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Abstract—For big, high-dimensional dense features, it is im-
portant to learn compact binary codes or compress them for
greater memory efficiency. This paper proposes a Binarized
Multilinear PCA (BMP) method for this problem with Free-
Form Reshaping (FFR) of such features to higher-order tensors,
lifting the structure-modelling restriction in traditional tensor
models. The reshaped tensors are transformed to a subspace
using multilinear PCA. Then, we unsupervisedly select features
and supervisedly binarize them with a minimum-classification-
error scheme to get compact binary codes. We evaluate BMP on
two scene recognition datasets against state-of-the-art algorithms.
The FFR works well in experiments. With the same number
of compression parameters (model size), BMP has much higher
classification accuracy. To achieve the same accuracy or com-
pression ratio, BMP has an order of magnitude smaller number
of compression parameters. Thus, BMP has great potential in
memory-sensitive applications such as mobile computing and big
data analytics.

I. INTRODUCTION

With the advances of sensor, networking, and storage

technologies, we need to learn features, especially compact

representations, from increasingly big data. For example, now

computer vision researchers are dealing with millions of im-

ages daily, posing difficulties on both algorithmic and system

sides. On the algorithmic side, a proper feature representation

should bridge the semantic gap. The Fisher Vector (FV)

representation [25] is a popular approach. It is simple to

implement, and has applications in other domains, e.g., action

recognition in videos [33], [34]. However, FVs are usually

dense and high-dimensional, and consume more memory than

what ordinary systems can afford. For example, for a big

dataset with millions of images, FV could easily generate raw

features occupying several terabytes memory space [38].

One popular solution to obtain compact features is to

compress high-dimensional dense features by converting them

to binary codes, without sacrificing (much) classification

accuracy. This can improve the efficiency greatly and has

positive impact on privacy and on-device database storage [4].

One such approach is Product Quantization (PQ) [12] with

segment-specific codebooks. Another is hashing-based meth-

ods for learning similarity-preserving binary codes. Traditional

hashing-based methods [1], [20], [16], [8] are only suitable

for low-dimensional features. The Bilinear Projection-based

Binary Codes (BPBC) [7] is a bilinear hashing method that

reduces the number of compression parameters using natural

2D (matrix) representations of dense features to improve

scalability. Yu et al. [36] further proposed a Circulant Binary

Embedding (CBE) scheme to improve the time efficiency of

BPBC with similar memory efficiency. Nonetheless, existing

feature compression methods have compression ratios only

up to 256 and compression parameters can still take large

memory space. They are inadequate for extra large scale data

or domains requiring small memory footage, e.g., the compact

descriptors for visual search (CDVS) standard prefers memory

usage to be below 128KB [5].

On the other hand, with the growth of big data, tensor-based

modelling and learning [13] have received increasing attention

recently [39], [9], [27], [22], [26]. The term tensor here refers

to multidimensional arrays in mathematics as in [13], which

is different from the meanings in physics. Third-order tensors

are most commonly studied [29], [35], [23], [28], [2], [37].

Studies on tensors of order higher than three include fourth-

order tensors [10], fifth-order tensors [24], and sixth-order

tensors [11]. These tensors are formed following some natural

structures so we seldom see side-by-side comparison of tensors

of different orders, formed from the same data. Can we model

the same dense features as tensors of different orders? Do we

always have to follow some natural structure?

This paper is motivated by the questions above. Different

from traditional tensor models that always follow natural

structures, we model dense features with higher-order tensor

representations using Free-Form Reshaping (FFR) and propose

a tensor-based feature compression method, Binarized Multi-

linear PCA (BMP). We investigate the classification accuracy,

the number of compression parameters (model size), and

binary code size for BMP on tensors of different orders.

In experimental evaluation on the FV dense features, we

compress them up to a ratio of 214 (or 32 bytes per image),

with FFR and BMP showing great memory efficiency and

comparable accuracy.

The three key contributions of this paper are:

• Free-form reshaping. We model dense features with



free-form reshaping to higher-order tensors (3D to 6D)

for more compact representations and more effective

compression, lifting the structure-modelling restriction in

traditional tensor models, while achieving great memory

efficiency and comparable accuracy.

