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Abstract 

 

We can recognise people that we know across their lifespan.  We see family members age, 

and we can recognise celebrities across long careers.  How is this possible, despite the very 

large facial changes that occur as people get older?  Here we analyse the statistical properties 

of faces as they age, sampling photos of the same people from their 20s to their 70s.  Across a 

number of simulations, we observe that individuals’ faces retain some idiosyncratic physical 

properties across the adult lifespan that can be used to support moderate levels of age-

independent recognition.  However, we found that models based exclusively on image-

similarity only achieved limited success in recognising faces across age.  In contrast, more 

robust recognition was achieved with the introduction of a minimal top-down familiarisation 

procedure.  Such models can incorporate the within-person variability associated with a 

particular individual to show a surprisingly high level of generalisation, even across the 

lifespan.  The analysis of this variability reveals a powerful statistical tool for understanding 

recognition, and demonstrates how visual representations may support operations typically 

thought to require conceptual properties.  

 

Keywords: face perception; face recognition; age perception   
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Facial identity across the lifespan 

 

1. Introduction: Recognising people at different points in their lives 

Paul McCartney has been famous for nearly sixty years, at the time of writing. As a highly-

photographed celebrity, his image appears over a huge range of viewing conditions. Some 

aspects of his appearance are transient from moment to moment (e.g. pose, expression, 

lighting), some involve deliberate changes in self-presentation (such as hairstyle and 

moustache) and some are much slower to change (e.g. effects of health and ageing).  Despite 

this, many viewers familiar with Sir Paul can recognise him accurately and consistently 

across this extensive range (see Fig. 1).  In this study, we focus on changes due to time:  how 

can we recognise someone's face over a sixty-year period?  Are multiple visual 

representations necessary (‘young McCartney’, ‘middle-aged McCartney’ etc.) or is there 

sufficient commonality across all his images to support recognition? Indeed, is this problem 

solvable for human viewers using only visual processes?  Can we create a common 

representation capable of recognising all of the images in Fig. 1, or must we, of necessity, 

recognise photos from the top and bottom rows of Fig. 1 using independent visual 

representations, supported by a common network of semantic knowledge and experience?  

What would be the characteristics of a visual representation capable of incorporating this 

level of age-related variability?  

 

Familiar face recognition has two components, ‘telling people apart’, i.e. discriminating one 

identity from another, and ‘telling people together’, i.e. cohering multiple images of the same 

person (Andrews, Jenkins, Cursiter, & Burton, 2015; Burton, 2013; Jenkins, White, Van 

Montfort, & Burton, 2011).  In fact, people are generally very accurate at recognising familiar 

faces, and relatively unaffected by superficial image variability due to pose and viewing 
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conditions (Bruce, Henderson, Newman, & Burton, 2001; Burton, Wilson, Cowan, & Bruce, 

1999).  In contrast, viewers are much less accurate in identity tasks with unfamiliar faces, for 

example finding it hard to match different images of the same person (e.g. Bruce et al., 1999, 

2001; Megreya & Burton, 2006, 2008), and are severely affected by superficial image 

changes (e.g. Bruce, 1982; Hill & Bruce, 1996; O’Toole, Edelman, & Bülthoff, 1998; 

Patterson & Baddeley, 1977). 

 

 

 

Fig. 1. Images of Sir Paul McCartney across the three time periods used throughout this 

paper.  Images on the top row were taken in the 1960s-70s, images in the middle row were 
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taken in the 1980s-90s and images in the bottom row were taken in the 2000s-10s.  See image 

attributions in the Acknowledgements section.  

 

We have argued that a key part of face learning, by which a face becomes familiar, is the 

acquisition of knowledge about how that particular face varies (Burton, 2013; Jenkins et al., 

2011; Young & Burton, 2018).  Examining the physical properties of multiple images of the 

same person reveals that individuals vary in idiosyncratic ways (Burton, Kramer, Ritchie, & 

Jenkins, 2016).  In consequence, learning to recognise a familiar face must involve learning 

about the identity-specific ways in which that particular face can change in appearance across 

different encounters.  However, this variability has so far been studied only over relatively 

limited timescales.  Here we ask whether a mechanism for learning face representations over 

variability could cope with the large changes in appearance across a whole adult lifespan.  

 

Of course, there are general properties of face transformations due to ageing, some of which 

are well-understood at a population level.  For example, the effects of age on 3d face shape, 

pigmentation and texture can be captured, on average, by known physical manipulations 

(Burt & Perrett, 1995; Geng, Zhou, & Smith-Miles, 2007; Pittenger & Shaw, 1975).  

However, these general transformations are of limited use in capturing the ageing process for 

a particular individual.  Instead, lifestyle choices (e.g. diet), biological factors (e.g. proneness 

to balding) and self-presentation choices (e.g. make-up, facial hair), mean that one cannot 

reliably predict how a particular person’s appearance will change over time. Despite this, 

previous multidimensional scaling studies consistently identify age as one of the key 

dimensions for face recognition (Johnston et al., 1997; Shepherd, Ellis, & Davies, 1977) and 

there is converging evidence for significant impairments to recognition accuracy with the 

introduction of age as a factor in face recognition, face matching and live person 



Running head: FACE RECOGNITION ACROSS TIME 

 

 6 

identification (Davis & Valentine, 2009; George & Hole, 1998; Megreya, Sandford, & 

Burton, 2013.  However, all of these studies use relatively small age ranges (often across 

months) and thus tell us rather little about how we recognise identities across their whole 

lifespan.  

 

From the perspective of the perceiver, there are several ways in which one might build a 

representation of a face over time.  For a personally-familiar individual, one can make 

incremental updates on each new encounter, observing the ageing process as time passes.  For 

a celebrity, e.g. a film star, one might track a person as they age, but nevertheless be exposed 

to frequent encounters with earlier manifestations of the face, e.g. through watching films 

from different time periods.  For a young viewer, who has not aged alongside Paul 

McCartney, it may be that one encounters images of him in a relatively arbitrary sequence 

across his age.  Any mechanism for representing a face over the lifespan must be able to 

incorporate all of these differing types of incremental development.  

