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Abstract 22 

Epidemiologic studies have reported inconsistent results regarding an association between 23 

Parkinson disease (PD) and cutaneous melanoma (melanoma). Identifying shared genetic 24 

architecture between these diseases can support epidemiologic findings and identify common 25 

risk genes and biological pathways. Here we apply polygenic, linkage disequilibrium-informed 26 

methods to the largest available case-control, genome-wide association study summary statistic 27 

data for melanoma and PD. We identify positive and significant genetic correlation (correlation: 28 

0.17, 95% CI 0.10 to 0.24; P = 4.09 × 10-06) between melanoma and PD. We further 29 

demonstrate melanoma and PD-inferred gene expression to overlap across tissues (correlation: 30 

0.14, 95% CI 0.06 to 0.22; P = 7.87 × 10-04), and highlight seven genes including PIEZO1, 31 

TRAPPC2L, and SOX6 as potential mediators of the genetic correlation between melanoma 32 

and PD. These findings demonstrate specific, shared genetic architecture between PD and 33 

melanoma that manifests at the level of gene expression. 34 

Keywords: Parkinson disease; melanoma; genetic correlation; polygenic; TWAS; shared 35 

genetic architecture 36 

  37 
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Introduction 38 

An association between idiopathic Parkinson disease (PD), neuropathologically 39 

characterized by the degeneration of pigmented dopaminergic neurons, and cutaneous 40 

melanoma (melanoma), a cancer of pigment-producing melanocytes, was first reported in 1972 41 

[80]. This association was hypothesized to result from the chronic systemic administration of 42 

levodopa (L-DOPA) – an intermediate in the dopamine synthesis pathway [23] – for the 43 

treatment of PD [4, 80] as L-DOPA is also a biosynthetic intermediate in the production of 44 

melanin [23]. Since that time, several epidemiologic studies have examined the association 45 

between PD and melanoma as well as other cancers [5, 17, 21, 27, 29, 36, 42, 53, 67, 68, 81, 46 

87, 91]. The majority of studies have found that individuals with PD appear to have a lower 47 

incidence of most cancers, with the exception of melanoma [21, 27, 36, 67, 68, 81, 91]. Both 48 

prospective and retrospective studies have also found an increased risk of melanoma in PD that 49 

appears to be independent of L-DOPA treatment [5, 29, 42, 67, 91]. For example, 92 out of 50 

2,106 (4.4%) individuals with neurologist-confirmed PD had either a personal history or current 51 

dermatologist-diagnosed melanoma in a 2010 study [5]. The increased risk of melanoma in PD 52 

has been observed to extend to family members and be reciprocal in nature with individuals 53 

being at greater risk for PD if their relatives have a melanoma diagnosis and vice versa [29, 42]. 54 

For example, 40 of 1,544 (2.6%) of individuals with pathologically-confirmed melanoma had a 55 

neurologist-confirmed diagnosis of PD in a 2017 study [17]. However, not all studies have 56 

identified an association between melanoma and PD in affected individuals [19, 27] or their 57 

relatives [91]. An epidemiologic association between lighter hair color and PD, a potentially 58 

shared risk factor with melanoma [6], has also been inconsistently reported [19, 30]. 59 

Epidemiologic association studies are not without biases. PD is known to have an extended 60 

prodromal period and a melanoma diagnosis necessitates longitudinal follow up, both of which 61 

increase medical surveillance and thus the chance for spurious epidemiologic associations [27, 62 
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33]. In contrast, studies of genetic variants associated with disease or cross-disease risk are not 63 

expected to be influenced by usage of medical care, though they may be subject to similar 64 

misclassification [75] and ascertainment biases.  65 

The first investigations of a genetic relationship between melanoma and PD focused on 66 

variants in MC1R, a gene strongly associated with pigmentation and melanoma risk [45]. While 67 

early reports identified an association between PD and MC1R variants [30, 83] other studies 68 

failed to replicate these findings [24, 26, 28, 55]. Analyses focused on single variants in other 69 

melanoma risk genes have also failed to yield consistent associations with PD [19, 28, 56]. 70 

Multi-variant analyses have thus far reported a lack of genetic association as well. For example, 71 

a melanoma genetic risk score – calculated by aggregating the effect of melanoma genome-72 

wide association study (GWAS)-significant (P < 5 × 10-8) loci included in the GWAS catalog [89] 73 

as of 2012 –  was not significantly associated with PD [65]. Similarly, no evidence for an 74 

association between GWAS-significant melanoma loci and PD is observed in a more recent 75 

multi-variant, Mendelian randomization study [66]. In contrast, genes associated with Mendelian 76 

forms of PD have been identified to be somatically mutated in melanoma lesions [37, 40, 48]. 77 

There may also exist an enrichment of Mendelian PD gene germline variants in individuals with 78 

melanoma [37], though this requires replication. Nevertheless, over 90% of individuals with PD 79 

do not have mutations in any known Mendelian PD genes [1] and thus variants in Mendelian PD 80 

genes are unlikely to fully explain any genetic correlation between melanoma and PD.  81 

The genetic risk architecture underlying complex diseases like PD and melanoma is 82 

mediated by many common genetic variants of small effect size, most of which do not 83 

demonstrate GWAS-significant associations given current study sample sizes [8]. Analyses 84 

which only include GWAS-significant loci are not expected to fully represent the genetic 85 

architecture of these complex diseases and thus may lead to false negative genetic overlap 86 

results.  Recently, statistical methods that aggregate all loci from disease-specific GWAS 87 
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summary statistic datasets in a linkage disequilibrium (LD)-informed manner have been 88 

developed to better model these polygenic architectures [11]. These aggregated signals can be 89 

leveraged to estimate the genetic correlation between different diseases [11, 54], even at the 90 

level of gene expression in specific tissues [35, 57] or across tissues [38]. Here, we apply these 91 

novel methods to GWAS summary statistics derived from the largest currently available studies 92 

of melanoma [45], PD [13, 63, 64], and other neurodegenerative diseases [25, 44] to investigate 93 

whether there exists specific genetic architecture overlap between melanoma and PD.  94 

 95 

Methods 96 

GWAS Summary Statistics:  97 

We obtained the largest available, European genetic ancestry, case-control, GWAS 98 

summary statistic data for melanoma (Law2015 [45]) and three independent studies of PD 99 

(Nalls2014 [64]; Chang2017 [13]; Nalls2019 [63]) as well as two negative control comparator 100 

neurodegenerative diseases: Alzheimer disease (Kunkle2019 [44]) and frontotemporal dementia 101 

(Ferrari2014 [25]). The summary statistics for these datasets included p-value, effect allele, 102 

number of individuals or studies, and standard error for every genetic variant reported in each 103 

study. All individual studies contributing to the GWAS summary statistic datasets used in the 104 

current analysis received approval from the pertinent institutional review boards or ethics 105 

committees, and all participants gave informed consent. Additional details for each dataset are 106 

included below and in the individual study articles [13, 25, 44, 45, 63, 64]. 107 

