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Abstract 

Biot’s hydro-mechanical coupled consolidation theory has been widely used in 

Geotechnical Engineering for nearly 100 years. However, the Chemically Disturbed 

Zone (CDZ) generated in many geotechnical engineering applications (e.g. nuclear 

waste disposal, carbon capture and storage etc.) are not considered by Biot’s theory, 

especially where there are highly swelling rocks (e.g. shale) and dissolving minerals. 

This paper presents a rigorous fundamental extension of Biots consolidation theory, 

with comprehensively considering the influence of molecular processes of coupled 

swelling and mineral dissolution, based on the newly developed Mixture Coupling 

Theory. A simple numerical example has been used for the demonstration purpose of 

the new constitutive equations, and the result shows that molecular influence can have 

a significant impact on the mechanical performance of the rocks.   

 

Keywords: Unsaturated, Biot’s theory; Mixture Coupling Theory; Swelling; Dissolution
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1 Introduction 

Many contemporary geotechnical engineering applications create a Chemical 

Disturbed Zone (CDZ), where chemical reactions occurring at the molecular scale 

strongly change the engineering properties of rocks/soils (NNL, 2016). Applications 

include carbon capture and storage, shale gas extraction, acid mine drainage, nuclear 

waste disposal, hyper alkaline industrial wastes (e.g. steel slags and “red muds” from 

aluminum extraction), and accidental chemical spills (Chen et al., 2015; Moyce et al., 

2014).  

 

Minerals in rocks/soils may dissolve into groundwater until they reach thermodynamic 

equilibrium (Yadav and Chakrapani, 2006). Most minerals react slowly in groundwater, 

however, when the pore fluid is replaced by reactive solutions or the life cycle of the 

engineering application is long enough (e.g. 100 years for nuclear waste disposal), the 

chemical processes will result in significant changes to the physical properties of the 

ground (e.g. the porosity, permeability, and strength) (Emmanuel and Berkowitz, 2007; 

Fredd and Fogler, 1998; Zhao, 2014).   

 

Swelling of rocks/soils is another engineering problem caused by molecular influence. 

Typically, two major mechanisms of swelling are observed in the clay platelets within 

a soil/rock, i.e. hydration swelling and osmotic swelling (Chen, 2013). Hydration 

swelling is the result of exchangeable cations of the dry clay. One to four water layers 

can be added between clay platelets due to cations hydrate, resulting in the space 

between clay layers. Osmotic swelling is resulted from the large difference of the ion 

concentration close to the clay surfaces or in the pore water. Fig. 1 briefly illustrates 

hydration swelling and osmotic swelling. 
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Fig 1. hydration swelling and osmotic swelling 

 

Swelling is coupled with the dissolving process. Dissolved minerals release large 

amounts of cations or anions into pore water or clay platelets, and these chemicals will 

change the flow direction of H2O due to osmotic flow, resulting in osmotic swelling. 

Meanwhile, the new absorbed water diluting the solute which was in equilibrium with 

the minerals, allows more minerals to be dissolved towards a new equilibrium. Such 

interactions between swelling and dissolution remain a challenge due to multiscale 

physical-chemical coupling.      

 

Traditionally, two major approaches have been developed to describe hydro-

mechanical coupling in porous media: the mechanics approach, which is based on the 

classical consolidation theory of Terzaghi and Biot (Biot, 1962; Biot and Temple, 1972; 

Terzaghi, 1943), and Mixture theory, which was developed by Truesdell, extended and 

modified by Humphrey and Rajagopal (Humphrey and Rajagopal, 2002, 2003; 

Rajagopal, 2007).  Lots of researches in Geotechnical Engineering have been 

focussed on hydro-mechanical coupling using mechanical approach (Graziani and 

Boldini, 2011; Lewis and Schrefler, 1987b; Meroi et al., 1995; Sanavia et al., 2002), as 

well as more complicated models considering thermal or chemical couplings (Huyghe 

and Janssen, 1999; Seetharam et al., 2007). However, the mechanical approach is 
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not based on a unified systemic theory and does not have the capacity of couplings 

crossing multiple-disciplines and multiple-scales (Laloui et al., 2003). The interactive 

element between hydro-mechanical is macroscale level pressure, whereas the 

interactive element between chemical or/and thermal is the microscale molecular force. 