 

In fact, surprisingly little is known about face learning, and still less is known about long-

term representational updating.  Early studies showed standard effects of exposure on face 

learning, such that increasing number and duration of exposures leads to better subsequent 

recognition (MacLin, MacLin, & Malpass, 2001; Reynolds & Pezdek, 1992).  More recently, 

it has become clear that the quality of exposure is a critical component in face learning: to 

develop a generalisable representation, capable of supporting recognition of novel 

encounters, a large range of experience is necessary (Dunn, Kemp, & White, 2018; Matthews 

& Mondloch, 2018; Murphy, Ipser, Gaigg, & Cook, 2015; Ritchie & Burton, 2017).  The use 

of highly variable, naturally occurring (‘ambient’) images shows that exposure to variability 

between images of the same face supports generalisable learning that can lead to accurate 
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recognition of new (previously unseen) images of a particular face.  Existing studies 

demonstrating this point use images with high variance in camera, lighting, expression and 

personal presentation (hairstyle etc).  However, they do not incorporate the level of 

variability encountered when one recognises a person over a sixty year adult lifespan, as with 

our example of Paul McCartney.   

 

1.1 Bottom-up and top-down contributions to recognition 

Research in face identification generally focusses on the visual aspects of recognition: how 

can a visual input be mapped onto a stored representation?  However, in real-world 

encounters, recognition is typically supported by many additional sources of information.  As 

we talk to colleagues at work we have rather diverse evidence to support their identification, 

such as their voices, the content of the conversation and so forth.  Furthermore, although the 

presentations of their faces will vary mid-conversation, through pose, expression or lighting 

change, we do not need to make a new visual match to check their identity (Young, 2018).  In 

media exposure to famous people we also often have a great deal of top-down identification 

support, for example as we watch films whose cast we know or watch a newscaster 

introducing an item with ‘In Washington today, the President said ….’.   

 

What is the effect of top-down support for face recognition?  We know, of course, that 

recognition of a well-known face can take place without it.  A great body of psychological 

research relies on studies in which viewers see a sequence of familiar faces, and have to 

discriminate between these and unfamiliar faces.  Despite the lack of any warning about who 

will appear in the experiment, this is generally not too challenging a task if the familiar faces 

are sufficiently well-known (typically media celebrities).  Nevertheless, we also know that 

top-down support can bring about significant changes in face recognition. For example, many 



Running head: FACE RECOGNITION ACROSS TIME 

 

 8 

studies show that familiarity decisions are faster when faces are preceded by those of related 

people, the phenomenon of semantic priming (Bruce & Valentine, 1986; Schweinberger, 

1996; Young, Flude, Hellawell, & Ellis, 1994).  There are also well-known effects of context 

in face recognition, such that faces of moderate familiarity are easier to recognise when they 

arise in an expected context than when they occur in unexpected places (e.g. Hanczakowski, 

Zawadzka, & Macken, 2015; Watkins, Ho, & Tulving, 1976; Young, Hay, & Ellis, 1985).  

While these effects are widely-acknowledged, the literature typically does not address the 

problem of how to disentangle the contributions of visual and non-visual processes to 

recognition.  

 

In the studies below, we examine face recognition supported by bottom-up and top-down 

processes.  Taking the difficult problem of recognising someone over their adult lifespan, we 

ask how much can be achieved by representations based on image-similarity alone, and how 

much (if anything) is added by incorporating a top-down component of guided recognition at 

the face learning stage.  If faces retain some level of physical characteristic that is preserved 

across ageing, then physical analysis of multiple images may in itself deliver a robust 

representation, capable of generalisation to novel instances.  On the other hand, if a 

contribution from top-down processes is needed for this task, then statistics based on image 

descriptions alone may not be enough to solve this difficult problem.     

 

To operationalise bottom-up image-similarity and top-down guided recognition, we use 

established statistical descriptions of faces.  We measure image-similarity in a space derived 

from principal components analysis (PCA) of faces.  This is a very simple, linear description 

of the factors underlying variation in face pictures, and is common in psychological, 

neurophysiological and automatic recognition research (Chang & Tsao, 2017; O’Toole, Abdi, 
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Deffenbacher, & Valentin, 1993; Sirovich & Kirby, 1987; Turk & Pentland, 1991).  To 

model guided recognition, we use linear-discriminant function analysis (LDA).  This is a 

common top-down clustering method which captures the covariance structures within and 

between different stimuli classes.  It extracts the most efficient features used to describe a 

class of stimuli (in our case – different images of the same person) which can also best serve 

to discriminate it from members of another class (different images of another person).  This is 

done by minimising within-group differences (here, the differences between images of the 

same face) while maximising separation between groups (i.e. between different faces).  Once 

we have used LDA to establish these optimal dimensions (or features), we can then test this 

model by using it to classify novel images of the same or new identities.  This allows us to 

determine whether the identity clusters from LDA produce a covariance structure that could 

potentially be useful to human observers.  The technique has been used in previous models of 

face perception (Bekios-Calfa, Buenaposada, & Baumela, 2011; Kramer, Young, & Burton, 

2018), and provides a simple but effective way of establishing between-person differences.  

 

With these statistical tools, we examine images taken across a very wide age period, as 

illustrated in Fig. 1. We use photos that are deliberately unstandardized to represent the types 

of pictures people recognise day to day; so-called ambient images (Burton, Jenkins, & 

Schweinberger, 2011; Sutherland et al., 2013). Across simulations, we ask: to what extent is 

it possible to ‘recognise’ novel photos of someone based solely on the physical similarity 

between images?  We then investigate to what extent top-down processes help – i.e. when 

models are built to cohere disparate images of the same person (using a combination of PCA 

and LDA), does this help to recognise new pictures, beyond simple physical image 

similarity? 
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To summarise, our interest in age here is two-fold.  First, since previous models have not 

typically incorporated this level of variability, we are interested to establish the limits of 

simple statistical classifications across this range.  Second, we wish to establish whether there 

is a core characteristic of a face which transcends age:  to what extent does learning a 20-year 

old face allow one to recognise the person at 60? The following simulations address these 

issues with the faces of celebrities for whom photos exist over this long period.  

 

 

2. Method 

 

2.1 Image Set 

We collected over 200 images of each of 10 people spanning the period from 1960 to 2018. 

As we intended to compare variability within and between individuals, we took the decision 

not to introduce variability due to gender or ethnicity.  The ten individuals were all white 

(Caucasian), male musicians, active from around the mid-1950s to the present time.  