 108 

Melanoma – Law2015 109 

We obtained meta-analysis Melanoma risk summary statistic data from the Melanoma 110 

meta-analysis consortium (https://genomel.org/). This data was published in Law et al., Nature 111 

Genetics, 2015 [45]. This dataset includes melanoma-association results for 9,469,417 112 

https://genomel.org/
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genotyped and imputed variants derived from 12,814 pathologically-confirmed melanoma cases 113 

and 23,203 controls of European ancestry.  114 

 115 

Parkinson disease – Nalls2014 116 

We obtained PD risk summary statistic data from PDGENE (http://www.pdgene.org/). 117 

This dataset was published in Nalls et al., Nature Genetics, 2014 [64] and Lill et al, PLoS 118 

Genetics 2012 [50]. The summary statistic data we obtained did not include any 23andMe 119 

participants and thus the dataset includes PD-association results for 7,799,580 genotyped and 120 

imputed variants derived from 9,581 PD cases – mostly diagnosed, but some self-reported – 121 

and 33,245 controls of European ancestry. This dataset only included the number of studies, 122 

and not the number of individuals, supporting the association results for each variant. 123 

Consequently, we only included variants supported by at least 12 of 13 studies in downstream 124 

analyses.  125 

 126 

Parkinson disease – Chang2017 127 

We obtained Parkinson disease (PD) risk summary statistic data from 23andMe, Inc., a 128 

personal genetics company (https://research.23andme.com/dataset-access/). This data was 129 

published in Chang et al., Nature Genetics, 2017 [13]. This dataset includes PD-association 130 

results for 12,896,220 genotyped and imputed variants derived from 6,476 self-reported PD 131 

cases and 302,042 controls of European ancestry. This dataset excludes any 23andMe 132 

participants included in the Nalls2014 study.  133 

 134 

Parkinson disease – Nalls2019 135 

We obtained PD risk summary statistic data from the IPDGC (https://pdgenetics.org/). 136 

This dataset was published in Nalls et al., The Lancet Neurology, 2019 [63]. The summary 137 

statistic data we obtained did not include any 23andMe data nor Nalls2014 data and thus 138 

http://www.pdgene.org/methods
https://research.23andme.com/dataset-access/
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includes PD-association results for 17,510,617 genotyped and imputed variants derived from 139 

33,674 PD cases – diagnosed and UKB proxy-cases, that is individuals with a first-degree 140 

relative with PD – and 449,056 controls of European ancestry. 141 

 142 

Alzheimer disease – Kunkle2019 143 

We downloaded stage 1 meta-analysis Alzheimer Disease (AD) risk GWAS summary 144 

statistic data from NIAGADS (National Institute on Aging Genetics of Alzheimer Disease Data 145 

Storage Site) website: https://www.niagads.org/datasets/ng00075 (#NG00075). This data was 146 

generated by the International Genomics of Alzheimer Project and published in Kunkle et al., 147 

Nature Genetics, 2019 [44]. The stage 1 meta-analysis dataset includes AD-association results 148 

for 11,480,632 genotyped and imputed variants derived from 21,982 AD cases and 41,944 149 

cognitively normal controls of European ancestry.  150 

 151 

Frontotemporal Dementia – Ferrari2014 152 

We obtained discovery phase Frontotemporal Dementia (FTD) risk GWAS summary 153 

statistic data from the International Frontotemporal Dementia Genomics Consortium (IFGC, 154 

https://ifgcsite.wordpress.com/data-access/). This data was generated by the IFGC and 155 

published in Ferrari et al., Lancet Neurology, 2014 [25]. The discovery phase dataset includes 156 

FTD-association results for 6,026,385 variants derived from 2,154 individuals with FTD and 157 

4,308 control of European ancestry.  158 

 159 

Meta-analyzing PD GWAS datasets  160 

 We used METAL software [90] to perform an inverse-variance weighted meta-analysis of 161 

the three independent PD GWAS summary statistics. We refer to this meta-analyzed PD 162 

dataset in the text, tables, and figures as METAPD (49,731 cases and 784,343 controls).  163 

 164 

https://www.niagads.org/datasets/ng00075
https://ifgcsite.wordpress.com/data-access/
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Standardization and Filtering of GWAS Summary Statistics  165 

We standardized all summary statistics prior to polygenic analyses. We first confirmed 166 

the genome build to be GRCh37, and then annotated variants with dbSNP v151 rs-identifiers 167 

and gnomAD [41] non-Finnish European (NFE) allele frequencies using ANNOVAR software 168 

(2018Apr16) [88]. We only included bi-allelic variants with rs-identifiers and in instances where 169 

multiple variants shared the same rs-identifiers, we selected the variant that was supported by 170 

the largest number of studies and/or the greatest sample size. Finally, we processed and filtered 171 

summary statistics using the munge_sumstats.py tool provided with Linkage Disequilibrium 172 

Score Regression Software (LDSC) [11]. This processing and filtering removed variants with an 173 

effect allele frequency of less than 0.05 in the gnomAD NFE population, variants with strand-174 

ambiguous alleles, variants supported by a low sample size or effective sample (Neff  = 175 

4/(1/Ncases+1/Ncontrols)) for the meta-analysis [90], and variants that were not reported in the 176 

HapMap3 study [31]. The number of variants overlapping across all processed GWAS summary 177 

statistic datasets analyzed in the present study are presented in Table 1.  178 

 179 

Estimating Genetic Overlap by GNOVA  180 

 We calculated genetic overlap using GNOVA software [54]. GNOVA estimates genetic 181 

covariance based on all the genetic variants shared between two GWAS summary statistic 182 

datasets. In brief, the summary statistic z-scores observed for each variant are multiplied and 183 

their product is regressed against the LD score for that variant, with the LD score being 184 

calculated based on the external 1000 genomes project CEU population [84]. Genetic 185 

covariance is then estimated based on all shared variants using the method of moments and a 186 

block-wise jackknife approach as described in the GNOVA manuscript [54]. GNOVA further 187 

provides an estimate of genetic correlation based on this calculated genetic covariance and the 188 

estimated GWAS variant-based heritabilities. As with LD score regression [11], GNOVA is able 189 

to statistically correct for any sample overlap between two different sets of GWAS summary 190 
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statistics. In addition, GNOVA produces unbounded genetic correlation estimates which may be 191 

greater than one for traits which are highly genetically correlated. GNOVA provides greater 192 

statistical power and higher estimation accuracy for genetic correlations than LD score 193 

regression, especially when the correlations are moderate [54], as is expected for melanoma 194 

and PD. We ran GNOVA software on the processed GWAS summary statistics using default 195 

parameters and the 1000 Genomes [84] European population-derived reference data provided 196 

with the software. Given we test the genetic correlation of melanoma against PD, AD, and FTD 197 

we use a Bonferroni corrected significance threshold of P < 1.67 × 10-02 (0.05 / 3) for our 198 

primary analysis. We also ran annotation-stratified analyses using the minor allele frequency 199 

quartile and chromosome annotations provided with GNOVA software as well as the 200 

aforementioned reference data and parameters. In the text we present genetic correlations, 201 

