
This is a repository copy of Investigating uncertain geometries effect on sound 
propagation in a homogeneous and non-moving atmosphere over an impedance ground.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/155011/

Version: Accepted Version

Article:

Parry, J.A., Horoshenkov, K.V. orcid.org/0000-0002-6188-0369 and Williams, D.P. (2020) 
Investigating uncertain geometries effect on sound propagation in a homogeneous and 
non-moving atmosphere over an impedance ground. Applied Acoustics, 160. ISSN 
0003-682X 

https://doi.org/10.1016/j.apacoust.2019.107122

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 Investigating Uncertain Geometries Effect on Sound 
2 Propagation in a Homogeneous and Non-moving 
3 Atmosphere Over an Impedance Ground
4
5 Jordan A. Parry1, Kirill V. Horoshenkov1, Duncan P. Williams2

6 1University of Sheffield, Department of Mechanical Engineering, Sheffield, England
7 JAParry1@Sheffield.ac.uk; K.Horoshenkov@Sheffield.ac.uk
8 2Defence Science and Technology Laboratory (DSTL), Salisbury, England
9 DPWilliams@dstl.gov.uk

10

11 Abstract
12
13 Predicting outdoor sound in uncertain conditions is a difficult task and there are limited data which enable us 

14 to relate accurately the variations in the conditions in the propagation path with the fluctuations in the received 

15 acoustical signal. This paper investigates, though numerical simulations, the effect of uncertainties on sound 

16 propagation in a homogeneous atmosphere over an impedance ground. A simple Monte Carlo method is used 

17 to understand the effect of uncertainties in the source and receiver positions on the excess attenuation. The ratio 

18 of source/receiver height to the horizontal source/receiver separation is found to influence strongly the statistical 

19 distribution of the resultant excess attenuation spectrum. Impedance ground and level of uncertainty are found 

20 to be influential only for specific statistics while all samples were found to violate normality. These findings 

21 help to increase understanding of the role of uncertainties in outdoor sound propagation, accuracy of source 

22 characterization based on parameter inversion and at lower computational costs.

23
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28

29 1 Introduction

30 Predicting outdoor sound is a complex problem particularly when there an uncertainty in the parameters 

31 involved. Comprehensive quantification of uncertainties in relation to outdoor acoustics remains challenging. 

32 One recent paper related to uncertainties in outdoor sound propagation concluded that uncertainties within the 

33 characteristics of the ground and atmosphere dominate uncertainties in the predicted sound pressure1. A 

34 subsequent paper by the same research team found that the impact of uncertainty from the range and source 

35 height were equal and that the temperature gradient was only influential at short ranges and at high frequencies2. 

36 Sound levels were found to be more accurately predicted in downwind situations comparted to upwind. The 

37 authors also highlighted the importance balancing the trade-off point between model complexity & 

38 computational effort. 

39
40 The above work points out to the difficulties in isolating specific effects leading to outdoor sound measurement 

41 uncertainties and complexity of the interactions between key parameters many of which are not known. 

42 Complex models used in the case of inhomogeneous settings (e.g. atmospheric effects) can have better 

43 predication accuracy provided the values of the input parameters are accurately known3. However, there is a 

44 lack of data on the sensitivity of these models to some uncertainty in the input parameter values. In this respect, 

45 moving back to simpler models allows for a clearer understanding of the statistics which describe the 

46 uncertainties in predictions for sound propagation in homogenous, and non-moving, atmosphere but with 

47 uncertain source position and ground conditions. Simpler models are able to accurately predict impedance of 

48 the ground and isolate this effect form the uncertainty in the source geometry. 

49
50 Prediction of the ground effect on outdoor sound pressure from a point source at a known position is a 

51 reasonably routine matter. A considerable amount of work has been done to study this effect. Harriot and 

52 Hothersall investigated propagation, using multiple methods, over an impedance ground in an infinite plane, in 



53 a non-moving homogenous atmosphere, while computational costs were also considered4. The specific 

54 geometry where source-receiver heights where 1 – 4 m across 50 m range at 1  kHz frequency created strong 

55 destructive interference between the direct and reflected waves. Accuracy in results was found to be highest for 

56 combinations of greater source-receiver heights or shorter source-receive distances. More expansive methods 

57 were later applied by Kruse and Mellert5. They used a two-microphone method to measure errors due to an 

58 impedance ground under also under the assumption of a non-moving homogenous atmosphere. For low 

59 impedance surfaces, acceptable accuracy was found at frequencies above 100 Hz, while higher flow resistivity 

60 grounds shown use of the predefined geometries may not be recommended for frequencies below 500 Hz. 

61 Although the results in ref. [5] relate directly to the problem of sound propagation in the presence of an 

62 impedance ground, this work does not present any statistical data that can be used to characterise the uncertainty 

63 in the excess attenuation, especially in the case of large variability in the source position. 

64
65 In general, the effects of uncertainty in key model parameters on prediction of outdoor sound propagation and 

66 acoustic source characterisation are greatly understudied. This becomes the motivation for our study with the 

67 primary question of this paper: How does an uncertainty in geometrical parameters affect the broadband excess 

68 attenuation of sound for a relatively simple source-receiver geometry? The excess attenuation is an important 

69 parameter which is routinely used to predict the influence of the ground, topography and meteorological 

70 conditions on sound pressure level at the receiver position3. Removal of other complexities to understand the 

71 effects will build stronger foundations to progress further developments for more complex research and 

72 application. Therefore, understanding of the effect of uncertainties on this parameter is of importance to several 

73 applications, which include environmental noise control, source characterisation and environmental monitoring. 

74
75 The purpose of this paper is to study the effect of uncertainty in the range and source height on the statistical 

76 properties of the excess attenuation spectrum for a range of ground conditions. We structure the paper in the 

77 following manner. Section 2.1 details the acoustical model and ground effect, section 2.2 details the statistical 

78 simulation setup, and section 3 reviews the results from this simulation. Finally, section 4 is our conclusions.

80 2 Research Methods

81 2.1 Model Development

82 2.1.1 Initial Acoustic Model

83
84 Figure 1: Diagram of acoustical scenario with impedance ground and incident angle highlighted.

