence. If all the oscillators move in a

tight clump, the phases are almost the same and r ≈ 1, whereas if all the oscillators are

scattered, then r ≈ 0.

The results obtained for symmetric g(ω) are similar to those of the mean-field

Kuramoto oscillators (figure 1). For very low K values, we obtain r(t) → 0 as t → ∞.

For this case, the value of θ̇ averaged over all oscillators fluctuates with time; and we see

no synchronization. For a large value of K , r(t) → 1 as t → ∞ and the system gets

synchronized to the mean of the natural frequency distribution, which is zero in this case.

For very low and very high values of K , the behaviour of the asymmetric system is

much like that of the symmetric one. The oscillators are unsynchronized for low values

of K and are synchronized for very high K values (figure 2).

However, for intermediate values of K , the asymmetric oscillators become phase

locked even for very low value asymptotic value of r(t) (values less than 0.1) (figure 3a).

This can be clearly seen from the fact that variance of θ̇i tends to zero with time (figure 3b)

and that the difference between the phases of the oscillators becomes approximately
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Figure 1. Unsynchronized and synchronized states of oscillators for symmetric nat-

ural frequency distribution. (a) shows the variation of coherence parameter with time

and (b) shows the corresponding mean frequency variation for an unsynchronized

state. (c) and (d) show the counterparts for a synchronized state.

constant. What is more interesting is that in this state, the effective synchronization

frequency of the oscillators shifts from the mean of their natural frequencies (figure 3c).

The phenomenon of synchronization at low values of r for asymmetric distribution

points towards phases being spread out as the oscillators get synchronized. While the

possibility of such ‘spread-out synchronized states’ cannot be denied in symmetric distri-

butions, our simulations suggest that such a state is seen only in networks with asymmetric

natural frequency distribution. More explicitly, the only form of synchronization observed

in oscillators with symmetric natural frequency distribution is that where r(t) is close

to one (figures 1c and 1d). Numerical explorations do not yield cases, where syn-

chronization occurs for r(t) close to zero for symmetric natural frequency distributions.

Such cases are obtained only for asymmetric natural frequency distributions (figures 3a

and 3c).

Another notable feature of synchronization in asymmetric natural frequency distribu-

tions is the dependence of synchronization frequency on the strength of coupling. For

symmetric distributions, whenever the oscillators get synchronized, the synchronization
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Figure 2. Unsynchronized and synchronized states of oscillators for asymmetric nat-

ural frequency distribution. (a) shows the variation of coherence parameter with time

and (b) shows the corresponding mean frequency variation for an unsynchronized

state. (c) and (d) show the counterparts for a synchronized state.

frequency is always numerically found to be at � = 0 (the mean of the distribution) irre-

spective of the synchronization frequency. In stark contrast, for the synchronization in the

intermediate coupling ranges, the synchronization frequency is observed to be away from

the mean. Moreover, the synchronization frequency changes as coupling strength K is

varied (figure 4b). Additionally, the synchronization frequency asymptotically converges

to the mean for very high K values (figure 4c).

3.2 Theoretical analysis of synchronization condition

To obtain the condition for synchronization, we assume that each oscillator moves with

an effective frequency, θ̇i = �. We then invert eq. (4) to obtain

sin−1

(

� − ωi

K

)

= θi+1 − θi ∀i = 1, 2, . . . , N. (7)
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Figure 3. Numerical results of simulations with asymmetric distribution of natural

frequencies. The network gets synchronized as seen by the variance of frequency

decaying down to zero (in (b)). For the same simulation, the coherence parameter

(in (a)) attains a very low value and the mean effective frequency (in (c)) – which is

the common synchronization frequency for asymptotically low variance – settles to

a value away from the mean of the natural frequencies. (d) shows the variance of

the phases which stabilizes to a finite value showing the spread of oscillators in the

synchronized state.

Summing over all oscillators cancels out the right-hand side completely to yield the

condition for synchronization to be

N
∑

i=1

sin−1

(

� − ωi

K

)

= 0. (8)

We now Taylor expand the sine inverses around (� − ωi)/K = 0, and then by applying

binomial expansion on each of the resulting terms, we have

∞
∑

n=0

c2n+1

2n+1
∑

j=0

(−1)j 2n+1Cj

(

�

K

)2n+1−j N
∑

i=1

(ωi

K

)j

= 0, (9)

where c2n+1 is the coefficient of x2n+1 in the expansion of sin−1 x.
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Figure 4. Effect of coupling strength on synchronization frequency. (a) and (b) show

the time evolution of mean frequency for K = 8 (green) and K = 9 (blue) for

symmetric and asymmetric natural frequency distributions. Synchronization occurs

in both the cases. However, the synchronization frequency is unaffected (remains at

zero) for the symmetric case, whereas it changes for its counterpart. As shown in (c),

the synchronization frequency reaches zero for very high coupling strength.