95% confidence intervals, and p-values that have been corrected for sample overlap by 202 

GNOVA.  203 

 204 

Disease-Inferred Gene Expression Overlap Analyses  205 

 We investigated whether the genetic overlap between PD and melanoma was mediated 206 

by shared regulation of gene expression. To do this we generated tissue-specific, disease-207 

inferred gene expression profiles from the processed GWAS summary statistics using 208 

FUSION/TWAS software with the default parameters [35]. FUSION/TWAS imputes gene 209 

expression using cis expression quantitative trait loci (eQTL) data derived from reference panels 210 

of paired genotype and tissue-specific gene expression data. As gene expression is imputed 211 

based on disease-specific GWAS summary statistics, FUSION/TWAS identifies disease-inferred 212 

gene expression profiles with tissue-level resolution. For this study, we used eQTL weights 213 

based on the 48 tissue Genotype-Tissue Expression (GTEx) [34] version 7 (v7) reference panel 214 

provided with FUSION/TWAS to generate all disease-inferred gene expression profiles. We 215 

tested for overlap or correlation between the disease-inferred gene expression using RHOGE 216 
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software [57], providing the effective sample size [90] for each dataset and only including those 217 

FUSION/TWAS results that were at least nominally (p < 0.05) associated with each disease as 218 

per the default RHOGE parameters. RHOGE provides an estimate of the genetic correlation 219 

between two traits that can be attributed to eQTLs as represented by the different trait-inferred 220 

gene expression profiles. We exclude the major histocompatibility complex (MHC) region from 221 

disease-inferred gene expression overlap analyses due to its complex LD structure [35, 57]. To 222 

consider an overlap as significant we used a Bonferroni corrected threshold: P < 1.04 × 10-03 223 

(0.05 / 48 tissues) and present uncorrected p-values and 95% confidence intervals in the text.  224 

 225 

Highlighting Genes Underlying Disease-Inferred Gene Expression Overlap  226 

 We used UTMOST software [38] to generate single-tissue, disease-inferred gene 227 

expression, and then aggregated them into a summary metric representing cross-tissue, 228 

eGene-disease associations. eGenes are those genes whose expression are influenced by a 229 

least one cis disease-associated genetic variant [93]. For this analysis, we generated the single 230 

tissue disease-inferred results based on the processed GWAS summary statistics and the 44 231 

tissue GTEx v6 reference panel provided with UTMOST, using default parameters. We similarly 232 

generated the cross-tissue summary metric using default parameters. The UTMOST cross-233 

tissue test summary metric represents the maximum one-sided likelihood ratio test statistic for 234 

an eGene being associated with the disease, with larger test statistics indicating greater support 235 

for an association.  This summary metric does not include any indicator of uncertainty. We 236 

identified transcriptome-wide significant, cross-tissue, eGene-disease associations using a false 237 

discovery rate (FDR) threshold of 0.05, that is five expected false discoveries per 100 reported. 238 

We compared PD and melanoma UTMOST summary metric eGene results for the disease-239 

specific GWAS summary statistics to identify eGenes that were independently associated with 240 

both diseases.  241 

 242 
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Investigating for Differential Expression of Highlighted eGenes in PD Brain Tissues 243 

 To investigate whether the eGenes we identified as being independently associated with 244 

both melanoma and PD demonstrated differential expression in PD, we downloaded publicly 245 

available, normalized microarray gene expression data derived from substantia nigra brain 246 

tissues donated by individuals with and without PD. These datasets were deposited in the Gene 247 

Expression Omnibus (GEO) under the accession codes: GDS2821 [47] and GDS3129 [22, 62]. 248 

The GDS2821 dataset includes Affymetrix Human Genome U133 Plus 2.0 array data collected 249 

from 16 individuals with neuropathologically-confirmed PD and nine aged individuals with no 250 

history or pathological diagnosis of neurologic or psychiatric disease [47]. The GDS3129 251 

dataset includes Affymetrix Human Genome U133B array data derived from 15 samples of 252 

medial substantia nigra and nine samples of lateral substantia nigra from individuals with 253 

neuropathologically-confirmed PD as well as eight samples of medial substantia nigra and 254 

seven samples of lateral substantia nigra from control individuals without neurodegenerative 255 

disease pathology [22, 62]. We extracted the normalized expression levels of GPATCH8, 256 

MYO9A, PIEZO1, SOX6, TRAPPC2L, ZNF341, and ZNF778 genes and compared the 257 

expression between controls using a Mann-Whitney test using Graphpad Prism 8.0.  258 

Results 259 

Polygenic Analysis Reveals Specific Genetic Overlap between Melanoma and PD 260 

Prior to cross-disease analyses, we first confirmed that the three independent PD 261 

datasets demonstrated positive and significant genetic correlation with each other (genetic 262 

correlation range: 0.94 to 1.07, Table 2) using GNOVA software. Following this confirmation and 263 

method validation, we proceeded to analyze for potential genetic correlations between 264 

melanoma, PD, and the comparator neurodegenerative disease datasets.  265 

We identified a significant and positive genetic correlation between melanoma and the 266 

meta-analyzed PD dataset (genetic correlation: 0.17, 95% CI 0.10 to 0.24; P = 4.09 × 10-06, 267 
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Table 3). This result was not driven by any specific PD dataset, but all three independent 268 

datasets contributed to the association (P < 0.05; genetic correlation range: 0.14 to 0.25, Figure 269 

1 and Table 4). We further investigated the genetic correlation between melanoma and the 270 

meta-analyzed PD dataset by stratifying it to the level of minor allele frequency and 271 

chromosome annotations. Consistent with the polygenic nature of these diseases, we found 272 

their genetic correlation to be most highly enriched in those genetic variants annotated as being 273 

in the top quartile of minor allele frequency (Supplementary Table 1, online resource). We also 274 

found the genetic correlation between melanoma and the meta-analyzed PD dataset to be 275 

enriched in chromosomes 1, 2, 8, 11, 16, and 17 (Supplementary Table 2, online resource).  276 

We found no shared genetic architecture between melanoma and Alzheimer disease (genetic 277 

correlation: -0.02, 95% CI -0.11 to 0.07; P = 0.73, Table 3) nor between melanoma and 278 