85
86 Let us assume that a sound wave radiated by a point source propagates above a porous ground in a homogeneous 

87 atmosphere. This means that the effects of atmospheric parameters such as wind and temperature gradients can 

88 be excluded, leaving only the geometrical parameters such as the source and receiver height and their horizontal 

89 separation. This geometric scenario is illustrated in Figure 1. We assume that the problem is symmetrical, i.e. 

90 the sound pressure is predicted in an  co-ordinate system and the source and receiver are located at  (�,�) (0,��)
91 and , respectively. The complex sound pressure at the receiver position is3(�, �)

92 �� = �����[1 + ��1�2
exp (���2 ‒ ���1)],#(�)



93 with

94 �1 = �2 + (� ‒ ��)2
 ,#(�)

95 �2 = �2 + (� + ��)2
 .#(�)

96  and  are the wavenumber and spherical wave reflection co-efficient, respectively.  is the sound pressure � � �����
97 in the absence of the impedance ground. The imaginary part of the wavenumber accounts for the attenuation in 

98 air. The reflection coefficient accounts for the proportion of the incident sound pressure reflected from the 

99 porous ground and any phase changes the reflected acoustic wave undergoes due to the ground effect. As 

100 detailed by Salomons in his book6, the equation for the spherical wave reflection coefficient is

101 � = (
� cos� ‒ 1� cos� + 1) + (1 ‒ (

� cos� ‒ 1� cos� + 1))�(�) . #(�)

102 The angle  is the incident angle as shown in Figure 1. The function  is the boundary loss factor� �(�)

103 �(�) = 1 + �� �exp ( ‒ �)erfc( ‒ ��) ,#(�)

104 and  the complimentary error functionerfc( ‒ ��)

105 erfc(�) =
12�∫∞� exp ( ‒ �2)�� .#(�)

106 The parameter  seen in eq.  is the normalised impedance of the ground, which depends greatly on the � (4)

107 ground characteristics. The sound pressure levels in the presence and absence of the ground are

108 ��→�� = 10log10 (
|��|22� 2���) , #(�)

109 �����→��,���� = 10log10 (
|�����|22� 2��� ) ,#(�)

110 respectively. Combining eq.  and eq.  gives(7) (8)

111 �� = ��, ���� + �� .#(�)

112 The term  in eq. ( ) is the relative sound pressure level, or excess attenuation. This term can be expressed asΔ� 9

113 Δ� = 10log10|1 + ��1�2
exp (���2 ‒ ���1)|

2

.#(��)

114 This value physically represents deviation from the free field due to the influence of the ground. The excess 

115 attenuation can take positive and negative values that correspond to the constructive and destructive interference 

116 between the direct and reflected waves, respectively. The excess attenuation is used for a wide range of acoustics 

117 purposes, especially in outdoor acoustics, which is why it will be the predicted value in question during the 

118 analysis of the influence of the parameter uncertainties. Examples of possible 



119
120 Figure 2: Example excess attenuation spectrum. Top – source/receiver separation is  and source/receiver 10m

121 heights are . Middle – source/receiver separation is and source/receiver heights are . Bottom – 1.5m 60m 1.5m

122 source/receiver separation is  and source/receiver heights are . Solid line – acoustically ‘hard’ 10m 4m

123 impedance ground. Dashed line – acoustically ‘soft’ impedance ground.

124 excess attenuation spectra over different source/receiver geometries and impedance grounds are illustrated 

125 Figure 2. Excess attenuation exhibits oscillatory behaviour as frequency increases and is greatly dependent on 

126 the geometrical parameters. However, in real cases the maximum value never exceeds . The difference in 6dB

127 excess attenuation due to the acoustic hardness of the ground is both sensitive to the sound frequency and 

128 geometrical parameters. Direct analysis of the excess attenuation is rather complicated because the maxima and 

129 minima in this spectrum depend strongly on the problem geometry and ground properties. This makes it difficult 

130 to use the excess attenuation spectrum for the ground parameter inversion, source characterisation or for the 

131 inversion of the problem geometry acoustically. A question which this paper poses is: Can we adopt a statistical 

132 measure of sound pressure in the wave propagated above porous ground to quantify its variability due to some 

133 level of uncertainty in the problem geometry and ground properties? This paper attempts to answer this question 

134 using the probability density function for the excess attenuation of sound propagation above a porous ground 

135 in the presence of uncertainties, discovering from sampling methods. 

136
137 2.1.2 Measuring Impedance

138 The normalised impedance, , in the spherical wave reflection co-efficient (eq. ) can be predicted with an � (4)

139 acoustic model if the ground is assumed to be porous. The model used in this work was the one proposed by 
140 Dazel, Groby and Horoshenkov et al7. This model calculates the acoustic properties of the impedance ground 

141 by considering the ground as a porous media with circular pores of non-uniform cross-section. This model 

142 assumes that the pore size is log-normally distributed. It requires four non-acoustical parameters to predict the 

143 ground impedance: (i) porosity (  ; (ii) tortuosity ( ; (iii) median pore size ( ); and standard deviation in �) �∞) �
144 the pore size ( . If the median pore size in the ground is much less than the boundary layer thickness for all ��)
145 the frequencies of interest, then it has been shown that one can assume that  and . In this case �∞~1, �~1 ��~0

146 the only influential parameter is the median pore size, ( ).�
147
148 In this work we use the Padé approximations for the frequency dependent bulk dynamic density, , and bulk �(�)

149 complex compressibility, , in the equivalent fluid model to predict the acoustical properties of porous �(�)

150 media with log normal distribution, with circular frequency . The bulk dynamic density can be approximated �
151 by

152
�(�(��)�0

≃ �∞� (1 + � ‒ 2� ��(��)) ,#(��)

153 where



154 ��(�) =
1 + ��,3�� + ��,1��

1 + ��,3��  ,#(��)

155 is the Padé approximation to the viscosity correction function with . In these approximations, �� = ‒ ���0�∞���
156 the coefficients are real and positive numbers with ,  and . The ��,1 =

1

3
��,2 = 1/2�1

2
(��log (2))2 ��,3 =

��,1��,2
157 equation for the bulk flow resistivity in the porous medium is

158 �� =
��0

=
8��∞�2� e

6(��log (2))2

 ,#(��)