The mechanical approach has difficulties of building links between the two scale-levels 

interactive element, therefore, it has to borrow formulations from other research field 

when dealing with chemical or/and thermal coupling, due to the gap between 

Geomechanics and Geochemistry. As a result, the formulations developed are not 

rigorously mathematically derived, but highly semi-empirical and heavily relying on 

experiments.  

 

 

Mixture theory maintains the individuality of the solid and fluid phase and takes account 

of phase interaction effect (Grasley et al., 2011; Grasley and Rajagopal, 2012; 

Rajagopal and Tao, 2005; Rajagopal and Tao, 1995). It adopts an ‘energy approach’ 

to build a link between microscale molecular force and macro-level pressure. However, 

this “energy” approach has the difficulty of obtaining detailed information on the 

interaction between phases, which restrains its applications.  

 

To overcome the challenge, Heidug and Wong(Heidug and Wong, 1996) view a fluid-

infiltrated rock as a single continuum and does not explicitly discriminate between the 

solid and fluid phases. This approach is referred to as modified mixture theory. This 

theory has been lately extended and reformed with attention on physical-chemical 

coupling and entropy evolution, and renamed as Mixture Coupling Theory by Chen et 

al. (Chen, 2010, 2013; Chen and Hicks, 2010; Chen et al., 2018a; Chen et al., 2018b).  

 

Another challenge is the gap between microscale and macroscale(Lewis and Schrefler, 

1987b): The hydro-mechanical coupling is at macroscale level, whereas the interaction 



6 

 

between chemicals or/and thermal fields is on the microscale. Thermodynamically 

Constrained Averaging Theory (TCAT) of Gray and Miller (Gray and Miller, 2014; Gray 

et al., 2013; Miller et al., 2018) provides a rigorous way of bridging the gap. Mixture 

coupling theory develops another scope of the average method using non-equilibrium 

thermodynamics (Chen et al., 2016). It uses entropy production for the dissipation 

process and Helmholtz free energy to engage mechanical energy which enables well-

accepted continuum mechanics to be used for mechanical deformation (e.g. large 

deformation), leading to a simpler derivation process compared with TCAT. Mixture 

Coupling Theory has an advantage in physical-chemical coupling process, through 

using Gibbs-Duhem equation to link chemical potential (rather than molecular forces) 

with physical thermodynamic properties. 

 

In this paper, a novel mathematical formulation of hydro-mechanical coupled model 

base on Mixture Coupling Theory is obtained, and the strong couplings between 

mineral dissolution and swelling are included.  Helmholtz free energy is used to give 

the relationship between these couplings. The fully coupled formulations, which 

include dissolving and swelling, are obtained. Finally, finite elements are used to solve 

the governing equations for the demonstration purpose. The results show that both 

swelling and dissolving have a significant influence on the stress and strain change of 

the porous media rock.  
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2 Balance equations and dissipative process 

 
A microscopic domain V,  which is assumed to be big enough to include solid, water 

and gas, has been selected within the rock, with the assumption that S is its boundary 

attached to the solid phase, allowing the only movement of fluid (e.g. water, chemicals) 

across. To simplify the discussion, the air phase is assumed to be continuous with 

atmospheric pressure 0atmp  (Neuman, 1975; Safai and Pinder, 1979)  

 

2.1  Balance equations for energy and mass 

Helmholtz free energy combines internal energy and entropy (Haase, 1990). The 

balance equation can be derived based on the assumption of ignoring gas transport 

as: 

(1) The balance equation can be derived based on the assumption of ignoring gas 

transport as (Chen, 2013; Chen and Hicks, 2009): 

 s w s d

S S S V
V

D
dV dS dS dS T dV

Dt
             ın v I n I n  (1) 

where   is Helmholtz free energy density, ı  is the Cauchy stress tensor, sv is the 

velocity of the solid, wv is the velocity of the water, sv is the velocity of the solid,  is 

the chemical potential of water, 
s is the chemical potential of dissolved solid, T is 

temperature,   is the entropy production per unit volume, and the time derivative is  

 s
t

D

Dt
   v  (2)  

in which t is the time derivative and   the gradient.    