• Min-error binarization. BMP learns binary codes

through binarizing selected multilinear principal compo-

nents of dense feature tensors with a novel minimum-

error-based binarization scheme to improve classification

accuracy.

• Very-high compression ratio evaluation. We evaluate

BMP through the most “aggressive” feature compression

studies with ratio up to 214 and studies of the trade-offs

between classification accuracy, number of compression

parameters, and binary code size.

II. PRELIMINARIES

In this section, we first briefly introduce some notations and

operations related to tensor. Next, we review a popular dense

visual feature representation: the Fisher Vector.

A. Notations and Basic Operations

We denote vectors by lowercase boldface letters, e.g., x;

matrices by uppercase boldface letters, e.g., U; and tensors

by calligraphic letters, e.g., A. Their elements are denoted

with indices in parentheses. Indices are denoted by lowercase

letters and span the range from 1 to the uppercase letter of the

index whenever appropriate, e.g., n = 1, 2, . . . , N .

Tensor is a generalization of vector or matrix. The number

of dimensions N of a tensor defines its order. We also

refer to N th-order tensors as ND tensors, e.g., 3rd-order

tensors as 3D tensors. An N th-order tensor is denoted as

A ∈ R
I1×I2×···×IN , addressed by N indices in, n = 1, . . . , N

(in addresses the n-mode). An n-mode matrix or vector is

denoted as A(n) or a(n), respectively.

The n-mode product of a tensor A by a matrix U ∈ R
Jn×In ,

denoted by A×n U, is a tensor with entries:

(A×n U)(i1, . . . , in−1, jn, in+1, . . . , iN ) =
∑

in

A(i1, . . . , iN ) ·U(jn, in). (1)

The n-mode vectors of A are the In-dimensional vectors

obtained by varying in, keeping all the other indices fixed.

The scalar product of two same-size tensors A,B ∈
R

I1×···×IN is defined as:

〈A,B〉 =
∑

i1

· · ·
∑

iN

A(i1, . . . , iN ) · B(i1, . . . , iN ). (2)

The Frobenius norm of A is defined in scalar product as

‖ A ‖F=
√

〈A,A〉. (3)

B. Fisher Vector: Dense Visual Features

Here we discuss a typical example of dense features popular

in computer vision: the Fisher Vector representation [25]. In

this representation, an image is firstly defined as a collection

of local descriptions. At a regular grid of locations, local

descriptors such as SIFT are extracted from small local neigh-

borhoods of each position. FV smartly reduces this collection

of microscopic observations into a fixed-length, long vector.

Local descriptors are assumed to be generated from a

GMM model with W diagonal covariance Gaussians, whose

parameters are denoted as (π, µ, σ). A local descriptor z ∈ R
H

is then described by its gradient in the GMM model (gradient

of the log-likelihood with respect to the mixing, mean, and

covariance parameters). An image is then represented as the

summation of gradients of all local descriptors.

We ignore the mixing parameter π, and set H = 64
and W = 128. To catch image variation, spatial pyramid

matching [15] is used. Supposing S = 8 spatial regions

are used, the FV has a length of L = HS(W + W ), or

131,072(=217) with typical choices of H , S, and W above.

Usually, each real value takes 4 bytes to store. Thus, in

training, the raw FV features for one hundred, one thousand,

ten thousand, and one million training images will total 50MB,

500MB, 4.88GB, and 488GB, respectively, which can be too

big to keep in memory. In testing, the stored model alone

(using LIBLINEAR [6]) will use 5, 50, or 500MB memory

for a task involving 10, 100 or 1,000 classes, respectively,

which can be demanding for memory-constrained devices.

III. PROPOSED FEATURE COMPRESSION METHOD

We propose a binarized multilinear PCA for learning com-

pact binary codes from higher-order tensors obtained by free-

form reshaping of dense features, as shown in Fig. 1. BMP

first performs multilinear PCA (MPCA) to transform tensor

features into a subspace. Then, the top J features are selected

to form a compact vector and a novel minimum-error-based

binarization is performed to get binary codes. The BMP

algorithm is summarized in Algorithm 1.

A. Free-Form Reshaping to Higher-Order Tensors

Dense features are usually represented as vectors. Only

recently, Gong et al. [7] first studied their natural second-

order (matrix) representations to improve memory efficiency.