159 with  being the dynamic viscosity of air and  the ambient density of air. Likewise, the bulk complex � �0

160 compresibitly of the fluid in the material pores can be equated as

161 �(�) =
1��0

(� ‒ � ‒ 1

1 + � ‒ 2� ��(��)) ,#(��)

162 with

163 ��(��) =
1 + ��,3�� + ��,1��

1 + ��,3��  .#(��)

164 In the above two equations  , , . The frequency dependant parameter is ��,1 =
1

3
��,2 =

1

2
�3

2
(��log (2))2 ��,3 =

��,1��,2 ��
165  with  the ratio of specific heats,  the Pradntl number and  the ambient atmospheric = ( ‒ ���0���� '� ) � �Pr �0

166 pressure. Thermal flow resistivity is defined here as the inverse of the thermal permeability 

167 � '� =
�� '
0

=
8��∞�2� e

‒ 6(��log (2))2

 #(��)

168 Combining eq. (11) and eq. (14) predicts the characteristic acoustic impedance 

169 ��(�) =
��(�)��(�)

 ,#(��)

170 and complex wavenumber 

171 ��(�) = � ��(�)��(�) ,#(��)

172 in a porous medium with log-normal pore size distribution.

173
174 2.2 Simulation Methods

175 2.2.1 Parameter Uncertainties

176 To create uncertainty in our desired parameters, random distributions around some true value of interest are 

177 generated. The context of true (known) value is that the user may know the true value, whereas our 

178 computational model only sees a random number generated from the distribution that was created from the 

179 known value. The uncertainty is varied by manipulating the widths of the distributions in proportion to the true 

180 value. 

181
182 Uniform distributions are used to denote uncertainty around a parameter. The uniform distribution denoted U[

183 , is a flat, or square, distribution between a lower and upper limit, being  and  here respectively. It is �,�] � �
184 common practice to use uniform and normal distributions to simulate error. However, this paper is investigating 

185 the systemic uncertainty in the modelling process. Therefore, a flat uncertainty distribution for an input 

186 parameter is used so that any parameter value between the bounds is assumed as equally probable. This form 

187 of uncertainty is analogous to an observer knowing bounds of a parameter but no other knowledge. It should be 



188 noted that the distribution is non-normal by nature. The probability density function (PDF hereon) of the 

189 continuous uniform distribution is written as

190 �(�) = {
1� ‒ � 

0

for � ≤ � ≤ � ,

         for � < � or � > � .
#(��) 

191 In this study, distributions around some parameter, say , with the true known true value, , are generated via� � ∗
192
193 � ~ �((0.95 × � ∗ ),(1.05 × � ∗ )) ,#(��)

194 � ~ �((0.8 × � ∗ ),(1.2 × � ∗ )) .#(��)

195 � ~ �((0.65 × � ∗ ),(1.35 × � ∗ )) .#(��)

196 This creates a proportional uncertainty of ,   and  around the true value, respectively. ± 5% ± 20% ± 35%

197 These percentages are chosen to simulate a gradual decrease in the precision of an estimate by an observer, i.e. 

198 5% shows confidence in the chosen interval whereas 35% shows a lack of thorough belief, allowing the value 

199 to be within a larger probability distribution interval. Due to the adopted nature of uniform probability 

200 distribution our true value is always the mean value as . These distributions are applied to simulate � =
1

2
(� + �)

201 uncertainty in source/receiver height and range.

202
203 2.2.2 Sampling Methods

204 The propagation of uncertainty, along with its related effects, is analysed using a basic Monte Carlo method. 

205 This simple Monte Carlo method generates a probability density function, or PDF, by repeatedly sampling from 

206 the parameter distributions described in the previous section and then inputs the generated parameter values, 

207 along with known parameters, into the excess attenuation model (eq. ( ) over  runs. Within the context 10) 10,000

208 of uncertainty, it assumed that our model for this purpose of use is perfect. Therefore, no error term is included 

209 as it is assumed that the model output is precisely the real-life answer produced by the input parameters given.

210
211 The frequency range of –  is used. In this simulation,  frequency points are used, with each 100Hz 5kHz 1000

212 point used for the  main runs to cover equidistantly this broadband frequency range. The frequency range 10,000

213 of 100 Hz – 5 kHz was adopted as a balance between computation costs, ability to measure outdoor sound 

214 pressures accurately and frequency composition of the sound pressure spectra radiated by realistic sources (see 

215 Figures 1.2, 1.3 and 9.25 in ref. [3] and Figure 3.12 in ref. [6]). The choice of frequency range can be important 

216 and needs to fit a given application. Appendix A presents data from Monte Carlo simulation showing the effect 

217 of the adopted frequency range on the statistical distribution of the access attenuation against an expanded 

218 frequency range. 

219
220 In order to understand better the ground effect on the uncertainty four types of ground are studied: soft (35 kPa

221 ); medium ( ); hard ( ) and effectively rigid ( ). The adopted m ‒ 2 500 kPam ‒ 2 2000 kPam ‒ 2 20,000 kPam ‒ 2

222 values of the flow resistivity represent experimental data of real-life impedance grounds8: urban grass, sports 

223 field, gravel and concrete respectively. It is convenient to adopt a dimensionless parameter when dealing with 

224 the problem geometry. An obvious dimensionless parameter is the logarithm of the ratio of source/receiver 

225 height over range

226 Φ = log10 (
�ℎ� ) .#(��)

227 This parameter controls the problem geometry and its values are listed in Table 1 for a range of source/receiver 

228 height and range combinations. The maximum true value of height is 4m due to knowledge that our model 

229 would not be as reliable for higher source/receiver positions because of the progressive effect of the wind and 

230 temperature gradients. The source height takes the same true value as the receiver height in these simulations 

231 for simplicity. 