 

In equation (1), wI and dI are the mass flux of water and dissolved solid that can be 

defined as  
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 ( )w w w s I v v , and ( )d d d s I v v  (3) 

where w and d are the mass density of water and the dissolved chemical.   

 

The derivative version of the balance equation (1) for the free energy is expressed as   

 ( ) ( ) ( ) 0s s w s d T           v ıv I I&  (4) 

 

(2) Balance equation for solid mass is  

  s d

V S

D
dV da

Dt
     I n  (5) 

and the derivative version is 

 0s s s dv I&r r+ Ñ× + Ñ× =  (6) 

where s  is the solid density relative to the unit volume of the fluid-solid-gas mixture.  

 
(3) Balance equation for water mass is 

 w w

V S

D
dV da

Dt
     I n       (7) 

The derivative version is 

 0w w s wr r+ Ñ× + Ñ× =v I&  (8) 

The mass density of water w is defined relative to the unit volume of the mixture. It 

is related to the true mass density 
w
t (relative to the water volume of the mixture) 

through 

 
w w w

t     (9) 

in which w  is the volume fraction of water.  The relationship between w  and the 

porosity of the medium   is  

 
w wS   (10) 

where wS is the saturation of water. 
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2.2  Dissipative process  

This dissipation mechanism at the solid/fluid boundary (e.g. solid/fluid and 

water/dissolve solid) can be obtained by using non-equilibrium thermodynamics, and 

the entropy production is described as  (Katachalsky and Curran, 1965) 

 0 w d sT       I I  (11) 

where w and d are the chemical potential of the water and dissolved solids, 

respectively.  

 

If the chemical transport of dissolved solids is ignored, the equation (11) becomes  

 ` 0 wT    I  (12) 

Through using Phenomenological relationship for equation (12), and Gibbs-Duhem 

equation for the pore water giving the relationship between water pressure and water 

chemical potential, Darcy’s law can be obtained as (Chen, 2013)  

 rw
D p

k
p


  

K
u   (13) 

where Du  is Darcy’s velocity, K is the permeability, rwk  is the relative permeability, 

and  pp is the pore pressure. Note here: The chemical transport is not considered here 

to simplify the discussion.    
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  3 State equations for swelling and dissolving  

 

There are two types of water in a swelling/dissolving rock; 1) water in the pores which 

can be described using non-equilibrium thermodynamics, and 2) water in the clay 

platelets which has a strong feel of intermolecular and surface forces and 

thermodynamics is not applied (Israelachvili, 1991) (Figure 2). The solids can be 

classed as two types; 1) the solid skeleton which follows the continuum 

thermodynamics (mechanics) and 2) the dissolved solid into water that follows the 

intermolecular or surface forces. (Figure 2).    

 

Fig 2. Water types and solid types 
 

3.1 Helmholtz free energy of pore fluid  

Based on classical thermodynamics, the Helmholtz free energy density in the pore 

space ( pore ) can be written as  

 ( )w pore s
pore tp S        (14) 

where the 
pore

t (including water and the dissolved solid) is the fluid mass density per 

unit fluid volume, p is the average pressure in pore space and the gas pressure has 

been ignored.   