Inspired by [7], we hope to achieve even greater memory

efficiency by representing dense features as higher-order ten-

sors. However, traditional tensor-based methods model data

by following some natural structures to capture correlations

among neighboring elements [19], [17], which restricts the

representation flexibility.

On the other hand, different from many other data mod-

elled by tensors [19], [17], dense features such as Fisher

Vectors have very weak correlations. A recent study in [38]

shows that more than 99.9% of pairwise correlations between

FV features are less than 0.2. Motivated by this study, we

propose free-form reshaping to higher-order tensors to lift

the structure-modelling restriction in traditional tensor-based



Figure 1. The proposed binarized multilinear PCA with free-form reshaping (FFR) for dense feature compression. In the FFR shown, a high-dimensional
dense feature vector is reshaped to a sixth-order tensor, which is visualized as stacking third-order tensors in 3D.

Algorithm 1 Binarized Multilinear PCA (BMP)

1: Input: M (reshaped) N th-order tensor samples {Xm ∈
R

I1×···×IN ,m = 1, . . . ,M} with class labels c ∈ Z
M , the

binary code length J .

2: Perform MPCA on {Xm} to get projection matrices {U(n)}.
3: Project {Xm} with {U(n)} by Eqn. (5) to obtain {Ym}.
4: Select J features from each tensor feature Ym to form vector

feature ym capturing the largest scatter defined in Eqn. (9).
Record the respective indices of selected features in {Γj}.

5: Binarize vector features {ym} to obtain binary codes {bm} with
thresholds {Tj} determined by Algorithm 2.

6: Output: The projection matrices {U(n)}, the indices of selected

features {Γj}, and the thresholds {Tj}.

Table I
THE DIMENSIONS {In} OF THE NTH-ORDER FFR TENSOR MODEL OF

DENSE FEATURES IN R
217 IN BMP.

N Dimensions I1 × I2 × · · · × IN
3 64× 64× 32
4 32× 16× 16× 16
5 8× 8× 8× 16× 16
6 8× 8× 8× 8× 8× 4

methods for greater memory efficiency. For example, we

model typical Fisher Vectors in R
131,072 with tensors of order

N = 3, 4, 5, 6 as in Table I. We can view a 4th-order, 5th-order,

or 6th-order tensor as a vector, matrix, or third-order tensor

of 3D tensors, respectively, as depicted in Fig. 1. We will

show in experiments that FFR-based models achieve accuracy

comparable to traditional natural structure model, e.g., for

BPBC [7].

We choose each mode dimension to be a power of two for

simplicity, since the dense feature length in our experimental

studies is a power of two (217). There can be other choices for

the N dimensions. While reshaping into higher-order tensors,

we prefer to have “balanced” dimensions in all N dimensions,

which offers better memory efficiency and tends to give better

accuracy as well in our studies.

B. Multilinear PCA Projection

MPCA is a multilinear extension of PCA to tensors [18]. It

is closely related to the higher-order singular value decompo-

sition (HOSVD) [3] and the Tucker decomposition [30].

Although MPCA has been mainly applied to third-order

tensors, it is developed for learning features directly from

general higher-order tensors. Consider M N th-order tensors

{X1, . . . , XM ∈ R
I1×I2×···IN }, MPCA seeks a multilinear

tensor-to-tensor projection (TTP)

{U(n) ∈ R
In×Jn , n = 1, 2, · · · , N}, (4)

where Jn ≤ In in general, that maps the original tensor

space R
I1
⊗ · · ·⊗R

IN into a modewise-orthogonal tensor

subspace R
J1

⊗ · · ·⊗R
JN :

Ym = Xm ×1 U
(1)T ×2 U

(2)T · · · ×N U(N)T , (5)

where m = 1, . . . ,M and Ym ∈ R
J1×J2×···×JN .1

Figure 2 demonstrates the TTP of a third-order tensor. It can

be viewed as N projections, one in each mode by an n-mode

projection matrix U(n), as shown in Fig. 2(a). Figure 2(b)

shows how the projection in the first (column) mode is done,

which is a projection of 1-mode vectors (columns) by U(1) ∈
R

I1×J1 from R
I1 to R

J1 (see Eqn. 1):

Ỹm = Xm ×1 U
(1)T . (6)

This can be done through taking inner products between each

1-mode vector and each column of U(1) (i.e., each row of

U(1)T ), as shown in the figure.

