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Abstract 12 

Non-homologous end joining (NHEJ) is a major repair pathway for DNA double-strand 13 

breaks (DSBs), which is the most toxic DNA damage in cells. Unrepaired DSBs can 14 

cause genome instability, tumorigenesis or cell death. DNA-end synapsis is the first 15 

and probably the most important step of the NHEJ pathway, aiming to bring two broken 16 

DNA ends close together and provide structural stability for end processing and 17 

ligation. This process is mediated through a group of NHEJ proteins forming higher 18 

order complexes, to recognise and bridge two DNA ends. Spatial and temporal 19 

understanding of the structural mechanism of DNA-end synapsis has been largely 20 

advanced through recent structural and single-molecule studies of NHEJ proteins. 21 

This review focuses on core NHEJ proteins that mediate DNA-end synapsis through 22 

their unique structures and interaction properties, as well as how they play roles as 23 

anchor and linker proteins during the process of “bridge over troubled ends”. 24 

  25 

Introduction 26 

Our human body is constantly challenged by the environment we live in, the lifestyle 27 

we choose and medical treatments we need. DNA within the cells of our body is the 28 

direct target for these challenges, generated from both exogenous toxic sources (e.g. 29 

ionizing radiation) and endogenous by-products from cellular functions (e.g. DNA 30 

replication stress). The most cytotoxic damage of all are DNA double-strand breaks 31 

(DSBs), when both DNA strands are broken in close proximity on their sugar-32 

phosphate backbone causing the loss of local structural connectivity of DNA strands 33 

(Figure 1). At the same time, this loss of connectivity also provides critical 34 

opportunities for physiological genome arrangement and alteration of topological 35 

states of DNA strands. Therefore, DSBs are also purposely generated by nuclear 36 

enzymes during important cellular processes: V(D)J and class switch recombination 37 

for lymphocyte maturation (1,2), meiotic recombination (3), DNA structural untangle 38 

by type II topoisomerase (4) and more recently during gene editing such as the 39 

CRISPR-Cas9 system (5). Effective and highly controlled DNA repair pathways are 40 

essential for maintaining genomic integrity and cellular functions. Unrepaired or mis-41 

repaired DSBs caused by faulty DSB repair can lead to chromosome breakage, 42 
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chromosome translocation (which can potentially cause genome instability), cell 43 

death, immunodeficiency and tumorigenesis (6–8). 44 

  45 

Eukaryotic cells contain two major pathways for repairing DSBs: non-homologous end 46 

joining (NHEJ) and homologous recombination (HR). Cell cycle states, chromatin 47 

contexts and the DNA-end resection environment all affect the pathway choice 48 

between NHEJ and HR (9). In the HR pathway, long 3¢ single-stranded DNA (ssDNA) 49 

overhangs are generated from extensive resection of DNA ends by nuclease enzymes 50 

(e.g. MRE11, DNA2 and EXO1), before pairing with sister chromatids for template-51 

dependent DNA repair in G2 and S phases (10). DNA ends in the NHEJ pathway are 52 

protected from this extensive resection and joined back together directly in a template-53 

free manner after a short stretch of end processing. NHEJ functions as the dominant 54 

(around 75%) repair pathway for human cells throughout interphase to repair DSBs 55 

rapidly, but with less accuracy compared with HR (11,12). The NHEJ discussed here 56 

is referred to as classic NHEJ, which exhibits a low degree of DNA-end homology (less 57 

than 4bp microhomology) (13). In addition to NHEJ and HR, there are alternative end 58 

joining (aEJ) and single-strand annealing (SSA) pathways utilising different sets of 59 

proteins to repair DSBs (9,13,14). It is also important to appreciate that DSB repair 60 

occurs in the context of chromatin. ATM signaling (especially including oligomerization 61 

of 53BP1) plays a major role in promoting DNA ends synapsis via chromatin 62 

compaction (15–17). 63 

 64 

An efficient NHEJ pathway for two-ended DSBs begins with a stable synapsis of DNA 65 

ends, which identifies two “troubled DNA ends”, followed by re-establishment of the 66 

local structural connectivity of DNA strands through “bridge over” by NHEJ protein 67 

complexes. This mini review focuses on our current understanding of this “Bridge over 68 

troubled DNA ends” process in terms of both spatial and temporal perspectives, 69 

through studying structures and dynamic assembly properties of core NHEJ proteins. 70 