 

Images for each identity were collected for 3 separate time periods: 1960s-70s, 1980s-90s and 

2000s-2010s.  The set (referred to as the ‘lifespan set’ from now on) contained a total of 2100 

images – 70 images for each identity in each time period.  The images were selected from the 

online archive Getty Images which contains over 200 million assets.  They varied greatly in 

lighting conditions, pose, hairstyle, emotional expression, facial hair and image quality.  We 

used only images in which all the internal features were visible (i.e. within about +/- 30° from 

full face) and not obscured by clothing or accessories (see Fig. 1).  For the purpose of 

computational analysis all images were represented in grayscale using a lossless image 

format (bitmap) and resized to 190 x 285 pixels.  
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2.2 General Procedure 

In the following simulations, we compared multidimensional models derived from: (i) image 

statistics (using PCA) and (ii) identity clustering (using PCA+LDA).  In each case, a training 

set of images was used to build a space, while a different subset was retained for later test.   

After training, test images were projected into these PCA or PCA+LDA spaces, and 

proximity to training images was measured using simple Euclidean distance.  Test images 

were regarded as correctly classified if the nearest training image in the space was a photo of 

the same identity.  

 

For PCA, we followed the general procedure adopted in previous studies (Burton et al., 2016; 

Kramer et al., 2018; Kramer, Young, Day, & Burton, 2017; see Smith, 2002 for a detailed 

tutorial) by using normalised face images, computed by aligning 82 fiducial points on each 

image (corners of the eyes, tip of the nose, etc. – see Burton et al., 2016 for details).  The 

location of these fiducial points was determined using a standard semi-automatic process 

requiring five manually-aligned landmarks (see Kramer et al., 2017 for details).  All images 

were then shape-standardised by morphing them to the average shape of the entire face set 

(Burton, Miller, Bruce, Hancock, & Henderson, 2001; Craw, 1995).  PCA was applied to 

these shape-normalised textures (see Kramer, Jenkins, & Burton, 2017 for appropriate 

software).  Only the first N components explaining 95% of the variance in the image pixel 

intensity information were retained for subsequent analysis (N is reported for each specific 

model below).  LDA was applied to the image projections in PCA space, such that images of 

the same person were clustered together, minimising intra-class and maximising inter-class 

differences.  As with PCA, we retained derived dimensions which accounted for 95% of the 



Running head: FACE RECOGNITION ACROSS TIME 

 

 12 

input variance.  A more detailed description of the LDA procedure can be found in Kramer et 

al., (2017; 2018; see also Tharwat et al., 2017 for a comprehensive tutorial on LDA).     

 

3. Simulations 

 

3.1 Simulation 1: Recognition in image-based and identity-clustered spaces 

In this first simulation, we examine face classification of images across the whole age range, 

building spaces based on photos sampled from the entire set.  Our aim is to establish whether 

face classification is possible in the context of such large within-person variability, and 

whether the addition of top-down identity-clustering will enhance classification accuracy.  

 

3.1.1 Simulation 1a: Learning time-invariant identities 

We derived spaces from PCA and from PCA+LDA, as described above.  From the lifespan 

set (total of 2100 images) we created training sets (1800 images) comprising 180 images per 

identity (60 images in each time period) and test sets (300 images) comprising 30 images per 

identity (10 images in each time period).  This procedure was repeated 7 times with 

counterbalancing, such that any particular image was included 6 times in training sets and 

once in a test set.  So, in each model, images in the test set were always novel compared to 

those in the corresponding training set.  

 

The procedure for construction and test of PCA and PCA+LDA models is summarised in Fig. 

2.  In these simulations, we used a PCA space built on 178 components, the number needed 

to account for 95% of the image variance.  Test items were projected into this space, and the 

closest training item was established using Euclidean proximity.  For the PCA+LDA 

classification, we applied LDA to the PCA projections of the images in the training set, then 
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projected the test images in the newly-created LDA space, and, again, computed the 

Euclidean distance between each test and training image.  For both the PCA Only and 

PCA+LDA models we calculated the Euclidean distance between each image in the test and 

training sets and then identified the closest image from the training set to each of the images 

in the test set.  In each case, model accuracy was estimated as the average classification 

success (% of correct responses) across all 7 iterations.  As there are 10 identities represented 

here, chance accuracy is 10%.  
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Fig. 2. Classification procedure for the PCA (left) and PCA+LDA (right) models in 

Simulation 1.  First, we split the images from the lifespan set into seven different training 

(1800 images) and test (300 images) sets and we use the same sets for both the PCA Only and 

the PCA+LDA models.  Both sets contain images from all three time periods. For every 

iteration of the procedure in both models, we then perform PCA on the training set.  For the 
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PCA Only model, we project the images from the test set into the newly created PCA space, 

then for each image in the test set, we calculate its distance to every image in the training set 

and determine the identity of the closest image.  For the PCA+LDA model, we perform LDA 

on the training set and project all images from the test set into the newly created LDA space.  

Again, we calculate the distance between each test and each training image and determine the 

identity of the closest image.  

 

3.1.1.1 Simulation 1a: Results and Discussion 

Fig. 3 shows the average classification accuracy for novel test images from the PCA-only and 

PCA+LDA models against chance performance.  Both PCA and PCA+LDA perform 

considerably above chance levels, with the identity-clustered spaces created by LDA 

providing a substantial boost to performance. (Details of individual runs are given in 

Supplementary Materials, Table S1; each iteration shows the same pattern.)  
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Fig. 3. Mean classification accuracy for novel test images for both the PCA and PCA+LDA 

approaches.  Dashed line represents chance performance.  Error bars show standard error.  

 

The performance of the PCA-only model is perhaps surprising.  Using simple image-

descriptions, the model performs rather well (around 80% accuracy) when identifying people 

over a very large time period.  So, despite images showing people ranging from their 20s to 

their 70s, and despite all the people sharing similar demographics (white male musicians) 

there is enough commonality between superficial image-descriptions to support a reasonably 

good level of classification accuracy, well above chance.  This suggests that there may be 

something in common between images of Paul McCartney (say) across his entire lifespan, 

which can be used for recognition.  Of course, the ‘training’ and test images cover the same 

time periods, and so this result may rely on within-period similarity (we test generalisability 

between periods in simulations below).  However, in this setting, the addition of top-down 

information, in the form of identity-clustering, gives a considerable added advantage, taking 

the PCA+LDA model to near perfect performance.  In other words, a simple image-

recognition method can benefit considerably from incorporating, at learning, the information 

that particular photos (for example, Paul McCartney at different ages) all belong to the same 

person.  