MPCA solves for a TTP such that the total tensor scatter,

defined through the Frobenius norm in Eqn. (3) as

ΨY =

M
∑

m=1

‖ Ym − Ȳ ‖2F , (7)

is maximized, where

Ȳ =
1

M

M
∑

m=1

Ym (8)

is the mean projection. The subspace dimensions {Jn} can be

determined by specifying Q, the percentage of energy (defined

as scatters) to be kept in each mode.

1Note that TTP is an alternative interpretation and extension of Tucker
decomposition/HOSVD in dimensionality reduction [19].



(a)

(b)

Figure 2. Tensor-to-tensor projection: (a) TTP of a 3rd-order tensor consists
of 3 projection matrices, projecting n-mode (n = 1, 2, 3) vectors in each
mode with an n-mode projection matrix, and (b) the projection in 1-mode
(column mode) through inner products between 1-mode vectors (columns)
and vectors (rows) from the 1-mode projection matrix.

C. Unsupervised Feature Selection

We can obtain more compact feature vectors {ym ∈ R
J}

from {Ym} through feature selection.2 We choose an unsuper-

vised feature selection strategy that selects the top J features

with the highest scatters (energy) Ej1...jN defined as

Ej1...jN =

M
∑

m=1

[

Ym(j1, . . . , jN )− Ȳ(j1, . . . , jN )
]2

. (9)

The respective indices (j1, j2, . . . , jN ) of the J selected fea-

tures are recorded in {Γj}.

D. Minimum-Error-Based Binarization

To obtain compact binary codes for memory and compu-

tational efficiency, we binarize the selected MPCA features

{ym ∈ R
J} to produce binary codes {bm ∈ B

J}, where B =
{0, 1}, by choosing a set of thresholds {Tj , j = 1, . . . , J}.

One common strategy is to use the sign function for simple

binarization (assuming zero-mean features), which may lead

to limited performance (especially for a large number of

classes C). Here, we propose a novel binarization scheme

based on minimizing (binary) classification errors of two

neighboring classes for better performance. Our motivation

is that since the binarized features will have only two values,

2Similar to the success of deep learning [14], we found that an unsupervised
selection at this stage outperforms a supervised selection.

Algorithm 2 Minimum-Error-Based Binarization

1: Input: M (scalar) features {ym,m = 1, . . . ,M} with respective
class labels {cm}, where cm ∈ {1, . . . , C}.

2: Compute the mean µc and standard deviation σc for class c.
3: Sort the C classes in ascending order so that µc ≤ µd if c ≤ d.
4: for l = ⌊C/2⌋, ⌊C/2⌋+1, ⌊C/2⌋−1, ⌊C/2⌋+2, ⌊C/2⌋−2, . . .

do
5: r ← l + 1.
6: if An optimal threshold Topt exists for cl and cr according to

Eqn. (13) then
7: Set T = Topt and break.
8: end if
9: end for

10: if T is not found then
11: Set T = (µl + µr)/2, where l = ⌊C/2⌋ and r = l + 1.
12: end if

13: Output: The binarization threshold T .

the best we can do is to minimize the classification error of

a binary classification problem so we choose two neighboring

classes to determine the threshold Tj for the j-th features. For

convenience of discussion, we drop the feature index j below.

Algorithm 2 summarizes the procedures.

We model each class c ∈ {1, . . . , C} as Gaussian with mean

µc and standard deviation σc:

pc(y) =
1

σc

√
2π

exp

[

−1

2

(

y − µc

σc

)2
]

. (10)

Our objective is to find an optimal threshold in classifying

two neighboring classes cl (left class) and cr (right class)

with the minimum error, where r = l + 1. We first sort

the class means {µc} in ascending order. The indices l
and r refer to the sorted class indices. Then we search for

an optimal binarization/classification threshold Topt for two

neighboring classes starting from the middle, i.e., l = ⌊C/2⌋,

and continuing with l = ⌊C/2⌋ + 1, ⌊C/2⌋ − 1, ⌊C/2⌋ + 2,

⌊C/2⌋ − 2, and so on, where ⌊·⌋ is the floor function. The

optimal threshold Topt is the solution for which the posteriors

of the two classes equal, i.e.,

Plpl(T ) = Prpr(T ), (11)

where Pl and Pr are the prior probabilities of classes cl and

cr, respectively, and pl(·) and pr(·) are the probability density

function of classes cl and cr, respectively. In addition, Topt

should be between the two class means.