Now collecting the terms containing the same powers of �/K together, we get

−
∑

j=even

(

∞
∑

n=0

c2n+1+j µ2n+1
2n+1+jC2n+1

)

(

�

K

)j

+
∑

j=odd

(

∞
∑

n=0

c2n+j µ2n
2n+jC2n

)

(

�

K

)j

= 0, (10)

where

µj =

N
∑

i=1

(ωi

K

)j

. (11)
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Writing it explicitly, we have

− (c1µ1 + c3µ3 + · · · ) +
(

c1µ0 + c3µ2
3C2 + · · ·

) �

K

−
(

c3µ1
3C1 + c5µ3

5C3 + · · ·
)

(

�

K

)2

+ · · · = 0. (12)

From eq. (12), we note that for a symmetric distribution, all the odd-µi’s are zeroes; all

the terms of the form (�/K)2j vanish. In particular, the first term of the LHS vanishes.

This results in � = 0 being a trivial solution for the equation. Hence, a set of oscillators

with any symmetric distribution of natural frequencies can synchronize to the mean of the

natural frequencies.

For a asymmetric natural frequency distribution, however, at least one of the odd

moments is non-zero. In that case, the first term of eq. (12) does not vanish. Hence,

� = 0 does not in general satisfy the equation. Hence, a set of oscillators with an asym-

metric distribution of natural frequencies cannot synchronize to the mean of the natural

frequencies.

To estimate the synchronization frequency for a slightly asymmetric natural frequency

distribution, we can use the expansion in eq. (12). We introduce the asymmetry in the

distribution by adding some small non-zero odd k-moments to the symmetric distribution.

Let Sk be the set of all such odd k’s. Let µk’s be the terms corresponding to the small

non-zero odd moments in the slightly asymmetric distribution.

For such a slightly asymmetric natural frequency distribution, we expect the synchro-

nization frequency to be slightly shifted from � = 0, obtained for symmetric distribution.

Hence, we keep the expansion to the linear term in �/K and neglect the terms of higher

orders to obtain

−
∑

k∈SK

ckµk +

∞
∑

j=0

(2j + 1) c2j+1 µ2j

(

�

K

)

= 0. (13)

Hence, the synchronization frequency for the asymmetric distribution is given as

� = K

∑

k∈SK
ckµk

∑∞
j=0(2j + 1) c2j+1 µ2j

, (14)

where cj is the coefficient of xj in the expansion of sin−1 x.

Some conclusions can be immediately drawn from eq. (14). First, as the values of

cj decreases with increasing j , the effect of asymmetry on shifting the synchronization

frequency is maximum, if asymmetry is introduced by increasing µ3 or the skewness

of g(ω). Secondly, as the denominator of the expression contains weighted sum of even

moments of the distribution, we can conclude that a greater shift in synchronization

frequency will be observed for a sharper distribution of natural frequencies.

4. Conclusion

In this paper, we study the effect of symmetry of natural frequency distribution on the syn-

chronization frequency of Kuramoto oscillators. After establishing that synchronization
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frequency of a complete network of oscillators is unaffected by symmetry of the distribu-

tion of natural frequencies, we construct a ring network of oscillators to observe a shift in

synchronization frequency for asymmetric natural frequency distribution and an interme-

diate range of coupling strength. We analytically show that oscillators can synchronize to

the mean of the frequency distribution only for symmetric distributions. As asymmetry

is introduced in a synchronized symmetric system, the synchronization frequency grad-

ually shifts away from the mean. An estimate of the shift for small asymmetry is also

given. The results are also qualitative and predict an increase in the shift with reduction

in coupling strength which is also seen in numerical simulations.

Although we have been able to come up with a network of Kuramoto oscillators whose

synchronization frequency can be changed by introducing asymmetries in the natural fre-

quency distribution, a few questions still remain open and unanswered. These include

estimation of synchronization frequency for a more general asymmetric distribution and

characterization of phase difference between the oscillators for the non-collapsed phase-

locked state. We hope that future research will throw some light on the unaddressed issues

and help us characterize the effect of asymmetries in a more efficient way.
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