 

3.1.2 Simulation 1b:  Learning time-specific identities 

The simulation above seems to suggest that fairly simple statistical approaches to face 

recognition are robust against extensive within-person variability, incorporating decades of 

change.  However, we would also like to establish whether there is any advantage to be 

gained by forming more specific representations for recognition.  For example, would it be 
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efficient to store several representations of Paul McCartney, such that a Beatles-era Paul 

would be recognised somewhat independently of a modern-era Paul?  In order to do this, we 

repeated the simulation above, but this time treating each time-period independently.  So, we 

now seek to make a 30-way classification, treating each of three time periods of the 10 

identities as representing a ‘different person’.  Exactly the same training and test image sets 

were used as in the previous simulation.  

 

3.1.2.1 Simulation 1b: Results and Discussion 

Fig. 4 shows the average classification accuracy for novel test images for both the PCA and 

PCA+LDA models. As with the 10-way classification, we see that both PCA and PCA+LDA 

perform substantially above chance.  Overall performance is lower than in Simulation 1a, 

consistent with the fact that there are now 30 rather than 10 classification options.  

Nevertheless, there is a high level of classification accuracy, and this is boosted considerably 

by identity-clustering.  
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Fig. 4. Mean classification accuracy and errors for both the PCA and PCA+LDA approach 

using a 30-way classification.  Dashed line represents chance performance.  

 

The analysis of errors in this simulation is also instructive.  Imagine a test image Paul 

McCartney from the 1960s which is not correctly recognised.  Is it more likely that the error 

will arise because somebody else’s photo from the 1960s is chosen instead, or because 

another photo of Paul McCartney, but from a later period, is chosen?  Either is plausible here.  

Simulation 1a suggests quite high commonality across images of the same person over time, 

and so we might predict errors in this situation to reflect ‘Right person/Wrong time’.  On the 

other hand, we might expect different people of the same era to look more alike than the same 

person in different eras.  For example, many of these musicians had fashionably copious hair 

in the 1960s, whereas several of them had no hair at all in later photos.  It should also be 

noted that pictures taken in the 1960s have some low-level characteristics in common, which 

differ from modern photos, due to the substantial changes in camera technology across this 

time period.  If recognition is highly influenced by these characteristics, then we might expect 

a predominance of ‘Wrong person/Right time’ errors.  

 

Fig. 4 shows that in the PCA+LDA model, almost all errors are ‘Right person/Wrong time’, 

retaining the identity of the test image.  This is interesting, because the clustering in each case 

was only made within a single time period (i.e. there were 30 categories derived from 

learning items).  Nevertheless, incorporating the within-person variability in a single time 

period appears to be enough to derive identity representations which can be useful across the 

entire adult lifespan – leading to almost perfect recognition of identity.  In contrast, errors 

deriving from the PCA model, based solely on image properties, are more evenly distributed 

across the different options.  This pattern of results was the same in all seven iterations of the 
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procedure (see Table S2 in the Supplementary Materials for further information).  Here we 

see a suggestion of a very useful property of within-person clustering. It appears that 

mapping different images onto the same representation, even within a restricted time period, 

results in a robust representation which can be recruited outside that time period – but this 

requires more than the simple image-similarity offered by PCA.  Top-down information 

during encoding, as used in LDA, results in a representation that is highly robust with respect 

to identity.  

 

3.2 Simulation 2: Recognition in the context of a large prior exposure to faces 

Our first simulation demonstrates that while access to physical variability alone is sufficient 

to support a degree of accurate classification across time, the addition of top-down identity 

information during learning increases performance substantially.  However, this simulation, 

like many previous face recognition models, fails to incorporate our vast background 

knowledge of faces and the way they change with time.  In order to address this, we next 

compare PCA and PCA+LDA models in spaces derived from a much larger database of 

faces, incorporating many more individuals than those we are explicitly testing.  These extra 

faces vary in all the ways typical of ambient face images, including age.  We hypothesise that 

abstraction over a background variability which includes ‘ambient’ age ranges may support 

the development of age-independent representations of the faces in our training and test sets.  

 

3.2.1 Simulation 2: Background set images 

For the next simulations, we collected a large set of 6100 images, which we label the 

‘background set’.  The set comprised 434 identities (243 males) who were mostly celebrities 

such as actors, musicians, comedians and TV presenters.  Critically, it contained no identities 

from the lifespan set (used in Simulation 1).  To mimic the wide range of exposure to faces of 
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differing levels of familiarity in everyday life, the background set included multiple images 

for 263 identities while the remaining 171 identities were represented with a single image 

only (cf. Kramer et al., 2018).  For people represented by multiple images, these ranged from 

2 to 170 photos per person, with a mean of 23.  All images were ‘ambient’ and varied in pose, 

lighting conditions, emotional expressions, age and image quality.   

 

 

 

Fig. 5. Examples of the types of images used in the background set.  The first and second pair 

of images on the bottom row depict the same identities.  They illustrate sampling images of 

the same identity across time.  See image attributions in the Acknowledgements section. 
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 As we are interested in face recognition across time, the background set included images of 

people aged between 18 and 88 years.  In order to ensure a broad coverage of ages, we 

included at least 50 identities in each of six pre-specified age groups (20-29, 30-39, 40-49, 

50-59, 60-69 and 70-79).  Each age group included an average of 10 images per identity.  We 

also tried to achieve broad coverage of image differences across time by including photos of 

similar-age identities from different decades.  For example, the set contained images of both 

the English actor Daniel Radcliffe who reached 29 in 2008 and the English singer-songwriter 

Marc Bolan who reached 29 in 1976.  Furthermore, for identities where this was possible 

(e.g., Tom Jones, Cher, etc.), we collected images spanning different decades, similar to those 

shown in Fig. 1.  The majority of identities were White (Caucasian), although other 

ethnicities were also represented.  Images were resized to 190 x 285 pixels and represented in 

grayscale, in a lossless image format (bitmap).  The images in this set were landmarked in 

exactly the same way as these in the lifespan set.  Fig. 5 shows examples of the types of 

images used in the background set.  