We estimate Pl and Pr as

Pl =
Nl

Nl +Nr

and Pr =
Nr

Nl +Nr

, (12)

where Nl and Nr are the number of training samples for

classes cl and cr, respectively. After substituting Eqn. (12) and

Eqn. (10) into Eqn. (11), taking logarithms and simplifying, we

obtain Topt as a solution of the following constrained quadratic

equation

AT 2 +BT + C = 0, subject to µl ≤ T ≤ µr (13)



where

A = σ2
l − σ2

r , (14)

B = 2(µlσ
2
r − µrσ

2
l ), (15)

C = σ2
l µ

2
r − σ2

rµ
2
l + 2σ2

l σ
2
r ln(σrNl/σlNr). (16)

The search stops when a Topt is found and we set T = Topt.

Otherwise, if B2 − 4AC < 0 or the solution T ∗ < µl or

T ∗ > µr for all neighboring classes, we set the threshold as

T = (µl + µr)/2, where l = ⌊C/2⌋ and r = l + 1.

Remark on why starting from the middle: Here we give a

brief argument of preference on the neighboring classes in the

middle assuming all neighboring class pairs are equally-well-

separated with no overlapping. Suppose we have 20 classes,

which means there are
(

20
2

)

= 190 pairs of classes. Note

that after binarization by the proposed method, the within-

class scatters are all zero so the classification performance

is determined by the between-class scatters. By choosing a

threshold in the middle,
(

10
2

)

× 2 = 90 out of 190 class pairs

(i.e., 47.37%) have zero between-class scatters after binariza-

tion, which means they are indistinguishable after binarization.

While by choosing a threshold at the head or tail,
(

19
2

)

= 171
out of 190 class pairs (i.e., 90%) have zero between-class

scatters after binarization. Thus, a threshold in the middle

is preferred given equal, non-overlapping neighboring class

separation.

E. Discussion

Parameter Settings: Since a feature selection procedure

will follow MPCA, Q is set to 100 for simplicity. Assuming

order N has been determined, the binary code length J is the

only parameter to set. If the desired compression ratio is γ and

the original dense feature is a FLOAT (4 bytes) type vector of

L× 1, then we need to set the code length J = 32L
γ

.

Computational Complexity: The most costly computations

in BMP is the MPCA step. For N ≥ 3, MPCA training has

an approximate complexity of O(N2ILM), assuming equal

dimension I in each mode and IN = L. Note that L and M
are fixed for a given training set, and we have a smaller I
for a larger N and vice versa. For example, when L = 109,

I = 1000 for N = 3 while I = 10 for N = 9. MPCA has

been shown to have good convergence and one iteration is

often good enough when using full projection truncation to

initialize.

Memory I/O Trade-Off: While we have chosen datasets

with training samples fitting into the memory, MPCA does

not require all training samples to be in the memory and can

perform the analysis by reading one sample in at a time, at

higher I/O cost [18].

Compression Parameters (Model Size): BMP compresses

each tensor sample of size
∏N

n=1 In(= L) to J × 1. The

compression parameters (the output of Algorithm 1) consist

of the N matrices {U(n) ∈ R
In×Jn}, the J indices {Γj} of

the selected features, and the J thresholds {Tj}. Since we

select only J features from the total
∏N

n=1 Jn features, we

only need to keep those columns in {U(n)} corresponding to

the selected features and the memory needed and computations

in testing will often be lower than the full computations of all
∏N

n=1 Jn features for a smaller J .

F. Differences with PQ and BPBC

PQ: PQ compresses dense features by dividing a long

vector of length L into G segments of length A = L
G

, and

performing K-means for each segment, which is then replaced

and approximated by its nearest centroid. Since we store all

the GK centroids (i.e., compression parameters) in all G
segments, in order to represent a dense feature vector, we only

need to store the G indices to respective nearest centroids.