 

The time derivative of equation (14) is  
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 ( ) ( )w pore w pore s w pore s w pore
pore t t t tp S S S S               (15) 

Using the Gibbs-Duhem equation for the pore water, this leads to   

 w pore w pore s
t tp S Sr m r m= +& & & (16) 

and the relationship between chemical potential and average pressure as  

 
1

( )s
w pore

t

p
S

 


    (17) 

Substituting equation (16) into (15), the time derivative of Helmholtz free energy can 

be simplified as  

 ( ) ( )w pore s w pore
pore t tS S       (18) 

 

3.2 Helmholtz free energy of the whole mixture  

It is assumed that the rock maintains mechanical equilibrium so that  ı 0  . By 

substituting the entropy production equation (11) into the Helmholtz free energy 

balance equation (4) for the mixture, and ignoring dI  for chemical transport, this leads 

to  

  : 0s s w       v v I   (19) 

Equation (19) is the free energy at current configuration. To measured the rock’s 

deformation state, classic continuum mechanics has been considered here: an 

arbitrary reference configuration X  is selected, then at the time t the position is x . The 

expression of Green strain E , the deformation gradient F ,  

 ( , )t





x
F X

X
, 1

( )
2

 TE F F I , (20) 

where I  is a unit tensor.  The relationship between second Piola-Kirchhoff stress T

and Cauchy stress ı  is  

1 TJ  T F ıF  

where J (the Jacobian of F ) is     
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0

dV
J

dV
 , sJ Jdiv&  

By further considering partial masses equation(8) and equation(19), along with the 

equation (20), it leads to   

 ( )tr mTE& & &mY = +  (21) 

  J  , w w
tm J JS    (22) 

 

3.3 Free energy density of the wetted mineral matrix   

The free energy of the mineral matrix includes the fluid ‘bounded’ between clay platelet 

and the solids dissolved into the platelet. It can be obtained by subtracting the free 

energy of pore water (section 3.1) from the total free energy of the rock/ fluid (section 

3.2).  

Therefore, the free energy density of the wetted mineral matrix is written as  

 ( ) ( )w s
pore bound dissolveJ tr m p mTEf y m u mY- = + + -& & & & &  (23) 

where J   is denoted as pore volume per unit referential volume.  

For the reason of convenience, the dual potential (deformation energy) can be 

expressed as    

 ( )w s
f bound dissolveW J p m m           (24) 

where W is a function of E , p ,  , s  so the expression of T , , boundm , dissolvem  

can be given. Equation (24) implies the time derivative of ( , , )W p E satisfies the 

relation  

 ( , , , ) ( )s s
bound dissolveW p tr p m mE TEm m u m m= - - +& & & & &  (25) 

Hense,  
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, , s

ij
ij p

W
T

E
 

 
    

, 
, , s

ijE

W

p  


 

   
, 

, , s
ij

bound

E p

W
m


 

   
,

, ,ij

dissolve s
E p

W
m


 

   
 

  (26) 

and  

 
, , , , , ,, ,

( , , , )
s ss

ij ij ij

s s
ij s

ij E E p E pp

W W W W
W p E p

E p
E

m m m mm m

m m m m
m m

æ ö æ ö æ ö æ ö¶ ¶ ¶ ¶÷ç ÷ ÷ ÷ç ç ç÷ç= + ÷ + ÷ + ÷ç ç ç÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç÷¶ ¶ ¶ ¶ç è ø è ø è øè ø
& & & & &(27) 

If equation (26) is differentiated respect to time, and by substituting equation (27) into 

(26),  the fundamental constitutive equations for the evolution of stress, pore volume 

fraction, mass densities of the bounded water and the mass density of dissolved solids 

can be obtained as (see derivation details in the appendix) 

 s
ij ijkl kl ij ij ijT L E M p S Hm m= - + -& & & & &  (28) 

 s s
ij ijM E Qp B Bu m m= + + +& && & &  (29) 

 s
bound ij ijm S E B p Z Xm m= - + + +& && & &  (30) 

 s s
dissolve ij ijm H E B p X Ym m= - - +& && & &  (31) 

where the parameters ijklL , ijM , ijS , ijH , B , X  Y , Z ,  are defined as following 

equations 

 
, , , ,

s s

ij kl
ijkl

kl ijp p

T T
L

E E
   

   
          