 

3.2.2 Simulation 2a: Learning time-invariant identities within an established face space 

PCA was first performed on the background set (6100 images).  We followed the same 

procedure as in the first simulation – PCA was performed on shape-normalised images and 

we used the first 258 PCs which explained 95% of the variance.  The images from the 

lifespan set were then projected into this PCA space.  We derived classification 

(‘recognition’) data from the same 7 training and test sets as used in Simulation 1.  We next 

ran LDA on the PCA signatures of the training set and projected images from the test set in 

this newly-created LDA face space.  The identity of the test images was classified by 

calculating the distance between each test and each training image and determining the 
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identity of the closest image.  Fig. 6 shows a simplified flow chart of the procedure.  Again, 

the model had 10 identities to choose from for classification, meaning that chance level was 

10%.  
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Fig. 6. Simplified representation of our classification procedure for both the PCA (left) and 

the PCA+LDA (right) approach in Simulations 2a and 2b.  First, we perform PCA on all 
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images from the background set which models our previous experience with faces and the 

way they age.  We then represent all images from the lifespan set into the context of the PCA 

space created from the background set.  All images from the lifespan set are then split into 

seven different training (1800 images) and test (300 images) sets and we use the same sets for 

both the PCA Only and the PCA+LDA models.  Both sets contain images from all three time 

periods.  For the PCA Only model, we use the projections of images from the lifespan set into 

the PCA space created from the background set.  For each image in the test set, we calculate 

its distance to every image in the training set and determine the identity of the closest image.  

For the PCA+LDA model, we perform LDA on the training set (still, represented as PCA 

projections of images from the lifespan set into the PCA space, created from the background 

set) and project all images from the test set into the newly created LDA space.  Again, we 

calculate the distance between each test and each training image and determine the identity of 

the closest image. 

 

3.2.2.1 Simulation 2a: Results and Discussion 

Fig. 7 shows the average classification accuracy for both the PCA only and the PCA+LDA 

models against chance performance.  As in Simulation 1, both models perform considerably 

above chance levels, with identity-clustered spaces providing an extra boost to performance.  

This was true in all seven iterations of the procedure (see Table S1 in the Supplementary 

Materials for further information).  Once again, it is perhaps surprising that simple PCA 

projections, based entirely on image similarity, are able to capture substantial identity 

information across a lifetime of images.  This demonstrates that the PCA model in Simulation 

1a does not derive its high accuracy levels simply by having encoded variance specific to the 

10 identities tested.  In the present simulation, the face space is built from a much wider set of 

identities, and does not include the test people at all.  In fact, PCA performance in Simulation 
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2a slightly exceeds that in Simulation 1a, suggesting that encoding extra variability from 

prior experience with a range of faces helps to some degree in image-level identity-

classification.  

 

 

 

Fig. 7. Mean classification accuracy for novel test images for both the PCA and PCA+LDA 

approach with a large PCA background set.  Dashed line represents chance performance.  

Error bars show standard error.  

 

For the PCA+LDA model, we once again see near-ceiling performance.  The top-down 

identity-clustering information provides the statistical model with enough information to 

identify people across their adult lifespan, even using PCA dimensions derived from an 

entirely different set.  
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3.2.3 Simulation 2b: Learning time specific identities within an established face space 

As in Simulation 1, we also examined the effect of establishing time-specific representations 

within the space derived from the background image set.  Is there any observable advantage 

in developing three representations per test identity – one for each time period?  As 

previously, we repeated the analysis above, but this time seeking a 30-way classification. Fig. 

8 shows mean accuracy for both PCA and PCA+LDA models.  

 

Once again, we see a high degree of accuracy in both models, with LDA adding a substantial 

boost to accuracy in classification.  As with Simulation 1, the large majority of errors in the 

PCA+LDA model are ‘Right person/Wrong time’.  This suggests that the clustering 

algorithm is preserving important identity information which can, to quite a large extent, be 

used across different age periods.  This is less clear in the PCA model, again suggesting that 

top down information about the range of a person’s possible appearance, even within a single 

age period, is useful for identification across the whole lifespan.  More detailed information 

about the classification outcomes in all seven iterations of the procedure can be found in 

Table S3 in the Supplementary Materials.  
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Fig. 8. Mean classification accuracy and errors for both the PCA and PCA+LDA approach 

with a large PCA base set and a 30-way classification.  Dashed line represents chance 

performance.  

 

3.2.4 Simulation 2c: Increasing the number of classification identities 

In all of our simulations so far, we have used a simple classification task across just ten 

identities. Despite the fact that all of the identities were male musicians active during the 

same period of time, it is still possible that we have overestimated classification accuracy by 

limiting the number of possible classification identities.  In order to address this issue and 

make our simulations more representative of real life recognition decisions, we included all 

identities from the background set (434 identities) in the classification for both the PCA Only 

and the PCA+LDA models, making our task a 1-in-444 choice (434 identities from the 

background set + 10 identities from the lifespan set).  
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The procedure of the present simulation was similar to that of Simulation 2a:  First, we 

applied PCA to all images in the background set, thus generating a simulation of previous 

experience with faces.  We then split the lifespan set into seven different training and test 

sets.  For the PCA Only model, we calculated the distance in PCA space between each image 

in the test set (300 images) and each image in the training and the background set (total of 

7900 images, 444 identities) and finally determined the identity of the closest image.  For the 

PCA+LDA model, we created an LDA space using each training set together with the entire 

background set, and projected all images from the test set into this newly created LDA space.  

Finally, we estimated the distance in LDA space between each image in the test set and each 

image in the training and the background sets (total of 7900 images, 444 identities) and 

identified the closest image.  Unlike our previous simulations, the models had 444 identities 

to choose from for classification, meaning that chance level was 0.2%.  

 

 



Running head: FACE RECOGNITION ACROSS TIME 

 

 29 

 

Fig. 9. Mean classification accuracy for novel test images for both the PCA and PCA+LDA 

approach with the identities from the large background set included in the simulation 

classification to create a 1-in-444 chance correct choice rate.  Dashed line represents chance 

performance.  Error bars show standard error.  

 

Fig. 9 shows the average classification accuracy for both the PCA only and the PCA+LDA 

models against chance performance.  Compared to Simulation 2a, we see a reduction in 

accuracy for both the PCA Only and the PCA+LDA models following the increased sample 

of possible identities for classification.  Nevertheless, both models still perform considerably 

above chance levels, with identity-clustered spaces providing an extra boost to performance.  

This was true in all seven iterations of the procedure (see Table S1 in the Supplementary 

Materials for further information).  The results from this simulation show that our previous 

models show higher absolute levels of accuracy than models with more response options. 
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However, they also replicate and strengthen our key finding that top-down information about 

identity provides a clear advantage for classification across the lifespan.  

 

3.3 Simulation 3: Classifying identity across time 

The results from the simulations above imply that there is substantial idiosyncratic, time-

invariant information in faces which can be used for identification by simple image similarity 

(PCA models) and, even more efficiently, by identity clustering statistics (PCA+LDA).  