That is, we need to store the GK centroids (4KL bytes) and

a dense feature vector is reduced from 4L bytes to
G log

2
K

8
bytes, or a compression ratio of 32L

G log
2
K

. For example, a setup

with K = 16 and L = 217 will require 8MB of compression

parameters to be stored.

BMP vs. PQ: The key differences are dense feature rep-

resentation (higher-order tensor vs. vector), and binary cod-

ing scheme (minimum-error-based binarization vs. segment-

specific codebooks).

BPBC: BPBC is a bilinear hashing method that uses a 2D

(matrix) representation X ∈ R
I1×I2 of dense features x ∈ R

L,

where I1I2 = L and I1 = H . Left and right rotation matrices

R1 ∈ R
I1×J1 and R2 ∈ R

I2×J2 are learned to maximize

the similarity between a vectorization of the binary matrix

sgn(RT
1 XR2) (i.e., the compressed binary code) and x, where

sgn(·) is the sign function. The binary code learned by BPBC

requires J1J2

8 bytes to store, resulting in a compression ratio

of 32L
J1J2

. Compression parameters (i.e., R1 and R2) occupies

4(I1J1 + I2J2) bytes. As matrices are second-order tensors,

it can be viewed as a second-order tensor method, which

motivated our development of BMP.

BMP vs. BPBC: The key differences are dense feature

representation (higher-order tensor vs. matrices, free-form

reshaping vs. natural structure), binarization (minimum-error-

based vs. sign function), and learning process (binarization

separated from feature extraction vs. binarization embedded

in feature extraction).

Furthermore, existing feature compression methods have

only been evaluated with compression ratio ≤ 256 [32], [7],

[25], [36], which may not be enough for large datasets and

applications with stringent memory constraints [4]. In the next

section, we carry out the most “aggressive” compression ex-

periments, to the best of our knowledge, to study compression

ratios ranging from 128 to 16,384.

IV. EXPERIMENTS

BMP is motivated by the problem of dense feature com-

pression in computer vision. Thus, we perform experimental

evaluation on two popular scene recognition datasets, includ-

ing both outdoor and indoor scenes. All experiments are done

on Linux machines with Xeon X5650 (2.67GHz, 2-CPU/6-

core) and 32GB RAM using MATLAB R2011a. We evaluate

our method against two state-of-the-art feature compression



methods: PQ, and BPBC (a bilinear hashing method for high-

dimensional features).

A. Data Description

The Scene 15 dataset contains scene images from 15

categories including outdoor and indoor scenes (e.g., mountain

and tall building). There are 4,485 images, with image sizes

varying around 300 × 250.3 Following the common protocol

of Lazebnik et al. [15], we use 100 images per category for

training, and all the rest for testing. The train/test split is

repeated 10 times and we report the average accuracy rate

of this dataset.

Indoor 67 is a challenging dataset consisting of 67 indoor

categories, such as dental offices and malls. A pre-specified

train/test split of 6,700 images exists for this dataset, following

the original protocol of Quattoni and Torralba [21].4 On aver-

age there are 80 training and 20 testing images per category.

We report the classification accuracy using this split of training

and testing images.

The high-dimensional dense features we use are Fisher

Vectors, generated using the VLFeat package [31]. As afore-

mentioned, the FV feature has a length L = 217 (131,072),

with each element represented as a FLOAT type of 4 bytes.

Thus, the feature length studied here is greater than the

maximum feature length tested in [36] (Lmax = 51, 200)

or [7] (Lmax = 105, 000). With this feature length, many

feature compression methods, such as LSH [1] and ITQ [8],

become infeasible on a commodity computer due to limited

memory [7], [36].

B. Parameter Settings

We report results on eight compression ratios γ = 2α,

for α = 7, . . . , 14. Thus, γ ranges from 128 to 16, 384 so

our maximum compression ratio is much higher than that

considered in [36] (γmax = 256) or [7] (γmax = 64).

Respective binary code lengths are from J = 28 (32 bytes,

equivalent to the size of only 4 DOUBLE type or 8 FLOAT

type numbers, corresponding to γ = 214) to J = 215 (4KB,

corresponding to γ = 27).