232
Height (�) Range (�) �



1 200 -2.301

1 100 -2

2 100 -1.699

3 100 -1.523

4 100 -1.398

2 25 -1.097

3 25 -0.921

2 9.5 -0.677

3 8.3 -0.442

4 6.6 -0.218

2 2 0

233 Table 1: Values of  and their geometrical parameter combinations.Φ
234
235 2.2.3 Statistical Analyses

236 Statistical analysis accompanies the results from the Monte Carlo simulations. Visually, simulation results are 

237 displayed via histograms which present the probability density of the excess attenuation for a given uncertainty 

238 in the input parameters. Histograms are generated from the sample data by grouping the data into a number of 

239 bins. Since bin width is important, Scott’s method9 is used to choose a sensible number of bins to be generated 

240 from each sample. This method assigns bins based on the sample standard deviation and sample size. This 

241 became more important when filtering into octave bands as each band’s sample size is different due to the 

242 sliding octave band width which increases with frequency. 

243
244 Statistical moments calculated from the simulated data for the excess attenuation accompany our analysis. Four 

245 key moments in this analysis are: mean ( ); standard deviation ( ); skew ; and kurtosis  while the mode � � (�) (��)
246  and median  averages are also investigated. These moments allow us to quantify the behaviour of (��) (���)

247 the probability density function for the excess attenuation presented in the histograms. One behaviour that can 

248 be described as normality. Normality is a key check with the validity of many statistical tests dependent on this 

249 assumption. It has been reviewed that around half of scientific literature articles published contain at least one 

250 error, highlighting the need for more validation in future works10. Such statistical procedures, especially those 

251 commonly used by non-statistical acousticians, such as; correlation, regression, analysis of variance and other 

252 such parametric tests are bead on the assumption that the data is normally distributed, or more specifically, that 

253 the population that has been sampled from is a normal distribution11. 

254
255 Normality can be tested using various methods and tests, but the Anderson-Darling test (A-D test) will be used 

256 on simulated samples12. This test confirms whether the sample came from a population of a given distribution 

257 i.e. the normal distribution. It is a modification of Kolmogrov-Smirnov test, but gives more weight to the tails. 

258 The A-D test makes use of the specific distribution in calculating critical values. The A-D test statistics, ,  is �
259 defined as

260
261 �2 =‒ � ‒ � ,#(��)
262 where

263 � =

�∑� = 1

(2� ‒ 1)� [ln �(��) + ln (1 = �(�� + 1 ‒ �))] .#(��)

264
265  is the sample size,  is the cumulative distribution function (CDF) of the specified parameter distribution (the � �
266 normal distribution in our case), and  are ordered from smallest to largest.  is then compared to the known �� �2

267 critical value  for a given distribution, or the normal distribution for this papers purpose (calculation of this (��)

268 value is outside the scope of this paper).  If  then the null hypothesis  is accepted, and the data is �2 < �� (�0)

269 assumed to follow a normal distribution (normality is not violated). If , then the null hypothesis is �2 > ��
270 rejected and the alternative hypothesis  is accepted at a given significance level , allowing us (��) (� ≤ 0.005)

271 to state the sample does not follow the normal distribution and normality is violated.



272
273
274 The values of the statistical moments are calculated from the simulated broadband and octave band excess 

275 attenuation data to be analysed. The median is defined as the middle point value of the data. The mean, or 

276 expected value  , of the data is calculated by E(�) = �
277 � =

1� �∑� = 1

�� ,#(��)

278 where  is a data point in the access attenuation spectrum and  is the total number of data points. These two �� �
279 averages usually are in a similar position in a symmetric distribution. The sample standard deviation, a measure 

280 of how much data varies from the mean, is calculated as

281 � =
1� ‒ 1

�∑� = 1

(�� ‒ �)2
 .#(��)

282 The skewness is a measure of asymmetry of data around the sample mean. For example, a perfect uniform 

283 distribution would have the value of , as would any other perfectly symmetric distribution such as the normal 0

284 distribution. Negative and positive of skewness mean that the sample data is stretched more to the left or right 

285 from the mean, respectively. As general rule, data which has skewness of less than can be considered  | ± 0.5| 

286 symmetrical. Data is highly skewed when skewness exceeds . If the skewness is larger than , or smaller | ± 1|  2

287 than , then the data is strongly non-normal12. The skewness is calculated as‒ 2

288 � =

N∑
i = 1

(� ‒ �)3/�
�3

 .#(��)

289 Kurtosis measures how outlier prone, or how heavy-tailed or light-tailed the distribution is, in relation to a 

290 normal distribution. The kurtosis of perfect normal distribution is , while the kurtosis of a perfect uniform 3
291 distribution is . Distributions that are more, or less outlier-prone than the perfect normal distribution have 1.8
292 kurtosis greater, or less, than  respectfully. Kurtosis values between  and  are accepted for the assumption 3 1 5
293 of normality12, while vales below  or greater than  would indicate a substantial departure from normality12. 0 7
294 This final value is equated as

295 �� =

N∑
i = 1

(� ‒ �)4/�
�4

 .#(��)

296 The median  is found by locating the point in the data set, where  is the number of points in the set. (���) (
n

2)
th �

297 Since our data samples are an even numbered, the middle value between the two numbers that surround the (
n

2)
th

298 point is taken. The mode  is taken as the estimate that appears the most, also seen as the most likely value (��)

299 in the PDF (Figures 3-6)

300

301 3 Results

302 The effect of ground impedance is well known to be greatly influential on the acoustical signal. However, the 

303 differences in the PDFs for the excess attenuation found for different values of  over the different ground Φ
304 types are not as pronounced as expected (see Figures (3-6)). Sample means and medians did not significantly 

305 differ across the range of the flow resistivity, . However, some statistical moments do show some consistent ��
306 differences. This strongly suggests that the effect of the problem geometry on the excess attenuation statistics 

307 are dominant for this particular propagation model

308



309 3.1 Exploring  and � ��
310 Some differences do exist in the simulated PDFs for the different values of flow resistivity  (see Figures 3-��
311 6) and there these behaviours are mirrored in the value of the statistical moments (see Table 2 and 3). However, 

312 there is some consistency in the PDF for particular values of the parameter . The most obvious differences Φ
313 between the results for different impedance grounds are for . As  is increased, the long smooth Φ <‒ 2 ��
314 distribution has its deviation reduced by half between the softest and hardest impedance grounds (see Figure 3 

315 and 6 respectively). It is unclear what distribution these results follow. The PDFs presented in Figure 3-6 

316 appearing irregular and suggest some non-normality within the data.