 71 

Mechanism of NHEJ 72 

The NHEJ pathway for two-ended DNA DSBs has three well-defined objectives 73 

(Figure 1): 1) synapsis of two DNA ends; 2) processing of these ends to make them 74 

ligatable; 3) ligation of these ends together. NHEJ proteins achieve these objectives 75 

through both enzymatic and non-enzymatic (scaffold) functions at DSB sites. It is clear 76 

that these enzymatic functions come from DNA-PKcs (DNA protein kinase catalytic 77 

subunit), end-processing enzymes (e.g. Artemis, Werner syndrome helicase (WRN) 78 

and DNA polymerases λ and μ) and DNA ligase IV (LigIV) (18). The non-enzymatic 79 

functions that are responsible for mediating stable assembly of NHEJ proteins, 80 

especially for the end synapsis, are much more complex.  81 

 82 

DNA-end synapsis in NHEJ requires NHEJ proteins to be rapidly assembled at DSB 83 

sites with specificity, stability and flexibility to ensure complex formation only at the 84 

DSB sites, to stabilise two correct DNA ends for ligation. DNA-end synapsis also 85 
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allows various DNA-end configurations to be processed by different NHEJ enzymes 86 

before ligation (13). NHEJ accessory proteins such as APLF (APTX and PNKP-like 87 

factor) (19) and CYREN (cell cycle regulator of NHEJ) / MRI (20,21) can further 88 

regulate the stability of NHEJ complex formation. Post-translational modifications (e.g. 89 

phosphorylation by DNA-PKcs) (22,23) modulate inter-molecular interactions and play 90 

a key role in regulating the stability of DNA-end synapsis. It is still unclear whether all 91 

of these proteins are required for all types of DSB ends, or if they are selectively 92 

recruited for different types of DSB ends. However, current technological advances in 93 

structural and single-molecule studies have started answering spatial and temporal 94 

aspects of the DNA-end synapsis carried out, particularly by core NHEJ proteins 95 

including Ku (Ku70-Ku80), DNA-PKcs, XRCC4 (X-ray repair cross-complementing 96 

protein 4), XLF (XRCC4 like factor), PAXX (PAralog of XRCC4 and XLF) and LigIV 97 

(Figure 1).  These studies aim to identify what the role for each of the core NHEJ 98 

proteins is during DNA end synapsis and to establish the binding order of these 99 

proteins. 100 

  101 

Recent methods used for studying the spatial and temporal 102 

properties of DNA end synapsis of NHEJ in vitro 103 

Recent and rapid development of cryo-electron microscopy (cryo-EM) equipment and 104 

data analysis software has created new opportunity to study spatial properties of DNA 105 

end synapsis by NHEJ protein complexes. At the same time, single-molecule methods 106 

are also actively developed and well suited to study the temporal property of this 107 

process in vitro. In order to create a DSB site for single-molecule experiments, three 108 

general DNA configurations have been developed so far (Figure 2): 1) two long DNA 109 

segments (each over 1 kb) linked with a third DNA segment (Figure 2A) (24); 2) two 110 

short DNA duplex (each below 100 bp) with a hairpin DNA end (Figure 2B) (25,26) or 111 

without a hairpin DNA end (Figure 2C) (27); 3) a long DNA segment (2 kb) with two 112 

free DNA ends (27). In all of these cases, blunt-ended DNA was used because these 113 

ends cannot be in close proximity without proteins. Contribution of NHEJ proteins 114 

towards DNA-end synapsis was determined through either the physical (Figure 2A) 115 

(24) or chemical measurements from DNA in solution containing purified proteins 116 

(Figure 2B) (25,26), or Xenopus laevis egg extract with NHEJ proteins depleted 117 

(Figure 2C, D) (27). 118 

 119 

In DNA configuration 1, DNA-end synapsis led to the position change of the magnetic 120 

bead attached to one end of a DNA segment. Larger vertical extending force (F) was 121 

needed to pull two DNA segments apart after synapsis. Position change (Δl) of the 122 

magnetic bead was determined as physical measurements (24). In DNA configuration 123 

2 and 3, real-time smFRET (single-molecule Förster resonance energy transfer) can 124 

be detected as chemical measurements when Cy-3 (donor) and Cy-5 (acceptor) 125 

labelled DNA ends come in proximity during DNA end synapsis (25–27). Values of 126 