BMP: We test from the 3rd- to 6th-order tensor models with

tensor dimensions in Table I and compare the performance

variations for different orders. BMP on N th-order tensor repre-

sentations is indicated as BMPND. To get various compression

ratios, we set the code length J = 32L
γ

. We use the MPCA

code with the default one iteration.5

BPBC: For BPBC, we test not only the 2D dense feature

representation I1×I2 = 64×2048 following natural structure,

where I1 = H as suggested by Gong et al. [7], but also

two additional free-form reshaping settings 128 × 1024 and

256×512, which are more memory-efficient. BPBC on I1×I2
representations is indicated as BPBCI1×I2 . The J1 and J2
values to get various compression ratios for 64 × 2048 are

3http://www-cvr.ai.uiuc.edu/ponce grp/data/scene categories/.
4Both the indoor scene images and their train/test split of images are

available at http://web.mit.edu/torralba/www/indoor.html.
5Code available at http://www.dsp.utoronto.ca/∼haiping/MSL.html.

Table II
BPBC PARAMETERS TO GET VARIOUS COMPRESSION RATIO γ . A DENSE

FV FEATURE IS RESHAPED INTO I1 × I2 AND THE TWO ROTATION

MATRICES ARE R1 ∈ R
I1×J1 AND R2 ∈ R

I2×J2 . THIS TABLE

INDICATES J1 AND J2 SETTINGS FOR I1 × I2 = 64× 2048.

γ 27 28 29 210 211 212 213 214

J1 32 32 16 16 16 16 8 4

J2 1024 512 512 256 128 64 64 64

Table III
PQ PARAMETERS TO GET VARIOUS COMPRESSION RATIO γ , WHERE A IS

THE SEGMENT LENGTH AND K IS THE NUMBER OF CENTROIDS FOR EACH

SEGMENT.

γ 27 28 29 210 211 212 213 214

A 8 8 16 32 64 128 256 512

K 4 2 2 2 2 2 2 2

set as in Table II. For the other two settings 128× 1024 and

256 × 512, we multiply the respective J1 values in Table II

by 2 and 4, and divide the respective J2 values in Table II by

2 and 4, respectively. We use the BPBC code with suggested

3 iterations.6

PQ: For the PQ method, we use the standard settings with

the (segment length, per-segment centroid number) values

(A,K) in Table III to get the desired γs. PQ has only one

parameter setting for a particular γ.

Classifier: We use LIBLINEAR [6] for classification with

the same setting c = 1 and B = 1.

C. Results and Discussions

We first study the minimum-error-based binarization, and

then examine BMP performance against BPBC and PQ in

terms of classification accuracy, number of compression pa-

rameters (model size), and per-image binary code size.

Effectiveness of Min-Error-Based Binarization: Here

we compare the proposed minimum-error-based binarization

against the sign-function binarization. Figure 3 plots the

classification accuracy of BMP3D and BMP6D, in percentage

(%), against the per-image binary code size in bytes in

log scale for illustration. The proposed binarization method

outperforms the sign-function binarization in most cases. The

improvement is better for a larger N (higher-order tensor

models, i.e., BMP6D). In addition, it is more effective for the

more challenging case of Indoor 67 with a larger C = 67 than

Scene 15 with C = 15.

Accuracy vs. Number of Compression Parameters: Fig-

ure 4 depicts the classification performance of BMP, BPBC,

and PQ against the number of compression parameters in

log scale. We also include the results of using the dense FV

features directly without compression as the “baseline” in the

figure (on top). We observe that to achieve the same accuracy,

the number of compression parameters of BMP is an order of

magnitude smaller than those of BPBC and PQ, with higher-

order BMP (e.g., BMP6D) gives smaller sizes than lower-order

6Code available at http://www.unc.edu/∼yunchao/bpbc.htm

http://www-cvr.ai.uiuc.edu/ponce_grp/data/scene_categories/
http://web.mit.edu/torralba/www/indoor.html
http://www.dsp.utoronto.ca/~haiping/MSL.html
http://www.unc.edu/~yunchao/bpbc.htm
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Figure 3. Comparison of BMP classification accuracies (%) with sign function
and minimum-error-based binarization schemes for various per-image binary
code sizes in bytes (log scale): (a) BMP3D on Scene 15; (b) BMP6D on
Scene 15, (c) BMP3D on Indoor 67; (d) BMP6D on Indoor 67.
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Figure 4. Classification accuracy (%) versus number of compression param-
eters (log scale): (a) Scene 15; (b) Indoor 67.