317

318
319 Figure 3: The PDFs of excess attenuation spectra for a range of values of  and levels of uncertainties in the Φ
320 source/receiver coordinates. The flow resistivity of the ground is . �� = 35kPasm ‒ 2

321

322
323 Figure 4: The PDFs of excess attenuation spectra for a range of values of  and levels of uncertainties in the Φ
324 source/receiver coordinates. The flow resistivity of the ground is . �� = 500kPasm ‒ 2

325 When  the PDF for the excess attenuation contains a clear peak which amplitude depends on the ‒ 2 < Φ <‒ 1

326 level of uncertainty in the adopted values of geometrical parameters. These data are associated with a strongly 

327 negative skewness and relatively large standard deviation (see Table 3). These peaks appear in the range of 0dB



328 . A very small secondary peak emerges at , doing so more strongly as  increases. The < Δ� < 5dB Δ� ≈‒ 5dB ��
329 second peak in the PDF becomes clearly visible in the range of  when the ratio  increases for  Δ� ≤‒ 5dB Φ Δ
330 . The peaks initial value changes depending on the value of , yet with no consistent pattern in relation � >‒ 1 ��
331 to the change of . This peak directly relates to the mode (see Table 2), which makes the behaviour easier to ��
332 describe. The amplitude of this second negative peak increases with an increase in the ratio with its position Φ 

333 moving progressively towards   for the lowest value of  and to   for the highest value Δ� =‒ 1dB �� Δ� =‒ 4dB

334 of . ��

335
336 Figure 5: The PDFs of excess attenuation spectra for a range of values of  and levels of uncertainties in the Φ
337 source/receiver coordinates. The flow resistivity of the ground is . �� = 2000kPasm ‒ 2

338
339 Figure 6: The PDFs of excess attenuation spectrum for a range of values of  and levels of uncertainties in Φ
340 the source/receiver coordinates. The flow resistivity of the ground is . �� = 20,000kPasm ‒ 2



341 For ratios  the PDF of the excess attenuation spectrum appears increasingly bimodal, with the space Φ≈ 0

342 between peaks increased, and the strength of the negative peak decreased, by the increase in . However, the ��
343 increase in uncertainty and  negates the second peak at the negative point, smoothing out the distribution.��
344
345 3.2 Simulation statistics

346 The statistics can be described by a number of statistical moments. It seems that the statistics for  are Φ <‒ 2

347 inconsistent, and hard to describe in relation to combinations of differing values for ,  and uncertainty. Φ ��
348
349 Looking at the averages, the mean (see the 3rd column of Table 2) is the most stable and unaffected. For , Φ >‒ 1

350 the mean is close to . For  the mean is highly negative (see Table 2). This behaviour is seemingly  0dB Φ <‒ 2

351 unaffected by the change in the uncertainty level. As the ground becomes much harder, the mean for  Φ <‒ 2

352 increases. �� � Mean (�) Mode (��) Median (���)
-2.301 -9.462 -9.469 -9.482 -1.905 -3.17 -4.099 -6.997 -7.109 -7.367