Time of synapsis (Tsynapsis) were determined in all these conditions. 127 

Mechanism of DNA-end synapsis 128 
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Two layers of DNA end synapsis strength have been proposed in the single-molecule 129 

studies so far and named stepwise (24): long-range to short-range (27) and flexible to 130 

close synapsis (26). Owing to different experimental methods, protein concentrations, 131 

running buffer compositions and setup conditions, there is still on-going debate about 132 

the exact contribution from each protein towards DNA end synapsis. By integrating all 133 

these results together, the core NHEJ proteins with their unique structures can be 134 

briefly summarised as “Anchor” and “Linker” proteins for DNA end synapsis. Anchor 135 

proteins recognise and bind to DNA ends in high affinity and then recruit linker proteins 136 

to bridge two DNA ends (Figure 3A).  137 

 138 

Anchors 139 

Anchor proteins in the NHEJ pathway are the abundant Ku proteins, which are 140 

evolutionally conserved from bacteria to humans (28). Human Ku protein functions as 141 

a very stable heterodimer, constituted of Ku70 and Ku80 (Figure 3B). Both proteins 142 

share similar protein structures that contain an N-terminal vWA (von Willebrand type 143 

A-like) domain, central core domain and C-terminal region. Through an extensive 144 

dimerization interface contributed from both central core domains, Ku70 and 80 form 145 

a ring shape structure with one side of the ring much thicker than the other side (29). 146 

The C-terminal regions of Ku70 and Ku80 both contain globular domains connected 147 

to the ring structure through flexible linkers (29–31) (Figure 3B). 148 

  149 

The anchors function of Ku comes from its ability to recognise DNA ends in high affinity 150 

(32), hence being the first NHEJ proteins to bind the DNA ends, protecting them from 151 

exonucleolytic activity (33,34) and influencing the repair pathway choice for DSBs 152 

(35). The inner part of the Ku ring has highly positive electrostatic charges and this, 153 

together with the ring structure, allows Ku to achieve a nM range affinity towards DNA 154 

ends (29,36). By interacting with the sugar-phosphate backbone of the DNA molecule 155 

only, Ku can be anchored at DNA ends in a sequence-independent manner. The 156 

thicker side of the ring structure forms a cradle, covering around 14bp of DNA binding, 157 

while the other side of the ring contains a large exposed DNA surface (29).  158 

  159 

Ku alone is insufficient for mediating DNA end synapsis (24,26,27). After anchoring at 160 

the DNA ends the whole Ku protein, particularly the vWA domains, becomes a binding 161 

hub for interacting with many NHEJ proteins with various Ku interaction motifs 162 

(reviewed extensively in (36)) (Figure 3B). Importantly, the C-terminal region of Ku80 163 

is essential for the recruitment of DNA-PKcs to the DNA ends. Even though the last 164 

12 residues in Ku80 were found to be sufficient for binding to DNA-PKcs through pull 165 

down experiments (37), the whole C-terminal region of Ku80 could potentially 166 

contribute to the recruitment and activation of DNA-PKcs at the DNA ends (36,38–40). 167 

  168 

 169 

Linkers 170 
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One Ku molecule was observed to bind to each DNA end in cells (41). Therefore, 171 

NHEJ linker proteins need to bridge two Ku bound DNA ends to stabilise local DNA 172 

structure for the following steps. DNA-PKcs, XLF, PAXX and XRCC4 and LigIV 173 

contribute to this process (Figure 3C, D). 174 

  175 

DNA-PKcs 176 

DNA-PKcs is a large, single-chain protein kinase (4128 residues in human), which 177 

belongs to phosphatidyl inositol 3-kinase-like serine/threonine kinase (PIKK) protein 178 

kinase family (42,43). DNA-PKcs binds to Ku at the DNA end and forms the DNA-PK 179 

holoenzyme (44). DNA-PKcs shares a similar domain architecture to ATM and ATR 180 

and functions together as three key PIKKs for DNA damage and repair (45). DNA-181 

PKcs is constituted with long HEAT (N-terminal Huntingtin, Elongation Factor 3, PP2 182 

A, and TOR1) repeats followed by a FAT (FRAP, ATM, TRRAP) domain, FRB 183 

(FKBP12-rapamycin-binding) domain, kinase domain and FATC (FAT C-terminal) 184 

domain. The HEAT repeats form an N-terminal arm structure and circular cradle 185 

structures as the main body of DNA-PKcs, while its remaining parts form a head 186 

structure sitting opposite the N-terminal arm structure (46) (Figure 3C). The Cryo-EM 187 

structure of DNA-PK on DNA has shown an extra interaction between the Ku ring 188 

structure and the HEAT repeats of DNA-PKcs. Compared with the structure of DNA-189 