BMP (e.g., BMP3D). On the other hand, if we consider the

classification accuracy with the same number of compression

parameters, BMP gives much higher accuracy than BPBC

and PQ. Thus, BMP has big advantages in memory-sensitive

applications.

For BPBC, the FFR versions (BPBC256×512 and

BPBC128×1024) achieved comparable accuracy as the

original BPBC64×2048 following natural structure, while they

need much smaller number of compression parameters.

Even with the highest compression γ = 214, the compres-

sion parameters of PQ and the original BPBC still take about

1MB and 500KB of memory, respectively, both exceeding the

128KB preferred by the CDVS standard [5]. In comparison,

the compression parameters of BPBC256×512 (with FFR) and

BMP6D only take about 50KB and 3KB of memory for

γ = 214, respectively.

Accuracy vs. Binary Code Size: Figure 5 shows the
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Figure 5. Classification accuracy (%) versus per-image binary code size in
bytes (log scale), starting from 32 bytes on the left: (a) Scene 15; (b) Indoor
67.

10
2

10
3

10
3

10
4

10
5

10
6

Per−Image Binary Code Size (Bytes)

N
o

. 
o

f 
C

o
m

p
re

s
s
io

n
 P

a
ra

m
e

te
rs

 

 

BMP
3D

BMP
4D

BMP
5D

BMP
6D

BPBC
64x2048

BPBC
128x1024

BPBC
256x512

PQ

(a)

10
2

10
3

10
3

10
4

10
5

10
6

Per−Image Binary Code Size (Bytes)

N
o

. 
o

f 
C

o
m

p
re

s
s
io

n
 P

a
ra

m
e

te
rs

 

 

BMP
3D

BMP
4D

BMP
5D

BMP
6D

BPBC
64x2048

BPBC
128x1024

BPBC
256x512

PQ

(b)

Figure 6. Number of compression parameters (log scale) versus per-image
binary code size in bytes (log scale), starting from 32 bytes on the left: (a)
Scene 15; (b) Indoor 67.

classification accuracy against the per-image binary code size

in bytes in log scale. For better clarity, we only show BPBC

with the most memory-efficient (FFR) setting of 256 × 512,

and the 3rd- and 6th-order BMPs here (together with PQ and

baseline). The results with other settings of BPBC and BMP

do not deviate much from the respective results for BPBC and

BMP in the figure. We can observe that without considering

the number of compression parameters, for the same per-image

binary code size, BMP (with both settings) outperforms BPBC

for small code sizes (high compression ratios). For large code

sizes (low compression ratios), BMP is slightly inferior to

BPBC in general. For medium code sizes, BMP and BPBC

have comparable accuracy. BMP outperforms PQ mainly in

the mid-to-large code size range.

Another observation is that for large code sizes, BMP

performance may drop slightly (e.g., BMP3D on Scene 15),

when more features are used. Therefore, some additional

features are not useful for classification and an additional

feature selection step could improve performance further.

Number of Compression Parameters vs. Binary Code

Size: In the last comparison, we plot the number of compres-

sion parameters against per-image binary code size in Fig. 6.

The observations here are similar to those in Fig. 4. BMP

gives an order of magnitude smaller number of compression

parameters for the same per-image binary code size.



V. CONCLUSION

We presented a memory-efficient feature compression

method for learning compact binary codes from high-

dimensional dense features, named as Binarized Multilinear

PCA (BMP). BMP models dense features such as Fisher

Vectors with free-form reshaping to higher-order tensors to lift

the structure-modelling restriction in traditional tensor models.

The BMP algorithm consists of multilinear PCA for a subspace

transformation on reshaped tensors, an unsupervised feature

selection to produce compact feature vectors, and a novel

minimum-error-based binarization scheme to get compact

binary codes for classification.

We evaluated BMP on two scene recognition datasets

against state-of-the-art feature compression algorithms with

very-high compression ratios studied. The results show that

BMP achieves high memory efficiency with comparable accu-

racy. Furthermore, higher-order BMP enjoys higher memory

efficiency. Therefore, BMP has great potential in learning

binary codes from dense features in memory-constrained do-

mains.
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