However, in each of these simulations, we trained models on images spanning all time 

periods together.  Therefore, in our final section, we ask how well we can recognise a 

particular identity when we have been familiar with the way they look in only one of these 

time periods.  Moreover, as we have only presented simulation data so far, it is also important 

to consider human recognition behaviour.  This will help us establish the extent of cross-age 

face recognition difficulties in human observers as well as provide a valuable benchmark for 

the performance of our models.  

 

Behavioural data were collected from a sample of 34 students at the University of York (23 

female, Mean Age = 20.4, Age Range = 18-32).  All participants had normal or corrected-to-

normal vision, were unfamiliar with the identities included in the lifespan set and earned 

course credit for their participation.  The study was approved by the ethics committee at the 

University of York.  We used a face matching task in order to assess face recognition within 

and across all three time periods (1960s-70s, 1980s-90s and 2000s-2010s).  For this task, 

participants were presented with two images on a computer screen and were asked to indicate 

whether they depicted the same person (match trials) or two different people (mismatch 

trials).  We used 240 images from the lifespan set in order to create 120 trials (12 per ID, half 

match trials).  For each ID, participants completed 6 trials with no age gap (match and 
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mismatch pairs for each time period), 4 trials with a 20-year gap between images (60s vs 80s 

and 80s vs 00s) and 2 trials with a 40-year gap (60s vs 80s).  For mismatch trials identities 

were paired based on visual similarity. 

 

Fig. 10 shows the mean matching accuracy across all conditions. A 2x3 within subjects 

ANOVA with factors: age gap (no gap vs 20-year gap vs 40-year gap) and trial type (match 

vs mismatch) revealed a significant main effect of age gap (F (2, 66) = 27.55, p < .001, ηp
2 = 

.45).  There was no significant main effect of trial type (F (1, 33) < 1, p < .05, ηp
2 = .01) nor a 

significant interaction between age gap and trial type (F (2, 66) < 1, p < .05, ηp
2 = .02).  

Follow-up Tukey HSD tests showed that face matching accuracy with no age gap (M 

= 0.80, SD = 0.13, 95% CI [0.75, 0.84]) was significantly higher than matching accuracy with 

a 20-year age gap (M = 0.69, SD = 0.15, 95% CI [0.63, 0.74]) and a 40-year gap (M 

= 0.66, SD = 0.19, 95% CI [0.59, 0.73]) between the two images in the face pair.  There was 

no difference in accuracy with a 20- and a 40-year age gap.  One-sample t-tests (two-tailed) 

against chance (50%) showed that accuracy in each condition was significantly above chance 

(tmin = 4.24, all ps < .001).  These results illustrate the difficulties experienced by unfamiliar 

viewers to recognise identities across time when they only have image-based information 

available to them.  
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Fig. 10. Mean face matching performance across three age gap conditions (no age gap, 20-

year age gap and 40-year age gap).  Dashed line represents chance performance.  Error bars 

show within-subjects standard error (Cousineau, 2005). 

 

Next, we return to our simulations, this time training on single time periods and testing 

identification inside and outside the trained age-range.  For example, does knowledge of 

someone’s appearance in their twenties help recognise them in their sixties, and vice versa?  

The human data suggests a sharp drop-off in accuracy as the time-gap between images 

increases.  Thus, the only difference between Simulation 2 and the present simulation is that 

here we train on images from a single time period and we classify new images from the same 

or from a different time.  As with previous simulations, we compare classification accuracy 

using PCA only (based on physical properties of the images) and from PCA+LDA to 

determine the benefits of top-down clustering information.    
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3.3.1 Simulation 3: Procedure 

First, all images from the lifespan set (2100 images) were projected into the PCA space 

created from the background image set (6100 images).  Then, we split the lifespan set 

according to time period – images from the 1960s/70s, 1980s/90s and 2000s/10s.  There were 

700 images in each of these categories, 70 per identity.  As with the previous simulations, we 

created 7 different training sets (600 images each, 60 per identity) and test sets (100 images 

each, 10 per identity).  Sets were counterbalanced so that each image was included in a 

training set 6 times and once in a test set.  

 

In order to calculate classification performance for novel test images from PCA, we 

computed the distance between each image in the test set and each image in the training set.  

For PCA+LDA, we ran an LDA on the images from the training set, then projected the novel 

images from the test set into the newly-created LDA space and calculated the distance 

between each test and each training item.  We used the first 258 PCs for the base PCA (which 

explained 95% of the variance) and retained only the first LDA dimensions (up to 9) which 

explained 95% of the ‘discriminability’ of the overall LDA model.  

 

To test the generalisability of representations over time, we ran learning/test set combinations 

of three types: (i) training and test sets from the same time period; (ii) learning and test sets 

20 years apart; and (iii) learning and test sets 40 year apart.  We created separate models for 

all possible combinations of learning/test sets to generate identification data.  So, for 

example, separate models were created to identify 60s/70s images from the 2000s/10s 

learning set, and vice versa.  Classification accuracy was averaged across 7 different 

iterations for the within time simulations and across 49 iterations (7 training sets x 7 test sets) 

for the between time simulations. Fig. 11 shows a simplified flow chart of the procedure.   
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Fig. 11. Simplified representation of our classification procedure for both the PCA (left) and 

the PCA+LDA (right) approach in Simulation 3.  First, we perform PCA on all images from 
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the background set which models our previous experience with faces and the way they age.  

We then represent all images from the lifespan set into the context of the PCA space created 

from the background set.  All images from the lifespan set are then split into seven different 

training (600 images) and test (100 images) sets and we use the same sets for both the PCA 

Only and the PCA+LDA models.  The training sets always contained images from a single 

time period only and the test sets contained images from the same (for within time period 

classification) or a different time period (for between time period classification).  For the 

PCA Only model, we use the projections of images from the lifespan set into the PCA space, 

created from the background set.  For each image in the test set, we calculate its distance to 

every image in the training set and determine the identity of the closest image.  For the 

PCA+LDA model, we perform LDA on the training set (still, represented as PCA projections 

of images from the lifespan set into the PCA space created from the background set) and 

project all images from the test set into the newly created LDA space.  Again, we calculate 

the distance between each test and each training image and determine the identity of the 

closest image. 

 

3.3.2 Simulation 3: Results and Discussion 

Fig. 12 shows mean classification accuracy for the three types of simulations using the PCA 

and the PCA+LDA approach.  Here, for the first time, we observe a profound difference 

between image-similarity models based on PCA only, and models based on image-clustering 

(PCA+LDA).  First, we note good performance for identification within a given time-period.  