PKcs itself, the N-terminal flexible arm structure of DNA-PKcs moves as a gate 190 

(Figure 3D) for interacting with a DNA bound Ku molecule followed with allosteric 191 

conformational change in the kinase domain (38,46–48). 192 

  193 

The key kinase function of DNA-PKcs is the autophosphorylation (including residue 194 

S2056) which can induce large conformational change and lead to the dissociation of 195 

DNA-PKcs from the Ku bound DNA (23,49–51). Mice carrying a catalytic dead DNA-196 

PKcs mutant but not DNA-PKcs null are embryonic lethal because the mutant DNA-197 

PKcs is unable to disassociate from the ends, hence blocking DNA ligation (52). 198 

Through interacting with Ku, each side of two DNA ends contains one DNA-PKcs. 199 

DNA end synapsis through DNA-PK was observed in atomic force microscopy as well 200 

as structural studies using electron microscopy and small angle X-ray scattering 201 

(40,53–55). DNA-PKcs functions as a linker protein by bringing two DNA ends close 202 

during the processing of binding at DNA ends and mediating autophosphorylation, 203 

which is also assisted by LigIV, before releasing from DNA ends (27,56). DNA-PKcs 204 

were found to be important as the first step of the DNA synapsis complex (24,27) in 205 

vitro, yet at the same time concluded to be less important than LX4 in another single-206 

molecule study (26). 207 

  208 

XRCC4, LigIV, XLF and PAXX 209 

XRCC4, XLF and PAXX are protein paralogs (57) and share a similar protein fold 210 

constituting a globular N-terminal head domain, a coiled-coil structure and flexible C-211 

terminal regions (Figure 3C). The NHEJ specific DNA ligase LigIV contains an N-212 

terminal catalytic region, which is conserved among other human DNA ligases, and 213 

C-terminal tandem BRCT-domains (BRCT1 and BRCT2), which are unique to LigIV 214 
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among the ligases (58). XRCC4 has a long coiled-coil structure, which makes a tight 215 

XRCC4 homodimer, with an interaction site specifically binding to the linker region of 216 

tandem BRCT domains of LigIV and mediating an extra interaction between BRCT2 217 

domain and the coiled-coil (59,60) (Figure 3D). The interaction between XRCC4 and 218 

LigIV stabilises the LigIV structure in cells (59,61,62), therefore LigIV is always in the 219 

XRCC4-bound form as LigIV-XRCC4 (LX4). XRCC4 without LigIV bound can form 220 

tetramers through the interaction of two coiled-coils (63,64) and contribute to DNA end 221 

bridging (65). While the catalytic function of LigIV is essential (66), the noncatalytic 222 

function of LigIV was also found to contribute to the DNA end synapsis (24,27,56). 223 

LX4 was able to bind to Ku without DNA-PKcs at the DNA ends, mediating a flexible 224 

synapsis complex to bring DNA ends into a lateral configuration (26).  225 

 226 

XLF (also called Cernunnos), with a shorter coiled-coil structure than XRCC4, does 227 

not contain a strong interaction site for LigIV as in XRCC4. Instead, it contains a fold-228 

back helix structure that contacts with the N-terminal head domain (67,68) (Figure 229 

3C). XLF is recruited to the DSBs through its C-terminal Ku interaction motif binding 230 

to an internal site of the Ku80 vWA domain (69,70) (Figure 3D). The highly dynamic 231 

exchange rate between bound and free XLF and DNA can be stabilised in the 232 

presence of XRCC4 (69). Once at the DNA ends, the head domain of XLF interacts 233 

with the head domain of XRCC4. As XLF and XRCC4 are both stable homodimers 234 

mediated by their coiled-coil domains, their heterodimerisation mediated by their head 235 

domains can potentially lead to formation of XLF-XRCC4 proto-filaments. Indeed, 236 

crystal structures, electron micrographs, size-exclusion chromatography and native 237 

mass spectrometry have all shown the concentration-dependent XLF-XRCC4 filament 238 

formation in vitro (65,71–73) (Figure 3D), with this filament able to mediate DNA 239 

bridging (22,25,65,74,75). XLF-XRCC4 filaments were also studied using dual-and 240 

quadruple-trap optical tweezers, combined with fluorescence microscopy and 241 

observed filament bridging property (74). Super-resolution microscopy studies showed 242 