 

 
, , , ,

s s
ij

ij
ij

ijE p

T
M

p E   

   
           

 

 
, , , ,

s s
ij

ij bound
ij

ijE p p

T m
S

E  


   
          

 

 
, , , , s

ij

ij dissolve
ij s

ijE p p

T m
H

E  


   
          

 (32) 
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, , s

ij

bound

E p

m
Z


 

   
 

 
, ,, ,s s

ij ij

bound

E p E

m
B

p  




   
        

 

 
,ijE

Q
p 

 
   

 

 
, ,ij

dissolve
s

E p

m
Y


 

   
 

, ,, , s
ij ij

bound dissolve
s

E p E p

m m
X

  
    

         
 

, ,, ,s
ij ij

s dissolve bound
s

E E p

m m
B

p
m m m

m

æ ö æ ö¶ ¶÷ ÷ç ç÷ ÷= - =ç ç÷ ÷ç ç÷ ÷ç ç¶ ¶è ø è ø
 

 

Equations (28)-(31) provide the general coupled equations for mechanical behaviour, 

water pressure, and chemical potential, etc. As the attention of this article is focused 

on the coupled dissolution and swelling influence for unsaturated swelling rock, a few 

assumptions are made including  

i) Small strains assumption.  This leads to the replacement of Green Strain 

tensor ijE by strain tensor ij , and Piola-Kirchhoff stress ijT  by Cauchy 

stress ij .  

ii) Materials parameters assumption. The parameters ijklL , ijM , ijS , Z , B ,

Q , X, Y are material-dependent constants and the material is isotropic. 

Hence, the tensors ijM , ijS , ijH are diagonal and can be written in the 

forms of scalars  ,  ,  sw as 

 ij ijM  , ij ijS   , ij s ijH w d=   (33) 
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iii) Based on the assumption ii), the elastic stiffness ijklL can be a fourth-order 

isotropic tensor 

 2
( ) ( )

3ijkl ik jl il jk ij kl

G
L G K          (34) 

Here G denotes the rock’s shear modulus and K denotes the bulk modulus.  
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4  Coupled hydro-mechanical constitutive equations  

4.1 Mechanical behaviour  

Based on the material parameters simplification from i-iii in section 3.3, the governing 

stress equation (28) can be simplified to  

 2
( ) 2

3
s

ij kk ij ij ij kl s kl

G
K G ps e d e z d wmd w md= - + - + -&& & & &&  (35) 

where sK  is the bulk modulus of the solid matrix.The quantity z  is related to the bulk 

modulus K  and sK  in a manner from poroelasticity through the equation 

1 ( / )sK K    namely.   

 
By introducing equation(17) into equation (35),  and assuming the linear relationship 

s = x  , then the stress equation (35) can be rewritten as    

 
( 1)2

( ) 2 ( )
3 ( 1)

d
ij kk ij ij ijw w w w

t t

xG
K G p

x S xS

ww
s e d e z d

r r

+
= - + - - +

+
&& &&  (36) 

 

Under mechanical equilibrium condition / 0ij jx   , and using displacement 

variables ( 1,2,3)id i    through 
, ,

1
( )

2ij i j j id d   , equation (36) can be written as  

 2 ( 1)
( ) ( ) 0

1 2 ( 1)
d

w w w w
t t

xG
G p

x S xS
d d

ww
z

q r r

æ ö +÷çÑ + Ñ Ñ× - - + Ñ =÷ç ÷çè ø- +
&  (37)   

 

Since the average pressure p can be interpreted as w wp S p (Li and Zienkiewicz, 

1992) and its time derivative is 

 ( )
w w w

w w w ws sp C p C p
p S p S p

t t tf f

¶ ¶ ¶
= + = +

¶ ¶ ¶
&   (38) 

where sC in the specific moisture content that is defined in terms of pressure.  