Frontotemporal dementia (genetic correlation: -0.13, 95% CI -0.37 to 0.12; P = 0.32, Table 3). 279 

We similarly did not observe any significant correlation between the meta-analyzed PD dataset 280 

and AD (Table 3), although one of the individual PD studies showed nominal correlation with AD 281 

(Nalls2014: genetic correlation: -0.22, 95% CI -0.22 to 0.00, P = 4.94 × 10-02; Table 4). We did 282 

identify a positive and significant genetic correlation between the meta-analyzed PD dataset and 283 

FTD (genetic correlation: 0.27, 95% CI 0.07 to 0.47; P = 8.43 × 10-03, Table 3), but this 284 

appeared to be primarily driven by one of the individual PD studies (Table 4). Together these 285 

results demonstrate a consistent, positive and significant genetic correlation between melanoma 286 

and PD but not between melanoma and FTD or AD.  287 

 288 

PD and Melanoma Disease-Inferred Gene Expression Overlaps Across Tissues 289 

 To investigate whether melanoma and PD-associated risk variants regulated the 290 

expression of the same genes, we generated disease-inferred, tissue-specific gene expression 291 

profiles from the processed melanoma and METAPD GWAS summary statistic datasets via 292 
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FUSION/TWAS software [35]. We further investigated for overlap between the different disease-293 

inferred gene expression profiles using RHOGE software [57]. 294 

 We identified a positive and significant overlap between the PD- and melanoma-inferred 295 

gene expression profiles in a joint analysis of the 48 tissues included in the GTEx v7 reference 296 

panel provided with the FUSION/TWAS software (disease-inferred gene expression correlation: 297 

0.14, 95% CI 0.06 to 0.22; P: 7.87 × 10-04). Analyzing the PD- and melanoma-inferred gene 298 

expression correlation in each of the reference panel tissues individually, we observed positive 299 

overlap in 44 tissues (disease-inferred gene expression correlation median: 0.25, IQR: 0.13, 300 

Figure 2 and Table 5), but only a statistically significant overlap in the suprapubic, non-sun-301 

exposed, skin tissue (disease-inferred gene expression correlation: 0.37, 95% CI 0.17 to 0.57; 302 

P: 7.58 × 10-04). Eleven additional tissues demonstrated positive and nominal (Figure 2 and 303 

Table 5) the PD- and melanoma-inferred gene expression overlap including spleen (disease-304 

inferred gene expression correlation: 0.40, 95% CI 0.13 to 0.66; P: 5.49 × 10-03), minor salivary 305 

gland (disease-inferred gene expression correlation: 0.45, 95% CI 0.15 to 0.75; P: 7.49 × 10-03), 306 

heart atrial appendage (disease-inferred gene expression correlation: 0.31, 95% CI 0.09 to 0.54; 307 

P: 8.27 × 10-03) brain substantia nigra (disease-inferred gene expression correlation: 0.42, 95% 308 

CI 0.14 to 0.71; P: 9.02 × 10-03), and brain caudate nucleus (disease-inferred gene expression 309 

correlation: 0.29, 95% CI 0.01 to 0.58; P: 4.89 × 10-02).  310 

To highlight genes whose expression was commonly regulated by PD and melanoma 311 

risk variants, we generated cross-tissue, summary metric eGene-disease associations using 312 

UTMOST [38] software. Applying UTMOST to the METAPD GWAS summary statistics, we 313 

identified 606 eGenes significantly associated with PD (Supplementary Table 3, online 314 

resource), including genes in previously reported PD-associated loci [50, 64], such as MAPT (P: 315 

1.28 × 10-04). In the melanoma dataset, we identified 168 significantly associated eGenes 316 

(Supplementary Table 4, online resource) including those reported in a previous TWAS study 317 

[92], such as MAFF (P: 1.28 × 10-12). Comparing the two sets of cross-tissue summary metric 318 
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results, we identify seven eGene-disease associations that passed the FDR threshold for both 319 

PD and melanoma: GPATCH8, MYO9A, PIEZO1, SOX6, TRAPPC2L, ZNF341, and ZNF778 320 

(Figure 3 and Table 6). In addition, we found evidence for differential expression between 321 

individuals with and without neuropathologically-confirmed PD for five of these seven eGenes in 322 

publicly available substantia nigra microarray datasets (Supplementary Figure 1A-O, online 323 

resource). Together, these results suggest that some component of the genetic correlation 324 

between melanoma and PD may be mediated by the shared regulation of gene expression 325 

across tissues. 326 

 327 

Discussion 328 

 In this study, we have identified a positive and significant genetic correlation between 329 

melanoma and PD by leveraging the largest available GWAS summary statistic datasets and 330 

recent advances in polygenic complex trait modeling [11, 54] (Tables 3-4). Our results support 331 

the findings of several epidemiologic studies of shared – individual and familial – risk [5, 17, 21, 332 

27, 29, 36, 42, 53, 67, 68, 81, 87, 91] between the two diseases. We also demonstrate no 333 

evidence for shared genetic overlap between melanoma and two negative comparison 334 

neurodegenerative diseases: AD and FTD (Table 3), suggesting specificity.  335 

 Our results of positive genetic correlations between melanoma and PD stand in contrast 336 

to negative results from several other genetic studies including single-variant analyses [24, 26, 337 

28, 55, 65, 66] and multi-variant analyses [65, 66]. Both melanoma and PD are complex 338 

diseases with inherently polygenic risk architectures. Consequently, efforts to identify shared 339 

genetic architecture at the single-variant level are likely underpowered, especially given the 340 

moderate epidemiologic and genetic, correlation between melanoma and PD. This is especially 341 

true given the fact that the GWAS results analyzed for such single-variant level investigations 342 
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are themselves currently underpowered. For example, a power analysis reported in the largest 343 

PD GWAS to date (Nalls2019), suggests that an adequately powered PD GWAS would require 344 

the inclusion of approximately 99,000 PD cases – more than double their current PD case 345 

sample size [63]. Consequently, our current knowledge regarding the genetic architectures of 346 

PD and melanoma is hardly comprehensive and larger GWAS may reveal shared individual risk 347 

loci between these diseases in the future. Similarly, previous multi-variant genetic analyses 348 

investigating melanoma and PD have focused specifically on GWAS-significant loci and thus 349 

can be expected to have missed a substantial proportion of the genetic architecture [8] 350 

underlying these complex diseases. Genetic correlation methods that consider linkage 351 

disequilibrium structure and incorporate all common variants are better powered to detect 352 

genetic overlap, especially given current GWAS sample sizes, as we demonstrate here for 353 

melanoma and PD.  354 

 The classification and ascertainment of participants was different between the three 355 

independent PD datasets included in the present study; however, they all demonstrate positive 356 

and significant genetic overlap with each other (Table 2). While this overlap does not guarantee 357 

specificity of the represented genetic architecture [12], the fact we observe all three independent 358 