-2 -3.818 -3.844 -3.905 3.187 2.039 1.889 -1.304 -1.410 -1.654

-1.699 -1.074 -0.387 0.065 5.524 5.614 5.455 1.413 2.188 2.679

-1.523 0.217 -0.014 0.028 5.392 5.287 5.344 2.673 2.376 2.407

-1.398 0.108 0.017 0.026 5.068 5.167 5.068 2.322 2.207 2.192

-1.097 0.007 -0.059 -0.048 4.461 4.241 4.114 1.600 1.497 1.481

-0.921 -0.038 -0.045 -0.035 3.807 3.516 2.929 1.078 1.059 1.042

-0.677 -0.055 -0.055 -0.054 2.536 2.419 2.305 0.508 0.504 0.489

-0.422 0.021 0.019 0.012 1.562 1.48 1.302 0.252 0.250 0.247

-0.218 -0.007 -0.006 -0.002 0.84 0.808 0.802 0.105 0.108 0.109

35kPasm ‒ 2

0 0.013 0.012 0.009 0.54 0.547 0.511 0.068 0.065 0.064

-2.301 -9.327 -9.332 -9.343 -2.283 -3.804 -5.079 -7.381 -7.490 -7.739

-2 -3.839 -3.864 -3.924 2.785 1.51 1.165 -1.866 -1.965 -2.198

-1.699 -1.025 -0.395 -0.007 4.996 4.876 4.897 0.814 1.505 1.954

-1.523 0.038 -0.119 -0.078 4.089 4.246 4.246 1.664 1.446 1.475

-1.398 -0.033 -0.089 -0.079 3.869 4.087 3.598 1.277 1.197 1.199

-1.097 -0.095 -0.104 -0.097 3.094 3.156 2.975 0.748 0.744 0.758

-0.921 -0.088 -0.092 -0.091 2.816 2.861 2.781 0.655 0.647 0.668

-0.677 -0.089 -0.086 -0.083 2.767 2.741 2.773 0.746 0.753 0.762

-0.422 0.023 0.014 0.009 2.86 2.917 2.862 0.932 0.924 0.904

-0.218 -0.01 -0.006 -0.003 2.694 2.694 2.694 0.709 0.707 0.696

500kPasm ‒ 2

0 0.012 0.011 0.01 2.122 2.129 1.925 0.672 0.677 0.689

-2.301 -8.884 -8.888 -8.894 -2.867 -4.481 -5.256 -7.623 -7.726 -7.96

-2 -3.698 -3.723 -3.78 2.078 1.331 0.427 -2.333 -2.427 -2.636

-1.699 -0.794 -0.294 0.004 4.153 4.148 4.112 0.566 1.063 1.434

-1.523 -0.059 -0.128 -0.095 3.285 3.255 3.25 1.02 0.924 0.966

-1.398 -0.087 -0.105 -0.097 3.113 3.146 3.07 0.806 0.793 0.809

-1.097 -0.151 -0.111 -0.109 3.007 2.943 3.016 0.715 0.801 0.825

-0.921 -0.097 -0.098 -0.101 3.179 3.113 3.074 1.016 1.015 1.012

-0.677 -0.097 -0.091 -0.088 3.804 3.683 3.855 1.333 1.331 1.319

-0.422 0.022 0.012 0.007 3.895 3.878 3.788 1.445 1.422 1.396

-0.218 -0.011 -0.006 -0.003 3.36 3.398 3.331 1.028 1.021 1.007

2000kPasm ‒ 2

0 0.016 0.009 0.007 2.625 2.508 2.331 0.599 0.586 0.585

-2.301 -6.874 -6.870 -6.855 -13.779 -6.649 -9.912 -7.677 -7.746 -7.756

-2 -2.941 -2.959 -2.993 -8.509 -7.561 -6.769 -3.131 -3.199 -3.296

-1.699 -0.019 0.002 0.037 3.129 3.246 3.198 0.87 0.951 1.048

-1.523 -0.26 -0.123 -0.123 3.266 3.054 3.05 0.629 0.92 0.947

-1.398 -0.178 -0.114 -0.117 3.403 3.418 3.215 1.032 1.151 1.158

-1.097 -0.208 -0.114 -0.124 4.305 4.301 4.39 1.611 1.746 1.731

-0.921 -0.103 -0.097 -0.106 4.691 4.717 4.732 1.990 1.992 1.972

-0.677 -0.102 -0.092 -0.093 4.995 5.02 4.844 2.076 2.076 2.061

-0.422 0.02 0.009 0.006 4.713 4.743 4.705 1.937 1.913 1.886

-0.218 -0.011 -0.006 -0.003 4.011 3.87 3.654 1.311 1.304 1.287

20000kPasm ‒ 2

0 0.016 0.008 0.006 2.994 2.728 2.51 0.741 0.729 0.73

353 Table 2: Collated sample averages from simulations for each combination of  and . Columns from left to �� Φ
354 right are for uncertainties from , 20% and , respectively.5% 35%

355 This suggests that the true mean of the population (the data set which each sample intends to replicate) is not 

356 strongly affected by the variation in  or . This is useful for shaping fitting distribution to data that require Φ ��
357 the use of the mean i.e. the normal distribution of .� ∼ (�, �2)

358 The median (see the 4th column of Table 2) follows a similar behaviour to that observed for the mean while 

359 around  higher. For a harder ground ( kPasm-2) it displays an oscillatory behaviour as a function ~1dB ��≥ 2000

360 of . The increased median, in relation to the respective mean for a given  and  is expected due to the Φ Φ ��
361 negative skew.

362



363 The most repeated observed value, the mode  (see the last column of Table 2), is the average most effected (��)

364 by ,  and uncertainty. The mode begins at  when  which decreases to  when  is �� Φ ~5dB ϕ ≈‒ 2 ~2dB Φ
365 decreased to zero. Each mode is reduced by  per each increase in  at every respective related value ~0.5dB ��
366 of . Uncertainty does increase the mode for higher values of , with little difference seen between mode for Φ ��
367 the softest impedance ground. Modes when  show the greatest difference, with the lowest  giving ϕ <‒ 2 ��
368 values between approximately  while at the hardest impedance ground, the range of mode is ‒ 5 < �0 < 3

369 halved and decreased to around . The increase from the median and mean was again an ‒ 13 < �� <‒ 7

370 expected side effect of the negative skewness present in the samples. In the case of symmetric distributions, the 

371 mode quite often relates to parameter estimation techniques, highlighting the need for quantifying  and  Φ ��
372 efficiently.

373
374 The second grouping of statistics (Table 3) are the higher moments such as the standard deviation , skewness (�)

375  and kurtosis . Behaviours for the increase/decrease in the varying control parameters ,  and (�) (��) ϕ ��
376 uncertainty are clearer for these statistical moments than the earlier averages (Table 2).

377 �� � Std. Dev (�) Skewness (�) Kurtosis (��)
-2.301 7.661 7.768 8.011 -1.226 -1.171 -1.058 3.777 3.714 3.578