 

By introducing equation (38), equation (37) can be rewritten as  



17 

 

 2 ( 1)
( ) ( ) ( ) 0

1 2 ( 1)
w w wd s

w w w w
t t

x CG
G S p p

x S xS
d d

ww
z

q r r f

é ùæ ö +÷ç ê úÑ + Ñ Ñ× - - + Ñ + =÷ç ÷ç ê úè ø- + ë û
&

 (39) 

Equation (39) presents a formula including both the swelling and dissolution influence 

on mechanical behaviour.  

 

4.2 Fluid-phase     

From the water balance equation (8), water density equation (9) and Euler identity, the 

conservation equation of water is  

 ( ) ( ) 0w w w
t tS ur r+ Ñ × =u&  (40) 

From equation (40), (4) and (13), it leads to  

 
2

( / )

k 0

w w w w w
t t t

ww
w w wt rw

wt t

S S Q B p

kS S p
t t v

dr z r r

rf r f r
é ù
ê ú
ê úê úë û

Ñ× + +
¶¶+ + + - Ñ =¶ ¶

& &
 (41) 

Where Q  is the void compressibility, relating to the scalar z through  

   1/ /sQ K    , in which sK is the bulk modulus of the solid matrix which is here 

assumed to be very large, and ( )( )1/ 1KB z w-= .  

 

Considering the rate of change of saturation function and the rate of change of water 

density function  

 ( )
ww w w w w w w
t

S Sw
t w w

S S p S p S p
C C

t t t K t K t

  


   
    

    
 (42) 

equation (41) can be rewritten as  

2k ( ) ( / )( ) 0
w w w

w w w w wrw s
w S t

w

k CS p p
p C S Q B S p S

v K t t
df r z

f

¶ ¶- Ñ + + + + + + Ñ× =
¶ ¶

&  (43) 
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4.3 Equation summary and validation 

The coupled equations (39) and (43) can be validated by the comparing with 

unsaturated hydro-mechanical coupled equations derived from the mechanics 

approach which have been tested by number of researchers. Without considering 

swelling and dissolution, equations (39) and (43)  become the classic equations from 

mechanics approach (Lewis and Schrefler, 1987a). The difference is coupled swelling 

and dissolution term  
( 1)

( 1)
d

w w w w
t t

x

x S xS

ww

r r

+
- +

+
  , and these two terms can be 

determined by experiment.  
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5 Numerical simulation  

In this section, numerical modelling is presented to show the coupled hydro-

mechanical behaviour with consideration of swelling and dissolution for a host rock 

around a nuclear waste container. The host rock for a nuclear waste works as a barrier 

to prevent radionuclides from leaching into the biosphere via underground water.  

 

5.1 Conceptual model 

5.1.1 Model geometry and material parameters.  Figure 3 shows a simplified one-

dimensional model geometry (0.015m wide and 0.03m high) representing a host rock 

(not in scale). Boundary A is fixed and permeable, and boundary B is free and 

permeable. The upper and lower boundaries are on rollers allowing only horizontal 

displacement.  

 

Fig 3. Numerical modelling geometry and boundary condition 

 

5.1.2 Initial and boundary condition.  The domain is assumed to contain water at a 

pressure of -4MPa (unsaturated condition), with the corresponding degree of 

saturation as 0.995 obtained through using Van Genuchten relationship as  

    
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The whole domain is in equilibrium and the effective stress is zero.  

 

5.1.3 Dissolution/Swelling, and parameters   

In equation(39), a dissolution term  dv= 
( 1) d

w w
t

x

xS

w

r

+
, and a swelling term  

sw=
( 1) w w

tx S

w

r+
 have been included to account for the dissolution and swelling 

process. In realistic conditions, both dissolution and swelling are time-dependent 

processes. To simplify the analysis, the dissolution and swelling term are assumed to 

be constant as dv=0.05 and sw=0.2, respectively. The material parameters are listed 

in table 1.  