PD studies to demonstrate positive and significant genetic overlap with melanoma (Figure 1 and 359 

Table 4) bolsters confidence in our results. Importantly, although the PD and melanoma genetic 360 

correlation point estimates for the three individual PD studies appear different, their 95% 361 

confidence intervals overlap which indicates that the effect size estimates are not significantly 362 

different (Figure 1 and Table 4). The genetic overlap between the independent PD datasets 363 

supported their meta-analysis, and the genetic correlation between the meta-analyzed PD 364 

dataset and melanoma provided the most precise estimate (genetic correlation: 0.17, 95% CI 365 

0.10 to 0.24; P = 4.09 × 10-06; Figure 1 and Tables 3-4).  Further increases in precision may 366 

result from incorporating additional independent GWAS summary statistic datasets and thus our 367 
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analyses should be repeated as these become available for both melanoma and PD. Similarly, 368 

our FTD genetic correlation results should be interpreted with caution as the current sample size 369 

is at least one order of magnitude smaller than the other disease datasets. For example, among 370 

the individual PD datasets, we only observe a positive genetic correlation between FTD and 371 

Nalls2019. Parkinsonism has been observed in about 20% on individuals with FTD [2, 7], and 372 

this result may suggest that individuals with FTD with parkinsonism were included among the 373 

UKB-proxy cases in the Nalls2019 dataset. Alternatively, a positive genetic correlation between 374 

FTD and the other PD datasets may be observed from the use of a larger FTD GWAS summary 375 

statistic dataset. Thus, our analyses should be repeated as larger GWAS summary statistic 376 

datasets become available.   377 

We infer disease-associated gene expression profiles [35] using melanoma and meta-378 

analyzed PD GWAS summary statistics and investigate for their overlap at the level of tissues 379 

[57] and genes [38] to provide bioinformatically-driven biological context to our melanoma and 380 

PD genetic correlation results. We identify significant cross-tissue overlap (disease-inferred 381 

gene expression correlation: 0.14, 95% CI 0.06 to 0.22; P: 7.87 × 10-04) and significant individual 382 

tissue overlap in suprapubic non-sun-exposed skin (disease-inferred gene expression 383 

correlation: 0.37, 95% CI 0.17 to 0.57; P: 7.58 × 10-04). We also observe positive, nominal 384 

disease-inferred gene expression correlation in peripheral tissues with PD relevance like the 385 

heart atrial appendage (disease-inferred gene expression correlation: 0.31, P < 0.05, Table 5) - 386 

which may reflect the cardiac sympathetic denervation associated with PD [32, 82] - or the 387 

minor salivary glands (disease-inferred gene expression correlation: 0.45, P < 0.05, Table 5) - 388 

which have been reported in some, but not all, studies as containing alpha synuclein aggregates 389 

in the context of PD [46, 85]. In terms of PD-relevant brain tissues, we observe positive, nominal 390 

disease-inferred gene expression correlation in the substantia nigra and basal ganglia caudate 391 

nucleus (disease-inferred gene expression correlation: 0.42 and 0.29, respectively; P < 0.05, 392 
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Figure 2 and Table 5). Importantly, the available GTEx v7 inferred gene expression reference 393 

model for brain tissues are based on substantially fewer samples than most peripheral tissues, 394 

for example the brain substantia nigra reference is derived from 80 donors compared to 335 395 

donors for the suprapubic skin reference (Table 5). Consequently, our disease-inferred gene 396 

expression risk profile overlap analyses should be repeated as larger reference panels become 397 

available. Similarly, another limitation of the GTEx dataset is the inclusion of tissues from 398 

individuals with extended post-mortem intervals. As this can be expected to result in an 399 

underrepresentation of short-lived transcripts in the inferred gene expression reference panels, 400 

our analyses should be repeated as reference panels based on tissues from individuals with 401 

shorter post-mortem intervals become available.  402 

We identify seven cross-tissue, eGene-disease associations passing the FDR threshold 403 

for both melanoma and PD (Figure 3 and Table 6), most of which are located on the 404 

chromosomes which we identified as being enriched for the genetic correlation between these 405 

two diseases. Importantly, the UTMOST software currently only provides a compatible reference 406 

panel based on the GTEx v6 release which is derived from fewer donor samples per tissue 407 

compared to GTEx v7 release. In addition, the GTEx v6 reference panel does not include four 408 

tissues - brain substantia nigra, brain spinal cervical spinal cord, brain amygdala, and minor 409 

salivary gland - which we observed to demonstrate positive disease-inferred gene expression 410 

overlap for melanoma and PD (Table 5). Additional eGenes may pass the FDR threshold for 411 

both PD and melanoma in analyses based on the larger GTEx v7 reference panel. Thus, our 412 

analyses should be repeated when this or other larger reference panels become available for 413 

UTMOST. Nevertheless, using the smaller GTEx v6 reference panel we identify seven genes 414 

that may be commonly regulated by melanoma and PD-associated variants under the FDR 415 

threshold (Figure 3 and Table 6), including PIEZO1 (Melanoma P: 2.74 × 10-11; METAPD P: 416 



18 

 

5.65 × 10-05); TRAPPC2L (Melanoma P: 2.36 × 10-11; METAPD P: 8.47 × 10-05); and SOX6 417 

(Melanoma P: 1.30 × 10-04; METAPD P: 5.97 × 10-05). 418 

PIEZO1 encodes a recently described mechanosensitive cation channel [15] with 419 

several biological functions including human T cell activation [52], direction of lineage choice in 420 

human neural stem cells [71], and mediating the age-related loss of function of oligodendrocyte 421 

progenitor cells [79].  PIEZO1 is expressed in the neurons of the human substantia nigra [20, 422 

76] and also is ubiquitously expressed in human enteric neurons [58], both neuronal types 423 

impacted by PD [10, 43]. Interestingly, the expression of PIEZO2 – PIEZO1’s paralog – is 424 

regulated by, putatively melanocyte-derived, dopamine signaling in mouse primary sensory 425 

neurons [69] but whether this regulation is relevant for PIEZO1 is currently unknown. Similarly, a 426 

role for PIEZO1 in melanoma remains largely unexplored though PIEZO1 has been identified to 427 

contribute to the migration of invasive melanoma cells [39]. 428 

TRAPPC2L is a component of transport protein particle (TRAPP) complexes which 429 

function in intracellular vesicle-mediated transport and autophagy [60, 61, 78]. This gene is 430 

expressed in human substantia nigra neurons [20] and a homozygous missense variant in it 431 

causes a neurodevelopmental disorder characterized by progressive encephalopathy and 432 

episodic rhabdomyolysis [60]. The intergenic variant rs12921479 - which is an eQTL for 433 