-2 7.384 7.464 7.64 -1.284 -1.245 -1.17 3.92 3.873 3.77

-1.699 6.987 6.649 6.431 -1.134 -1.318 -1.428 3.365 3.893 4.253

-1.523 5.94 5.998 5.959 -1.332 -1.276 -1.291 3.85 3.705 3.786

-1.398 5.54 5.564 5.537 -1.193 -1.172 -1.186 3.399 3.365 3.456

-1.097 4.369 4.381 4.362 -0.84 -0.83 -0.859 2.456 2.474 2.616

-0.921 3.51 3.512 3.51 -0.643 -0.658 -0.701 2.077 2.154 2.341

-0.677 2.368 2.381 2.412 -0.452 -0.472 -0.511 1.87 1.963 2.143

-0.422 1.539 1.559 1.596 -0.322 -0.35 -0.402 2.267 2.342 2.516

-0.218 1.192 1.196 1.203 -0.485 -0.469 -0.441 3.644 3.644 3.571

35kPasm ‒ 2

0 0.884 0.89 0.904 -0.263 -0.269 -0.306 3.369 3.469 3.71

-2.301 6.778 6.891 7.151 -0.792 -0.749 -0.664 2.631 2.633 2.623

-2 6.322 6.409 6.604 -0.878 -0.849 -0.794 2.679 2.699 2.719

-1.699 5.724 5.381 5.216 -0.807 -0.963 -1.043 2.503 2.86 3.056

-1.523 4.502 4.532 4.506 -0.891 -0.874 -0.896 2.632 2.646 2.747

-1.398 3.955 3.974 3.971 -0.76 -0.757 -0.783 2.373 2.401 2.519

-1.097 3 3.022 3.057 -0.57 -0.576 -0.603 2.02 2.056 2.156

-0.921 2.83 2.85 2.889 -0.715 -0.711 -0.71 2.829 2.816 2.8

-0.677 3.123 3.123 3.119 -0.805 -0.801 -0.795 3.131 3.099 3.051

-0.422 3.166 3.163 3.138 -0.662 -0.679 -0.69 2.367 2.445 2.519

-0.218 2.738 2.734 2.725 -0.535 -0.546 -0.562 2.039 2.096 2.193

500kPasm ‒ 2

0 1.988 2.006 2.045 -0.378 -0.391 -0.43 1.789 1.869 2.05

-2.301 6.18 6.296 6.559 -0.331 -0.317 -0.292 2.368 2.375 2.378

-2 5.426 5.521 5.731 -0.57 -0.554 -0.529 2.164 2.22 2.305

-1.699 4.601 4.303 4.219 -0.593 -0.713 -0.787 2.025 2.266 2.421

-1.523 3.477 3.497 3.512 -0.616 -0.614 -0.646 2.036 2.073 2.178

-1.398 3.096 3.121 3.159 -0.589 -0.593 -0.62 2.044 2.075 2.177

-1.097 3.217 3.235 3.279 -0.763 -0.791 -0.794 2.853 2.913 2.934

-0.921 3.663 3.674 3.689 -0.906 -0.906 -0.903 3.285 3.278 3.259

-0.677 4.229 4.213 4.18 -0.906 -0.905 -0.898 2.927 2.925 2.9

-0.422 4.077 4.069 4.036 -0.805 -0.814 -0.821 2.437 2.488 2.546

-0.218 3.339 3.339 3.34 -0.62 -0.636 -0.665 2.039 2.111 2.247

2000kPasm ‒ 2

0 2.358 2.383 2.436 -0.433 -0.451 -0.499 1.767 1.858 2.06

-2.301 5.636 5.732 5.94 0.715 0.639 0.49 2.591 2.523 2.399

-2 4.144 4.231 4.416 0.392 0.338 0.229 2.231 2.196 2.143

-1.699 3.311 3.354 3.423 -0.532 -0.554 -0.596 2.158 2.165 2.227

-1.523 3.564 3.588 3.642 -0.692 -0.779 -0.799 2.63 2.77 2.866

-1.398 3.958 3.967 4.007 -0.896 -0.94 -0.955 3.116 3.224 3.302

-1.097 5.068 5.049 5.062 -1.055 -1.098 -1.104 3.29 3.398 3.429

-0.921 5.488 5.481 5.464 -1.171 -1.172 -1.164 3.535 3.539 3.515

-0.677 5.642 5.615 5.571 -1.158 -1.155 -1.146 3.354 3.351 3.33

-0.422 4.987 4.983 4.957 -0.993 -1.005 -1.022 2.798 2.861 2.968

-0.218 3.864 3.872 3.89 -0.716 -0.74 -0.789 2.164 2.27 2.481

20000kPasm ‒ 2

0 2.663 2.694 2.76 -0.487 -0.509 -0.568 1.806 1.914 2.153

378 Table 3: Collated sample statistical moments from simulations for each combination of  and . Columns �� Φ
379 from left to right are for uncertainties from , 20% and , respectively.5% 35%

380 The standard deviation is most effected by the value of  and  (3rd column of Table 3). The standard deviation �� Φ
381 for the minimum value of  has the maximum. As  the value of the standard deviation reduces Φ =‒ 2.301 Φ→0
382 consistently for all ground types. The standard deviation generally reduces with the increase in the value of  ��
383 for  < -1.  For  the standard deviation slightly increases with the increased flow resistivity of the ground. Φ Φ≈ 0

384 The effect of the geometrical uncertainty on the standard deviation is relatively small. 

385
386 The skewness (4th column of Table 3) is seen to be consistently negative but increasing with the increasing 

387 value of   in the case of the softest ground (  kPasm-2). As the value of  increases to 20,000 kPasm-Φ �� = 35 ��



388 2 this dependence changes and the skewness seems to have a clear minimum for . For the flow ‒ 1 < Φ < 0.5

389 resistivity values between these extreme ground cases the skewness behaves as an oscillatory function of . Φ
390 The geometrical uncertainty does not affect this parameter significantly for .Φ >‒ 1.5

391 The behaviour of the kurtosis as a function of  (5th column of Table 3) shows a clear minimum around Φ ‒ 1 <

392 for the case with the softest ground. For the hardest ground this minimum becomes the maximum. Φ <‒ 1.5  

393 For the cases with  kPasm-2 this behaviour is complex and oscillatory. The geometrical 35 < �� < 2000

394 uncertainty does not affect this parameter significantly.

395
396 3.3 Normality Assumption

397 Normality is an assumption that needs to be taken seriously. When this assumption is violated, it becomes harder 

398 to draw accurate and reliable statistical conclusions14. In the case of higher-order statistical moments (Table 3) 

399 there is no visual indication that normality has been violated. However, the non-normal indicators are checked 

400 through the Anderson-Darling test which is applied to the simulation data from each combination of ,  and Φ ��
401 uncertainty level. It is found that every single sample significantly  rejected the null hyposthesis (� ≪ 0.005)

402 that the sample was normal. This indicates that it is the data obtained violate the normality assumption.

403
404 This could indicate one of the following scenarios: (i) a certain combination of the frequency range over which 

405 the data are analysed,  and/or uncertainty create non-normal PDFs; (ii) the initial prior uniform distribution Φ
406 propagates through its non-normality; (iii) the acoustic prediction model is non-normal in itself. It is not of ease 

407 to state which the causes is nor is it any easier to prove. More investigation into the physics underpinning the 

408 interactions between ,  and acoustic wavelength,  is required. It is also useful to investigate how great an Φ �� �
409 effect the distribution of the uncertainty in unknown parameters is. This could be can be done be comparing 

410 simulation results from known prior distributions and using statistical test to investigate whether the final 

411 sample changes accordingly, yet this work lies outside the main scope of this work.

412

413 4 Conclusions

414 The effect of the impedance grounds on the statistics in the excess attenuation data was significantly related to 

415 the test statistic chosen. The mean and median values of the excess attenuation did not change significantly 

416 (within 1/100th of a dB) as the ground properties have changed from soft to hard. However, the mode and later 

417 statistical moments did differ in relation to the values of . The mode and standard deviation were most ��
418 significantly affected by the change in . The deviation decreasws in parallel with the increase of  while the �� ��
419 modes oscillatory behaviour around  had the range between the maximum and minimum modes decrease with Φ
420 the increase in . It is known that varying ground can make a very strong effect on the excess attenuation ��
421 spectrum, but this shows a relatively small effect on mean, skewness and kurtosis when the model geometry is 

422 uncertain. In contrast, the modes dependence on both  and  is crucial as common point estimation inference Φ ��
423 techniques, such as maximum likelihood methods, are directly linked to this statistic, thus an inaccurate 

424 estimation of the mode will hinder effective parameter estimations. These findings highlight the importance of 

425 removing such geometric uncertainties before making predictions or using excess attenuation data for parameter 

426 inversion. Inference work using more uncertain or complex models could also benefit from these findings, 

427 relying on the ability to either select arbitrary impedance values or save computation time drawing from these 

428 known PDF while have uncertainties, at minimum, present in the ground and receiver geometry. This would 

429 greatly reduce computational costs while having a likely negligible effect on accuracy.