This pattern is consistent with Simulations 1 and 2 above: when we use training images from 

the same period as test images, a simple image-similarity technique is reasonably accurate, 

though there is still a marked advantage to be derived from identity clustering.  However, 

when training and test images come from differing periods (i.e. when learning 20 year olds 
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and testing on 40 year olds) the two statistical models diverge markedly.  Here, the clustering 

approach continues to provide well above chance levels of accuracy but the image-based 

PCA approach fails catastrophically.  We saw the same pattern of results in all seven 

iterations of the procedure (see Table S4 in the Supplementary Materials for further details).    

 

These are interesting results.  We observed in our previous simulations that it is possible to 

derive a representation (i.e. a functional face space) based on images sampled across a whole 

adult lifespan, and that such a representation could be used for quite accurate identification. 

However, in the present case, we observe that simple image-similarity breaks down as a 

useful representation when tested outside the range of learning.  So, while image-similarity 

can support recognition within a time period, it cannot do so across periods.  However, the 

introduction of top-down information using LDA is enough to maintain continued high levels 

of recognition.  Of course, as the time between training and test images increases, 

performance falls, as we would expect for a harder task.  Nevertheless, clustering together 

multiple images of a person within a time period forms a representation which is useful 

enough to generalise beyond it.  This implies that the identification of person-specific 

variability leads to representations which are much more robust than those based only on 

physical similarity.  
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Fig. 12. Mean classification accuracy with no time difference, 20-year difference and 40-year 

difference between images in the training and test sets for the PCA and PCA+LDA 

procedures.  Dashed line represents chance performance.  Error bars show standard error.  

 

Representation of idiosyncratic variability has been shown to be key to familiar face 

recognition, though previously only within limited time periods (Burton et al., 2016).  While 

we have now shown generalisation over a much larger range, we can also ask whether the 

trajectory of different people’s aging is itself idiosyncratic?  It seems intuitively the case that 

some people’s appearance changes more over the aging process than others.  As we noted in 

the introduction, there are some common effects due to skeletal and skin ageing, but these do 

not seem consistently to account for many of the decade-to-decade changes we observe in the 

people we know.  
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Fig. 13 shows data from the identity-clustered classification (PCA+LDA; Fig. 12) broken 

down for each of the ten identities, and ordered by mean overall performance.  The figure 

shows large individual differences.  While all people are well-recognised within-time period, 

some (to the left of Fig. 13) are much more difficult to recognise across time periods than 

others (those to the right).  The images below the plot show the identities that were easiest 

and most difficult to classify).  This is clear evidence of idiosyncrasy in ageing: some people 

change more over time than others (Brian Wilson representing an example of the former, and 

Frankie Avalon the latter).  This is represented by the efficiency with which a clustering 

algorithm can form a generalisable representation when exposed to one time period only.  

While Fig. 13 shows significant individual differences in the ways our chosen identities have 

aged, it is important to acknowledge that these identities were celebrities, who may be more 

motivated than the general populus to preserve their youthful appearance for as long as 

possible.  It is, therefore, possible that our data underestimate the magnitude of these 

individual differences in the general population and overestimate the overall identity 

recognition accuracy with images spanning the entire adult lifespan.     
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Fig. 13. Mean classification accuracy within and between time periods separately for each 

identity.  The identities are ordered by the mean accuracy across all three conditions.  Dashed 

line represents chance performance.  The images below show the person most difficult to 

recognise across time periods (left pair – Brian Wilson) and the person who was easiest (right 

pair – Frankie Avalon). See image attributions in the Acknowledgements section. 
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4. General Discussion 

 

Previous research on facial ageing has focused on generic transformations which occur over 

the lifespan.  It is well-established that viewers are sensitive to these and can, for example, 

make judgements of comparative age relatively well over a wide range of face stimuli.  Here, 

we address a different question: when we recognise a familiar person over a whole adult 

lifespan, what type of representation is necessary?  In the simulations above, we ask what 

information is available in face images, and how this might be used by viewers to recognise 

people, as modelled by fairly simple statistical procedures.  These simulations suggest the 

following:  

 

1. Each person’s face contains some physical commonality across the whole adult 

lifespan, and this can be used for recognition.  It is therefore not necessary to store 

several different representations of Paul McCartney.  

2. Top-down support during learning helps when forming robust generalisable 

representations for face recognition.  Knowing that an image is an instance of Paul 

McCartney enhances the formation of a generalisable representation.  

3. If one has learned a face over a limited time period, then top-down support has an 

even greater benefit for the formation of an age-independent representation.   

 

Running through these simulations is a consistent advantage for incorporating top-down 

information into statistical representations for face recognition.  In Simulations 1 and 2, we 

see that physical ‘image-matching’ delivers well-above chance levels of performance, even 

for images sampled across a lifetime.  However, in order to achieve near-perfect performance 

(as is commonly observed for highly familiar faces in behavioural tasks with human 
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observers), it is necessary to incorporate knowledge about which images should be clustered 

together.  When we make the task very hard (Simulation 3), by learning images from one 

time period (e.g. Brian Wilson in the 1960s) and testing in another (Brian Wilson in the 

1980s), image-matching using PCA Only breaks down altogether, implying that its above-

chance performance in Simulations 1 and 2 is probably due to the availability of images from 

the same time period in the training set.  More importantly, we show that identity recognition 

across the lifespan is only observed in these simulations when top-down information is 

incorporated into the representation (using PCA+LDA).  

 

It has been known for many years that there are key behavioural markers of familiarity in 

face recognition (Bruce, 1986; Bruce & Young, 1986; Johnston & Edmonds, 2009).  When 

tasks are equated, such as asking viewers to match two facial images, there is a large 

performance advantage for familiar faces (Bruce et al., 2001; Burton et al., 1999; Clutterbuck 

& Johnston, 2002, 2004, 2005).  We have argued elsewhere that this arises because 

processing unfamiliar faces is dominated by image-level descriptions (Hancock, Bruce, & 

Burton, 2000; Longmore, Liu & Young, 2008. Megreya & Burton, 2006; Young & Burton, 

2018).  Accuracy depends on the extent to which two images of an unfamiliar face can be 

matched on physical similarity.  In contrast, recognition of familiar people relies on a 

representation that incorporates their own idiosyncratic variability (Burton, 2013; Burton et 

al., 2016; Jenkins & Burton, 2011; Jenkins et al., 2011). Here, we have shown that being able 

to incorporate this idiosyncratic variability can benefit recognition across transformations in 

appearance due to ageing.  