that there were elongated repair structures in U2OS cells, having transiently-243 

expressed XLF and XRCC4 fused with fluorescent tags (25). There is possibility that 244 

these long XLF-XRCC4 filaments may represent an in vitro artefact, hence further 245 

studies are needed to verify whether endogenous XLF and XRCC4 form this elongated 246 

repair structure. 247 

 248 

One of key questions is how the higher-order complex formation of XRCC4 and XLF 249 

can be regulated. The presence of full length LigIV reduces the XLF-XRCC4 filament 250 

formation (76). Therefore, there may be a regulatory property to restrain the length of 251 

the XLF-XRCC4 complex by blocking the accessibility of some XLF-XRCC4 252 

interaction sites. Single-molecule studies revealed the importance of the XLF-XRCC4 253 

interaction for the final stage of the stability of DNA end synapsis (24,26,77), but the 254 

number of XLF required for DNA end synapsis were concluded differently. In the 255 

Xenopus laevis egg extract system with a long piece of DNA, it was found that only 256 

one XLF dimer is needed for DNA end synapsis (77). An interaction model is therefore 257 

proposed that one homodimer XLF binds to two LX4 complexes (77). Using purified 258 
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proteins with shorter DNA substrates, another single-molecule study showed that XLF 259 

enhanced the DNA end-to-end through forming a small patch of XLF-XRCC4 filament 260 

with up to three XLF homodimers (26). XLF without a C-terminal for Ku and DNA 261 

binding can still maintain function within the DNA synapsis complex in linked DNA 262 

configuration (24). Therefore, it is likely that the roles of XLF involved in DNA end 263 

bridging are constituted with its multi-interactions with XRCC4, Ku and DNA through 264 

both the head domain and C-terminal region (75,78). 265 

 266 

PAXX (also called as XLS or C9orf142) is the most recently discovered member of the 267 

XRCC4 superfamily in NHEJ, with a short coiled-coil region and no fold back structure 268 

(57,79,80) (Figure 3C). The head domain of PAXX does not interact with either XLF 269 

or XRCC4 (57). PAXX also contains one of the Ku interaction motifs at the C-terminal 270 

region and binds to Ku70 instead in the presence of DNA, with this interaction 271 

stimulating the LigIV ligation efficiency and promoting Ku accumulation at DNA breaks 272 

(57,79–82). Cellular studies have shown redundant scaffold function between PAXX 273 

and XLF (83–85). The interaction between PAXX and Ku is important for its function 274 

in DNA-end synapsis since the PAXX mutant, which cannot bind to Ku, disrupted the 275 

DNA-end synapsis in vitro (24) and also destabilised the NHEJ protein assembly in 276 

vivo (57). Therefore, it is possible that PAXX links two DNA ends through its 277 

homodimer structure, with one Ku binding site for each end. 278 

 279 

Conclusion 280 

As a template free DNA repair pathway for DSBs, NHEJ provides a rapid solution for 281 

cells to fix the damage. During this process, temporarily assembled NHEJ protein 282 

complexes bridge over two DNA ends to compensate for the loss of structural 283 

connectivity of DNA strands at a damage site. Through Ku protein as an anchor, other 284 

core NHEJ proteins (DNA-PKcs, XRCC4, LigIV, XLF and PAXX) bind to the DNA ends 285 

spontaneously as linkers and establish a multi-protein-protein interaction network 286 

between two DNA ends. Depending on combinations of these proteins, NHEJ can 287 

achieve DNA synapsis ranging from low stability to high stability levels. The difference 288 

of these stability levels might be to adapt NHEJ for different types of DSB ends. Future 289 

research combining cryo-EM structure, single-molecule study and super resolution 290 

imaging will enable us to further define and study the property of this DNA end 291 

synapsis complex at the DNA ends. 292 

 293 

The stability of DNA-end synapsis influences the efficiency and accuracy of NHEJ, 294 

which is key for genome stability in cells. Understanding the mechanism of DNA end 295 

synapsis in molecular detail will also provide new therapeutic targets for developing 296 

small molecules that can be tested in cells for their ability to modulate the function of 297 

NHEJ. This will lead to a new direction of enhanced genome editing efficiency and 298 

new medical applications, such as more effective cancer treatment through 299 

radiotherapy/chemotherapy, as well as overcoming drug resistance. 300 

  301 
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Perspectives section 302 