430
431 The behaviour of the broadband excess attenuation PDF as a function of  is rather informative. When  Φ  Φ <‒ 1

432 the PDFs contain a clear peak which amplitude depends on the level of uncertainty in . These data are Φ
433 associated with a strongly negative skewness and relatively large standard deviation. For  the PDF shifts Φ <‒ 2

434 in its entirety across the excess attenuation scale ( -axis) to around  , however has no obvious defined � ~ ‒ 5dB

435 distribution, which is exacerbated across varying  . For the ratio  the standard deviation in the data, ��  Φ≈‒ 1

436 skewness and kurtosis reduce with a second peak becoming visible in the range of . When the ratio Δ� ≤‒ 10dB

437  increases above  , the second peak in the PDF at  becomes very pronounced. The amplitude of Φ ‒ 1 Δ� ≤ 0dB

438 this peak increases with the increase in the ratio and its position moves progressively towards , Φ Δ� =‒ 1dB

439 converging the two peaks. The PDFs appear to become bimodal in nature due to the strength of this secondary 

440 peak. The convergence of the negative peak is hindered with both its increase in the related excess attention 

441 value ( -axis) and probability clue ( -axis), as well as the convincing appearance of a bimodal distribution, by � �



442 the increase in  and uncertainty. Being able to understand and/or control the PDF using this numerical value ��
443 of , solely and in combination with , will be of great use for future statistical methods to parameter inversion Φ ��
444 and may hint towards methodologies to use i.e. regression methods since interactions between parameters are 

445 likely to help prior selection while using Bayesian methods. The more pronounced bimodality at lower  may ��
446 also suggest reasoning to inaccuracies during measurement in low impedances i.e. convergence to wrong peak 

447 during calculation of the mean. 

448
449 Most statistical inference is done via parametric methods i.e. assumes the observe data available follows a 

450 normal distribution. However, if normality is found to be violated, then the validity of the results gained using 

451 such methods is compromised10–14. None of the indicator statistics had values that indicated non-normal 

452 behaviour, however the movement of the kurtosis values indicated some of the samples were acting peculiar. 

453 The Anderson-Darling tests that were performed were shown to extremely support the assumption that each 

454 sample violated normality, with substantial confidence . It is unclear what caused these (� ≪ 0.05)

455 irregularities: the uniform sampling distribution or physical phenomena from  with the frequency bands Φ
456 themselves. Investigating the physics underpinning the interactions between  and , while comparing the Φ �
457 effect of using normal and non-normal distributions to sample will hopefully recover the true reason. This also 

458 highlights the need to validate the normality assumption before progressing with statistical processes on a given 

459 data set, a process which is majorly overlooked.

460
461 Future research would require an investigation into a more complex sound propagation model that allows for 

462 meteorological effects. This would reveal how strong the influence of the geometrical uncertainties is in relation 

463 to the influence of stochastic meteorological effects and ground effects. It would also reveal the relative strength 

464 of uncertainty in different input parameters on the excess attenuation. Regression methods on real data sets 

465 could also be used to investigate such behaviours as interaction effects etc. The parameter  could be used to Φ
466 strengthen the effectiveness of the regression either as an additional parameter or even instead of the receiver 

467 parameters. Investigating of the effect of a broader range of values of  on the excess attenuation statistics will Φ
468 also be of interest to expand current understanding. This may require a more complicated propagation model 

469 which includes a realistic ground topography, effects of buildings and vegetation in the propagation path. 

470 Investigation of a dimensionless parameter from a combination of ,  and  to shape likelihood distributions Φ �� �
471 would likely be successful. This could also be extended to other models to see if attributes of   remain constant. Φ
472 Finally, discovering the cause of the non-normal behaviour in the predicted statistical moments for the excess 

473 attenuation is a key to better understanding of the capabilities and limitations in the statistical simulation of 

474 sound propagation in the presence of uncertainties. Performing rigorous normality tests for results from 

475 differing  and , both for broadband and narrowband samples, will be a step forward to discovering if they Φ ��
476 are true anomalies or a product of the non-normal input prior. We theorise it is possible that the extreme non-

477 normality is a product of some interference patterns produced by certain values of  at relevant frequencies Φ
478 rather than prior parameter distribution being non-normal or normal.

479
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516 7 Appendix A. The effect of frequency range

517 The choice of frequencies in this paper is based on the fact that a majority of sources of outdoor noise emit 

518 efficiently frequencies of sound between 100 Hz and 5 kHz3,6. This range is sensible to find a balance between 

519 computational costs and accuracy in the statistical data attained from the Monte Carlo simulation. 

520
521 The frequency ranges suggested in some popular prediction standards may differ from the range adopted in this 

522 paper. The ISO 9613 Part 2 standard15 suggests that the calculations should be carried out in the octave bands 

523 between 63 and 8000 Hz. The Harmonoise prediction standard16 suggests that this range should be between 25 

524 Hz and 20 kHz.

525
526 The probability density functions for the excess attenuation presented below illustrate the effect of the spectral 

527 width. This difference is between the 100 Hz – 5 kHz range and 25 Hz – 20 kHz range is not large, but noticeable 

528 dependent on  and . Therefore, it should be recommended to ensure that the spectrum of the source is Φ ��
529 properly captured in this type of analysis by adopting the right frequency range. 

530

531
532 Figure A1: The effect of the choice of the frequency range on the probability density function for the excess 

533 attenuation predicted with the adopted Monte Carlo simulation. The uncertainty is 20%. Black dashed line:  

534 frequency band 100 Hz – 5 kHz. Magenta: 25 Hz – 20 kHz.
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