 

Table 1 material parameters (Chen, 2013) 

Parameters Physical meaning  Values and units 

w
tr  Density of water  1000kg/m3 

/k v absolute permeability/dynamic viscosity  10-14m/s 

m  Van Genuchten parameter 0.43 

M  Van Genuchten parameter 51Mpa 

E  Young’s modulus  9720MPa 

  Poisson’s ratio 0.2 

z  Biot’s coefficient 1 

Q  Void compressibility 0.000005MPa-1 

ws  
Swelling parameter 0.2 

dv  Dissolution parameter 0.05 

 

 

5.2 Numerical result 

At the beginning of the simulation, the pore water pressure at boundary A drops from 

-4MPa to -20MPa. Pore water pressure and degree of saturation are maintained to be 
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the initial value at boundary B. The software COMSOL is used to solve the coupled 

constitutive equation.  

 
5.2.1 pore water pressure and degree of saturation 

Fig 4 and Fig 5 shows the distribution of pore water pressure and saturation throughout 

the domain at different time. Because there is a direct link between pore water pressure 

and saturation through Van Genuchten relationship, the two figures show a similar 

trend. As the absolute permeability is assumed to be constant, and swelling/dissolution 

are assumed to have little influence on the absolute and relative permeability, the pore 

pressure remains the same for both swelling (sw=0.2) and non-swelling (sw=0), 

dissolving (dv=0.05) and non-dissolving(dv=0) rocks.  

 

Fig 4. Evolution of pore water pressure with time 

(solid line: t=0.5 year, dashed line: t=1 year) 
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Fig 5. Evolution of saturation distribution with time 

(solid line: t=0.5 year, dashed line: t=1 year) 

 

5.2.2 Effective stress, strain, and displacement 

Fig 6 shows the change of horizontal effective stress. Effective stress at boundary B 

remains 0. At boundary A, “swelling and non-dissolving rock” has the smallest effective 

stress, while “non-swelling and dissolving rock” has the largest effective stress. 

Compare different lines in Fig 6, it can be concluded that swelling process decreases 

effective stress and the dissolving process increases effective stress. This is because 

swelling effect reduces the total stress influence on the solid skeleton whereas 

dissolution effect enlarges such influence. A similar trend can be found in horizontal 

strain and displacement (Figs 7 and 8). Since swelling and dissolution process have 

contrary effects on the rock, the deformation of the rock depends on the combined 

impact of swelling and dissolution (Figs 8) 
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Fig 6. Evolution of effective stress with time 

(solid line: t=0.5 year, dashed line: t=1 year) 

 

Fig 7. Evolution of horizontal strain with time 

(solid line: t=0.5 year, dashed line: t=1 year) 
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Fig.8 Evolution of horizontal displacement with time (sw=0.2, dv=0.05) 

(solid line: t=0.5 year, dashed line: t=1 year) 

 

5.3 Sensitivity analysis of permeability parameter 

Permeability is very important in H-M coupling. This section compares the influence of 

“swelling + dissolving” on the deformation of rocks, under different permeability: 

13/ 10k   and  14/ 10k   at 0.5 years (Note, k is used in the figures' label to 

represent /k  ).  The pore water pressure and saturation change much faster at large 

permeability ( 13/ 10k   ) (Figs 9 and 10). Effective stress, horizontal strain, and 

displacement in high permeability ( 13/ 10k   ) rock are all larger in low permeability 

( 14/ 10k   ) (Figs 11-13) at the same time (0.5 years) due to the faster increase of 

water pressure caused by higher permeability. 
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Fig 9. Evolution of pore water pressure with time 

(solid line: 14/ 10k   , dashed line: 13/ 10k   ) 

 

Fig 10. Evolution of saturation with time 

(solid line: 14/ 10k   , dashed line: 13/ 10k   ) 
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Fig 11. Evolution of effective stress with time 