(i) DNA repair is a fundamental mechanism which preserves our genomic integrity. It 303 

is important to understand how DNA double-strand breaks, the most toxic damage in 304 

cells, are repaired through the non-homologous end joining (NHEJ) pathway. 305 

(ii) The DNA end synapsis in the NHEJ pathway is mediated through NHEJ protein 306 

complexes bridging over two DNA ends. 307 

(iii) Combining advances in cryo-electron microscopy, single-molecule methods and 308 

super-resolution imaging, the structural mechanism of the NHEJ pathway in cells will 309 

be revealed in much more detail in the future.   310 
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 340 

Figure legends: 341 

 342 

Figure 1: The Non-homologous end joining (NHEJ) pathway for repairing DNA double-strand breaks 343 

(DSBs). Exogenous and endogenous damage sources generate DSBs, which can be repaired by NHEJ 344 
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and HR (homologous recombination) pathways. There are three general end conditions (synapsis, 345 

processing and ligation) during NHEJ. Core NHEJ proteins for mediating DNA-end synapsis are Ku, 346 

DNA-PKcs, PAXX, XLF, XRCC4 and LigIV (shown in the zoomed in circle as an interaction network). 347 

Each black arrow represents direct protein-protein and protein-DNA interactions.  348 

 349 

Figure 2: DNA configurations used in current single-molecule studies for DNA-end synapsis in NHEJ. 350 

A) Two linear dsDNA segments (1510 bp each) (one linked to a magnetic bead, one immobilised to a 351 

glass coverslip) are connected through a third DNA segment (690 bp). Black arrows indicate the vertical 352 

extending force (F, pN) that is applied to the DNA. Distances (Δl, μm) the magnetic bead moved were 353 

measured in the presence of various purified NHEJ proteins (24); B) Two short DNA segments (85 and 354 

74 bp) are labelled with Cy5 and Cy3 respectively. The Cy5 labelled DNA was immobilised. The Cy3 355 

labelled DNA has a hairpin DNA end (25,26). FRET values were measured in the presence of various 356 

purified NHEJ proteins. C) Two DNA duplex are both 100 bp. One is immobilised and labelled with Cy3, 357 

while another one has Cy5 on each end (27); D) A 2kb DNA segment with two DNA ends labelled with 358 

Cy3 and Cy5 (27). FRET values in C) and D) were measured in the presence of egg extract with specific 359 

NHEJ protein depleted (27). 360 

 361 

Figure 3: Structures of core NHEJ proteins involved in NHEJ end-synapsis. A) Anchor and linker 362 

proteins at DNA ends. B) Crystal structure of DNA bound Ku (PDB code: 1JEY) (29), Nuclear magnetic 363 

resonance (NMR) structures of C-terminal globular domain of Ku80 (PDB code: 1Q2Z) (31) and C-364 

terminal globular domain of Ku70 (PDB code: 1JJR) (86). Ku70 (light green), Ku80 (green) and DNA 365 

(black) are labelled. C) Protein structures of individual linker proteins: crystal structure of DNA-PKcs 366 

(PDB code: 5LUQ) (46) with rainbow colour as N-terminus in blue and C-terminus in red. The Structure 367 

of Ku80 C-terminal region is not shown here. The head structure, circular cradle and N-terminal arm 368 

structure are indicated; crystal structures of XRCC4 (blue, PDB code: 1FU1) (64), XLF (pink, PDB 369 

code:2QM4) (68) and PAXX (turquoise, PDB code: 3WTD) (57). The head domain and coiled-coil 370 

structure are indicated. The C-terminal flexible regions of XRCC4, XLF and PAXX were not included in 371 

constructs of these crystal structures. D) Protein structures of linker proteins in complex. Cryo-EM 372 

structure of DNA bound DNA-PK (PDB code: 5Y3R) (47). DNA-PKcs (grey), Ku (green) and DNA 373 

(black) are indicated. Crystal structure of the Ku-DNA complex bound with XLF peptide (pink) (PDB 374 

code: 6ERG) (70). Crystal structures of the catalytic domain of LigIV (yellow) before (PDB code: 3W5O) 375 

(87) and after binding to DNA (PDB code: 5BKG) (88). N-terminus of LigIV and DNA are indicated. 376 

XRCC4 bound with the BRCT domains of LigIV (PDB: 3II6) (60). Part of crystal structure of XLF-XRCC4 377 

filament shown in both cartoon and surface representations (PDB code: 3W03) (73).   378 

 379 
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