TRAPPC2L in the brain [34, 74] – was reported to be associated with PD (P: 9.31 × 10-07) in an 434 

autopsy-confirmed cohort of PD [3], but is only nominally associated with PD in our meta-435 

analyzed PD dataset (P: 1.01 × 10-02). A role for TRAPPC2L in melanoma remains to be 436 

explored.  437 

SOX6 is a transcription factor which was recently identified as a determinant of 438 

substantia nigra neuron development and maintenance [70]. Its expression was observed to 439 

localize to pigmented and tyrosine hydroxylase positive neurons but not to pigment-negative 440 
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neurons within the substantia nigra [70]. In addition, SOX6 expression was diminished in the 441 

substantia nigra of individuals with PD and deletion of SOX6 in mice was observed to decrease 442 

dopamine levels and innervation in the striatum [70], a brain region that is also impacted in PD 443 

[9]. In a separate study, a large deletion in SOX6 was identified in a patient with global 444 

developmental delay and progressive parkinsonian symptoms including rest tremor [77] . 445 

Interestingly, SOX6 has been identified as a determinant of gastric dopaminergic neuron 446 

development [59], which may suggest a role for this gene in the enteric nervous system 447 

dysfunction and pathology observed in PD. SOX6 may also have a role in melanoma. In a 448 

cancer cell line expression study, SOX6 was found to be highly expressed in melanoma cells 449 

but was not detectable in eight other cancers [86]. Additionally, SOX6 was identified as a 450 

candidate melanoma driver gene [72] in a screen and SOX6 may be a melanoma stem cell 451 

marker [51]. 452 

While we observe evidence for differential expression between neuropathologically-453 

confirmed PD and controls for PIEZO1, TRAPPC2L, and SOX6 in at least one substantia nigra 454 

microarray dataset, these results should be interpreted with caution. Neurodegenerative 455 

diseases like PD are characterized by dramatic changes in cell-type proportions [49] which will 456 

impact differential expression results. Thus, the PD-associated differential expression of the 457 

eGenes highlighted in this study should be confirmed in larger, RNA-sequencing-based 458 

datasets - as these become available - in order to allow for the inclusion of important covariates 459 

like cell-type proportions, sex, age of death, and RNA quality among others. Nevertheless, the 460 

fact we observe differential expression of SOX6 in the same direction as previously published 461 

[70] is reassuring.  462 

Investigating for differential expression of the eGenes highlighted in this study in the 463 

context of melanoma is challenging given our focus on the risk of developing melanoma. 464 

Nevertheless, a recent GTEx v8-based, multi-tissue TWAS resource (phenomexcan.org) [73] 465 
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provides some evidence for a link between the eGenes we highlight and melanoma-associated 466 

pigmentation traits included in the UK Biobank study. For example, PIEZO1 is associated with 467 

red hair (P: ~0), ease of skin tanning (P: 3.74 × 10-175), and skin colour (P: 3.41 × 10-121); 468 

TRAPPC2L is associated with red hair (P: 3.28 × 10-181), ease of skin tanning (P: 1.06 × 10-71), 469 

and skin colour (P: 6.24 × 10-55); and SOX6 is associated with ease of skin tanning (P: 1.40 × 470 

10-13), skin colour (P: 1.55 × 10-11), and childhood sunburn occasions (P: 3.92 × 10-11). 471 

Together, these results support a biologically plausible role for PIEZO1, TRAPPCL2, and 472 

SOX6 in the genetic correlation between melanoma and PD, but these findings require 473 

confirmation and further investigation with future experimental work.  474 

PD and melanoma are clinically heterogenous diseases [16, 18] for which 475 

spatiotemporal environmental exposures are relevant [14, 16] and may be necessary, in 476 

addition to innate genetic susceptibility, for the development of sporadic disease. Consequently, 477 

the moderate genetic correlation we observe should not be interpreted as suggesting that these 478 

diseases will always be co-morbid. However, our results of replicable and significant genetic 479 

correlation, regardless of the magnitude of effect, do suggest that these two very different 480 

diseases share common biological pathways. Thus, even if only a minority of individuals with 481 

PD ultimately develop melanoma, understanding the genetic correlation between these disease 482 

at the molecular level – for example, if and how the regulation of PIEZO1, TRAPPC2L, and 483 

SOX6 and their related biological pathways contribute to PD etiopathogenesis – may provide 484 

mechanistic insight that is generalizable to all individuals with PD. Our results support such 485 

future research efforts.  486 
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Figures  1195 

 1196 

Figure 1. GNOVA Genetic Correlation Results for Parkinson Disease and Melanoma 1197 

GWAS Summary Statistic Datasets 1198 

 1199 

Forest plot of genetic correlation between melanoma and the individual and meta-analyzed 1200 

Parkinson disease datasets (Tables 3-4). Box size indicates the effective sample size (Neff  = 1201 

4/(1/Ncases+1/Ncontrols)). The three independent PD datasets are Nalls2014 (Nalls et al., 2014[64]); 1202 

Chang2017 (Chang et al., 2017[13]); Nalls2019 (Nalls et al., 2019[63]). METAPD is an inverse-1203 

variance-weighted meta-analysis of the three independent Parkinson disease summary statistic 1204 

datasets.  1205 
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Figure 2. Parkinson Disease (PD) and Melanoma Tissue-specific, Disease-inferred Gene 1206 

Expression Profile Correlation  1207 

 1208 

PD and Melanoma disease-inferred gene expression profile correlation at the level of 48 specific 1209 

tissues included in the GTEx v7 reference panel (Table 5). Disease-inferred gene expression 1210 

profiles were generated from the processed melanoma and METAPD summary statistics using 1211 

FUSION/TWAS software and correlation between these profiles was estimated using RHOGE 1212 

software. METAPD is an inverse-variance-weighted meta-analysis of the three independent 1213 

Parkinson disease summary statistic datasets. The red dashed line demarks the multiple test 1214 

corrected P threshold of 1.04 × 10-03 (0.05 / 48) while the blue dotted line demarks the nominal 1215 

threshold, P = 0.05.  1216 

  1217 
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Figure 3. Cross-tissue eGenes Associated with Both Parkinson Disease (PD) and 1218 

Melanoma.   1219 

 1220 

Conjunction plot of the cross-tissue PD and melanoma eGene -log10 P values. We generated 1221 

cross-tissue eGene-disease results (Supplementary Tables 3-4, online resource) from the 1222 

processed melanoma and METAPD summary statistics using UTMOST software. METAPD is 1223 

an inverse-variance-weighted meta-analysis of the three independent Parkinson disease 1224 

summary statistic datasets.  The red dashed lines demark the false discovery rate (FDR) 1225 

threshold of 0.05. Labels and lines indicate eGenes associated with both PD and melanoma 1226 

under the FDR threshold. 1227 
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Table 1. Number of Overlapping Variants in Processed GWAS Summary Statistic 1229 