(solid line: 14/ 10k   , dashed line: 13/ 10k   ) 

 

Fig 12. Evolution of horizontal strain with time 

(solid line: 14/ 10k   , dashed line: 13/ 10k   ) 
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Fig 13. Evolution of horizontal displacement with time 

(solid line: 14/ 10k   , dashed line: 13/ 10k   )  

 

5.4 2D numerical simulation 

The above 1D model has demonstrated the influence of swelling and dissolution. A 2D 

model is presented for a comprehensive analysis. The parameters and initial conditions 

are the same as those used in the 1D model, the major difference is that the pressure 

boundary conditions (Figure 14): The water pressure at boundary A decreases from -

4E6 to -20E6 (Pa) representing an excavation process, whereas, the pressure at 

boundary B changes from the initial constant value of -4E6 to a linear distribution along 

the hight of the sample (-4E6 to -10E6) representing an underground water flow 

changing scenario.     
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Fig 14. Boundary conditions for the 2-D model 

Fig 15 shows the pressure distribution at different times for a rock with combined 

swelling and dissolving function. Water in the domain flows out via the boundary A 

(left) and water pressure decreases to -20E6 . Because the linear function of pressure 

on boundary B (right), it leads to a pressure change along with the height within the 

domain.   

 

    

                (a)                               (b)                                 (c) 

Fig 15. Pressure distribution at different time(sw=0.2, dv=0.05) 

 ((a). t=0.5 year, (b). t=1 year, (c). t=2 years) 
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Fig 16 shows the displacement changes at different times. The displacement at the 

boundary A remains 0 as it is fixed. The displacement at the top right (boundary B) is 

the largest as the pressure gradient is the largest. A displacement variation against the 

height can be observed.  

 
                (a)                              (b)                                 (c) 

Fig 17. Horizontal displacement distribution at different time(sw=0.2, dv=0.05) 

 ((a). t=0.5 year, (b). t=1 year, (c). t=2 years) 

 

5.5 Limitation of the numerical analysis and further work 

The numerical simulation presented here is a simplified case for the demonstration 

purpose of the complex mathematical equations, with the assumptions made as 1) 

Swelling and dissolution do not impact permeability (or porosity) nor concentrations, 

which presents only in very high saturation ratio and low kinetics reaction in short 

period of time (e.g. < 1 year for quartz dissolution); 2) Variations of chemical potential 

of water and of dissolved solid are linearly related. This only presents in the condition 

of low concentration of dissolved solids. The relationship between chemical potential 

of water and of dissolved solid can be further modified according to a real situation; 3) 
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The dissolution and swelling terms are assumed to be constant, however, they are 

functions of the state variables and need to be determined by experiments. 

 

This paper focuses on the derivation of the governing equations, presenting a simple 

numerical simulation only for demonstration purposes. A more realistic and complex 

numerical simulation for nuclear waste disposal applications will be presented in 

another paper.  

6 Conclusions 

This paper extends the Biot’s elasticity theory by including the molecular influence from 

swelling and dissolution based on mixture coupling theory. A general coupled structure 

for swelling and dissolvable materials has been formed. The rigorous derivation 

obtained by using mixture coupling theory gives a deep insight of the inter-effects 

between molecular reaction, rock deformation, pore water, and water molecules in the 

clay platelets.  

 

The numerical simulation analyzes the influence of swelling and dissolution processes 

on the deformation of an unsaturated rock sample. The numerical results show that 

swelling and dissolution have a contrary influence on the rock deformation.  The 

research has been focussed on unsaturated water flow without considering chemicals 

transport, which is important for the nuclear waste disposal industry and will be 

conducted in future research.  
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Appendix  

This appendix gives a detailed deviation process for equations (28)-(31).  
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Substituting equation (27) into equation (44) leads to  
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Following the similar logic as the derivation of ijT , the equations for &u , boundm& and 

dissolvem&  can be obtained as  
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