 

An important question concerns the potential involvement of the vast and complex semantic, 

experiential and emotional aspects of our responses to a familiar person (Bobes, Lage 
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Castellanos, Quiñones, García, & Valdes-Sosa, 2013; Gobbini & Haxby, 2007;Wiese et al, 

2019); in particular, whether these play a central role in creating the profound differences 

between recognition of familiar and unfamiliar faces.  Accessing semantic, episodic and 

emotional memories forms a critical aspect of our everyday experience with familiar people, 

but we have shown here that, from the standpoint of visual recognition, these properties are 

not essential to differences in recognisability between familiar and unfamiliar faces. Instead, 

manipulations based on clustering visual images are sufficient to support generalisable 

recognition. While this intervention does involve some degree of top-down influence and 

reshaping of the underlying perceptual space, this operates on purely visual representations.  

 

The simulations above suggest that a key component of familiarity is captured by simply 

clustering together multiple, highly varying, images of the people to be recognised.  But how 

could this clustering happen in daily life?  We propose that our everyday encounters support 

recognition through multiple sources.  We can gather many ‘instances’ of a person’s face 

throughout a single interaction, but also through multimodal recognition (voices, names) and 

contextual information.  This range of support for recognition allows one to add to one’s 

visual representation, by knowing which inputs to group together: if I am confident from 

multiple sources that this is Paul McCartney, then I can update my visual representation of 

him with this encounter. Of course, representation of the people we know well is not simply 

visual; we form highly complex associations for the people we know, including their personal 

information, their relationship with us, and emotional associations.  It seems highly likely that 

the people we can recognise over long time periods are those for whom we have rich and 

detailed knowledge.  Using LDA as a simple top-down intervention to cluster together 

different instances of a face does not come close to capturing this complexity.  However, our 

intention in using it is to point out that that recognition in our daily lives is multi-faceted, and 
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there are very many instances in which we might plausibly believe that a photo we are 

viewing is Paul McCartney.  It seems highly likely that this multimodal support assists in the 

development of complex visual representations, by proving information about which face 

images should be incorporated into the representation of particular person.  

 

We propose that the distinction between bottom-up/top-down processing goes some way to 

understanding the fundamental distinction between unfamiliar and familiar face recognition.  

Using the particularly challenging case of recognition over the adult lifespan, we can observe 

the effects of incorporating variability into representations for recognition.  Representations 

based on physical similarity can get one so far, but the addition of top-down processes 

significantly enhance the development of robust performance.  

 

We now return to the initial problem of recognising someone over their entire adult life.  

These simulations do suggest that people’s faces have some key visual characteristics which 

they preserve over life.  However, in order to use these effectively, they must be sampled 

over the entire lifespan, as in Simulations 1 and 2.  In contrast, Simulation 3 demonstrated 

that a set of simple physical descriptions incorporated in a single time period cannot be used 

to recognise someone at a different age, at least using our simple image-similarity model 

based on PCA.  Generalisation beyond the era of exposure, on the other hand, is greatly 

enhanced by the formation of clustered representations, in other words the acquisition of 

familiarity with a person.  The clear prediction from Fig. 12, is that it will be difficult to 

match two images of unfamiliar faces across eras, as is borne-out by our behavioural data.  

However, a viewer familiar with someone at a particular era will have some prospect of 

recognising that person in a later era – though accuracy will decrease with the time gap.  This  
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seems to be consistent with what is known about long-term recognition of familiar and 

unfamiliar faces (Megreya et al., 2013; Özbek & Bindemann, 2011).  

 

Of course, the simple image statistical procedures we have used here are intended as 

illustrative only of the nature of underlying constraints that must be faced for recognition. We 

are not trying to develop a practical automated face recognition system.  In fact, recent 

developments in the use of deep convolutional neural networks (DCNNs), have demonstrated 

that with enough computational power and a large enough training set, it is now possible to 

perform astonishingly accurate face recognition automatically (e.g. Ranjan, 

Sankaranarayanan, Castillo & Chellappa, 2017; Taigman, Yang, Ranzato & Wolf, 2014).  

The latest networks can match faces more accurately than human viewers unfamiliar with the 

faces, out-performing even trained experts in the field (Phillips et al., 2018). However, in this 

paper we are concerned only with what is known about human viewers: we clearly recognise 

those known to us across the lifespan (e.g. Paul McCartney), and the normal difficulties of 

matching unfamiliar faces are exacerbated by large age-differences.  The impressive recent 

developments in automated recognition are interesting, but do not provide an explanation of 

human performance.  

 

We should also make clear that we have no commitment either to PCA or LDA as capturing 

the mechanics of the brain itself; what they do very effectively is to allow us to analyse the 

nature of the computational problems that the brain has to solve.  Both techniques are used 

extensively in the literature on face processing (e.g. Bekios-Calfa et al., 2011; Chang & Tsao, 

2017; Kramer et al., 2018) but we use them here mainly to capture the differences in 

statistical procedures between bottom-up and top-down analyses.  However, despite their 

simplicity and the challenging stimuli employed here (large datasets with multiple samples of 
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multiple people in unconstrained photos) we are able to discern general principles for 

learning faces.  The nature of faces is to change, within encounters, between encounters and 

over time.  At the core of our approach is to treat this variability as data, not noise, an idea 

introduced into modern theories of face processing by Bruce (1994), but not operationalised 

until more recently. We hope to have demonstrated that this approach can help make 

headway towards solving the difficult problem posed by the pictures in Fig. 1.   
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4.0], Andrea Raffin [CC BY-SA 3.0], Eva Rinaldi [CC BY-SA 2.0], Glyn Lowe [CC BY 

2.0], Walterlan Papetti [CC BY-SA 4.0], Eva Rinaldi [CC BY-SA 2.0], Nicolas Genin [CC 

BY-SA 2.0], Takahiro Kyono [CC BY 2.0], Gage Skidmore [CC BY-SA 3.0], Casablanca 

Records [Public domain], International Labour Organisation [CC BY-NC-ND 2.0], Ron 

Kroon [CC0 1.0], Hubert Burda Media [CC BY-NC-SA 2.0], State Farm [CC BY 2.0] 

Image attributions for Fig. 10 – Capitol Records [Public domain], Takahiro Kyono [CC BY 

2.0], Film Studio [Public domain], John Mathew Smith [CC BY-SA 2.0] 
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