Datasets 1230 

Dataset 
Melanoma 

Law 
2015 

PD 
Nalls 
2014 

PD 
Chang 
2017 

PD 
Nalls 
2019 

METAPD 
AD 

Kunkle 
2019 

FTD 
Ferrari 
2014 

Law 
2015 

1,038,973 - - - - - - 

Nalls 
2014 

997,418 1,015,955 - - - - - 

Chang 
2017 

1,038,516 1,015,498 1,075,906 - - - - 

Nalls 
2019 

1,007,785 983,012 1,033,569 1,034,607 - - - 

METAPD 1,007,521 983,023 1,032,819 1,033,287 1,033,303 - - 

Kunkle 
2019 

1,038,796 1,015,849 1,075,582 1,034,409 1,033,126 1,077,308 - 

Ferrari 
2014 

979,084 973,381 993,831 961,697 961,512 994,078 994,337 

All GWAS summary statistic datasets were standardized and filtered using the same pipeline. 1231 

We annotated all variants with dbSNP v151 rs-identifiers and gnomAD non-Finnish European 1232 

(NFE) allele frequencies. We filtered variants as to only include bi-allelic variants with rs-1233 

identifiers and further removed variants with an effect allele frequency less than 0.05, variants 1234 

with strand ambiguous alleles, variants with limited support, i.e. those supported by a low 1235 

sample or study number, and variants that were not reported in the HapMap3 study. Presented 1236 

are the numbers of variants overlapping between each dataset. METAPD is an inverse-1237 

variance-weighted meta-analysis of the three independent Parkinson disease summary statistic 1238 

datasets. PD: Parkinson disease; AD: Alzheimer disease; FTD: Frontotemporal dementia. 1239 
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Table 2. GNOVA Genetic Correlation Results for independent Parkinson Disease 1241 

Datasets 1242 

Parkinson Disease Dataset Nalls2014 Chang2017 Nalls2019 METAPD 

Nalls2014 
nCase = 9,581 

nControl = 33,245 
- - - - 

     
Chang2017 
nCase = 6,476 

nControl = 302,042 

0.95 [0.77, 1.12] 
(4.16 × 10-26) - - - 

     
Nalls2019 

nCase = 33,674 
nControl = 449,056 

1.07 [0.90, 1.25] 
(7.91 × 10-34) 

0.94 [0.80, 1.09] 
(1.43 × 10-36) - - 

     
METAPD 

nCase = 49,731 
nControl = 784,343 

1.00 [0.83, 1.18] 
(1.04 × 10-28) 

0.71 [0.56, 0.86] 
(8.09 × 10-21) 

1.06 [0.91, 1.21] 
(6.10 × 10-42) - 

We estimated the genetic correlation between the independent Parkinson disease datasets using 1243 

GNOVA software. All correlation estimates, 95% confidence intervals – presented in square 1244 

brackets - and p-values - presented in parentheses - are corrected for any potential sample 1245 

overlap. GNOVA genetic correlation estimates are unbounded and thus may be greater than 1. 1246 

METAPD is an inverse-variance-weighted meta-analysis of the three independent Parkinson 1247 

disease summary statistic datasets.  1248 

 1249 

 1250 

  1251 
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Table 3. GNOVA Genetic Correlation Results for Meta-analyzed Parkinson Disease, 1252 

Melanoma, and Comparator Neurodegenerative Diseases GWAS Summary Statistic 1253 

Datasets 1254 

Summary Statistic Dataset 
Melanoma 
Law2015 

PD 
METAPD 

AD 
Kunkle2019 

FTD 
Ferrari2014 

Melanoma 
Law2015 

nCase = 12,814 
nControl = 23,203 

- - - - 

     
PD 

METAPD 
nCase = 49,731 

nControl = 784,343 

0.17 [0.10, 0.24] 
(4.09 × 10-06) - - - 

     
AD 

Kunkle2019 
nCase = 21,982 

nControl = 41,944 

-0.02 [-0.11, 0.07] 
(0.73) 

0.01 [-0.06, 0.09] 
(0.71) - - 

     
FTD 

Ferrari2014 
nCase = 2,154 

nControl = 4,308 

-0.13 [-0.37, 0.12] 
(0.32) 

0.27 [0.07, 0.47] 
(8.43 × 10-03) 

0.22 [-0.05, 0.49] 
(0.11) - 

We estimated the genetic correlation between diseases using processed disease-specific GWAS 1255 

summary statistic datasets and GNOVA software. All correlation estimates, 95% confidence 1256 

intervals – presented in square brackets - and p-values - presented in parentheses - are corrected 1257 

for any potential sample overlap. METAPD is an inverse-variance-weighted meta-analysis of the 1258 

three independent Parkinson disease summary statistic datasets. PD: Parkinson disease; AD: 1259 

Alzheimer disease; FTD: Frontotemporal dementia.  1260 

  1261 



46 

 

Table 4. GNOVA Genetic Correlation Results for Independent Parkinson Disease, 1262 

Melanoma, and Comparator Neurodegenerative Diseases GWAS Summary Statistic 1263 

Datasets 1264 

Summary Statistic Dataset 

Melanoma 
Law2015 

nCase = 12,814 
nControl = 23,203 

AD 
Kunkle2019 

nCase = 21,982 
nControl = 41,944 

FTD 
Ferrari2014 
nCase = 2,154 

nControl = 4,308 

    
PD 

Nalls2014 
nCase = 9,581 

nControl = 33,245 

0.14 [0.02, 0.25] 
(1.79 × 10-02) 

-0.11 [-0.22, 0.00] 
(4.94 × 10-02) 

0.27 [-0.06, 0.60] 
(0.10) 

    
PD 

Chang2017 
nCase = 6,476 

nControl = 302,042 

0.25 [0.16, 0.33] 
(3.31 × 10-09) 

-0.01 [-0.11, 0.09] 
(0.87) 

-0.16 [-0.45, 0.12] 
(0.26) 

    
PD 

Nalls2019 
nCase = 33,674 

nControl = 449,056 

0.19 [0.10, 0.29] 
(8.28 × 10-05) 

0.05 [-0.04, 0.14] 
(0.27) 

0.40 [0.14, 0.66] 
(2.78 × 10-03) 

We estimated the genetic correlation between diseases using processed disease-specific GWAS 1265 

summary statistic datasets and GNOVA software. All correlation estimates, 95% confidence 1266 

intervals – presented in square brackets – and p-values - presented in parentheses - are corrected 1267 

for any potential sample overlap. PD: Parkinson disease; AD: Alzheimer disease; FTD: 1268 

Frontotemporal dementia.  1269 
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Table 5. Disease-Inferred Gene Expression Profile Overlap between Melanoma and PD in 1271 

GTEx v7 Reference Panel Tissues 1272 

GTEx v7 Tissue 
Number of Samples in 

Tissue Reference Panel 

Melanoma vs. METAPD 

ρGE p-value 

Adipose Subcutaneous 385 0.30 [0.01, 0.59] 4.82 × 10-02 

Adipose Visceral Omentum 313 0.23 [-0.03, 0.49] 9.39 × 10-02 

Adrenal Gland 175 0.25 [-0.10, 0.59] 1.73 × 10-01 

Artery Aorta 267 0.14 [-0.16, 0.44] 3.64 × 10-01 

Artery Coronary 152 0.19 [-0.34, 0.71] 4.93 × 10-01 

Artery Tibial 388 0.15 [-0.19, 0.49] 3.93 × 10-01 

Brain Amygdala 88 0.25 [-0.10, 0.60] 1.77 × 10-01 

Brain Anterior cingulate cortex BA24 109 0.17 [-0.28, 0.62] 4.58 × 10-01 

Brain Caudate basal ganglia 144 0.29 [0.01, 0.58] 4.89 × 10-02 

Brain Cerebellar Hemisphere 125 0.18 [-0.18, 0.54] 3.38 × 10-01 

Brain Cerebellum 154 0.17 [-0.11, 0.45] 2.32 × 10-01 

Brain Cortex 136 -0.04 [-0.51, 0.43] 8.75 × 10-01 

Brain Frontal Cortex BA9 118 -0.05 [-0.58, 0.49] 8.67 × 10-01 

Brain Hippocampus 111 0.41 [0.12, 0.70] 1.15 × 10-02 

Brain Hypothalamus 108 0.41 [0.07, 0.75] 3.09 × 10-02 

Brain Nucleus accumbens basal ganglia 130 0.34 [-0.04, 0.73] 9.04 × 10-02 

Brain Putamen basal ganglia 111 0.30 [-0.04, 0.64] 9.60 × 10-02 

Brain Spinal cord cervical c-1 83 0.26 [-0.56, 1.08] 5.49 × 10-01 

Brain Substantia nigra 80 0.42 [0.14, 0.71] 9.02 × 10-03 

Breast Mammary Tissue 251 0.24 [-0.09, 0.57] 1.64 × 10-01 

Cells EBV-transformed lymphocytes 117 0.09 [-0.39, 0.58] 7.11 × 10-01 

Cells Transformed fibroblasts 300 0.29 [0.07, 0.51] 1.35 × 10-02 

Colon Sigmoid 203 -0.01 [-0.44, 0.42] 9.60 × 10-01 

Colon Transverse 246 0.24 [-0.10, 0.57] 1.70 × 10-01 

Esophagus Gastroesophageal Junction 213 0.28 [-0.00, 0.56] 5.88 × 10-02 

Esophagus Mucosa 358 0.13 [-0.17, 0.43] 3.92 × 10-01 

Esophagus Muscularis 335 0.24 [-0.02, 0.51] 7.36 × 10-02 

Heart Atrial Appendage 264 0.31 [0.09, 0.54] 8.27 × 10-03 

Heart Left Ventricle 272 0.08 [-0.24, 0.41] 6.22 × 10-01 

Liver 153 0.25 [-0.07, 0.56] 1.36 × 10-01 

Lung 383 0.17 [-0.27, 0.60] 4.54 × 10-01 

Minor Salivary Gland 85 0.45 [0.15, 0.75] 7.49 × 10-03 

Muscle Skeletal 491 0.17 [-0.07, 0.42] 1.70 × 10-01 

Nerve Tibial 361 0.27 [-0.00, 0.53] 5.61 × 10-02 
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Ovary 122 0.30 [-0.12, 0.71] 1.79 × 10-01 

Pancreas 220 0.35 [0.04, 0.66] 3.15 × 10-02 

Pituitary 157 0.30 [0.00, 0.59] 5.54 × 10-02 

Prostate 132 0.08 [-0.33, 0.49] 7.10 × 10-01 

Skin Not Sun Exposed Suprapubic 335 0.37 [0.17, 0.57] 7.58 × 10-04 

Skin Sun Exposed Lower leg 414 0.29 [-0.01, 0.58] 5.96 × 10-02 

Small Intestine Terminal Ileum 122 0.29 [-0.01, 0.58] 6.71 × 10-02 

Spleen 146 0.40 [0.13, 0.66] 5.49 × 10-03 

Stomach 237 0.34 [0.04, 0.64] 3.23 × 10-02 

Testis 225 0.09 [-0.22, 0.39] 5.78 × 10-01 

Thyroid 399 0.26 [-0.02, 0.54] 7.66 × 10-02 

Uterus 101 0.30 [-0.02, 0.61] 8.43 × 10-02 

Vagina 106 -0.11 [-0.93, 0.72] 8.05 × 10-01 

Whole Blood 369 0.28 [-0.02, 0.57] 7.38 × 10-02 

We generated disease-inferred gene expression profiles based on standardized and processed 1273 

GWAS summary statistics using FUSION/TWAS software and the Genotype-Tissue Expression 1274 

Project (GTEx) v7 reference panel. We further compared the overlap of these disease-inferred 1275 

gene expression profiles using RHOGE software. METAPD is an inverse-variance-weighted 1276 

meta-analysis of the three independent Parkinson disease summary statistic datasets. PD: 1277 

Parkinson disease; ρGE: correlation coefficient for inferred transcriptomic overlap; BA: Brodmann 1278 

Area. 1279 
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Table 6. Cross-Tissue eGene-Disease Associations for Melanoma and PD 1281 

Gene 

Melanoma  
UTMOST Cross-tissue 

 PD  
UTMOST Cross-tissue 

Test Metric P  Test Metric P 

GPATCH8 9.27 8.33 × 10-05  9.18 9.17 × 10-05 
MYO9A 10.10 2.41 × 10-05  6.47 1.01 × 10-03 
PIEZO1 176.52 2.74 × 10-11  9.29 5.65 × 10-05 
SOX6 9.02 1.30 × 10-04  9.77 5.97 × 10-05 

TRAPPC2L 690.56 2.36 × 10-11  9.27 8.47 × 10-05 
ZNF341 8.42 1.67 × 10-04  6.57 1.19 × 10-03 
ZNF778 219.82 2.55 × 10-11  6.07 1.47 × 10-03 

We inferred cross-tissue, eGene-disease associations based on standardized and processed 1282 

melanoma and METAPD GWAS summary statistics using UTMOST software and the 1283 

Genotype-Tissue Expression Project (GTEx) v6 reference panel. METAPD is an inverse-1284 

variance-weighted meta-analysis of the three independent Parkinson disease (PD) summary 1285 

statistic datasets. 1286 

 1287 


