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Abstract: During the Late Glacial, hunter-gatherers began using ceramic cooking containers in three 

separate geographic regions of East Asia: China, Japan and along the Amur River in the Russian Far East. 

While recent research has clarified the use of early pottery in Japan, very little is known about what led to 

the emergence of pottery in the other two areas, including the likely environmental, economic or cultural 

drivers. In this paper we focus on the Russian Far East, where pottery has been recovered from dated 

contexts that span circa 16,200 to 10,200 years ago (cal BP). Interpreting the use of early pottery along the 

Amur River has been difficult because the region’s acidic soils make palaeo-economic reconstructions 

challenging. To address this gap in knowledge we undertook lipid residue analysis of 28 pot sherds from 

the sites of Khummi, Gasya, and Goncharka 1 on the Lower Amur River, and the Gromatukha site on the 

Middle Amur. Our results indicate that pottery was employed to process aquatic oils at sites on the Lower 

Amur, a pattern of use that aligns with similar results from Japan, and suggests that fishing – probably of 



salmonids and freshwater fish – was becoming increasingly important during this period. In contrast, the 

results from the Middle Amur indicate a different pattern showing a significant contribution of ruminant 

animals. These regional differences in use are also mirrored in contrasting manufacturing techniques with 

pottery from the Middle and Lower Amur forming distinct ceramic traditions. These combined insights 

may point to greater local variability in the development and use of early pottery in East Asia than has 

previously been indicated.    

 

Key words: Early pottery; Initial Neolithic; Lipid residue analysis; Compound-specific isotope analysis; 

Phytanic acid diastereomer; Osipovka Culture; Gromatukha Culture.   

 

1. Introduction 

     
Prehistoric hunter-gatherer societies in the Russian Far East (hereafter RFE) played an important yet poorly 

understood role in the emergence of the world’s earliest pottery in the Late Glacial (ca. 16,000-10,000 years 

ago; hereafter – cal BP, e.g. Kuzmin 2015, 2017). Together with southern China and Japan, the RFE 

represents one of the three main clusters of early pottery production in East Asia, and there is now clear 

evidence that pottery was already in use at a range of sites on the lower and middle reaches of the Amur 

River from ca. 16,000 cal BP. This pottery was being used on a limited scale, with small numbers of sherds 

recovered from sites affiliated with two different archaeological cultures– the Osipovka and Gromatukha 

(Kuzmin 2002; 2017; Zhushchikhovskaya 2005; Derevyanko and Medvedev 2006; Shevkomud and 

Yanshina 2012; Yanshina 2017). The sites of Khummi, Gasya and Goncharka 1 are located in the extensive 

lowlands of Lower Amur River, and belong to the Osipovka culture. Around 700 km further westwards, 

the site of Gromatukha is located on the west bank of Zeya River, tributary river to the Amur, and provides 

the type site for the Gromatukha culture (Figure. 1). To date, no other Late Glacial pottery sites have been 

identified in the region under consiceration between areas occupied by these cultures.     

While Russian archaeologists have long speculated about the likely economic factors that drove early 

pottery innovation in this area (e.g. Medvedev 1995; Zhushchikhovskaya 2005; Kuzmin 2013), there has 

been no direct evidence to indicate how the vessels were used. This is because of the region’s acidic soil 

conditions which result in very limited preservation of organic materials and render detailed palaeo-

economic reconstructions impossible. To address this gap in knowledge, our goal was to deploy lipid 

residue analysis to generate the first direct evidence for how the Late Glacial pottery was used in the RFE. 

The method has already been successfully employed at early pottery sites in Japan (Craig et al. 2013; 

Lucquin, Gibbs et al. 2016; Lucquin et al. 2018), Korea (Shoda et al. 2017) and Sakhalin Island (Gibbs et 

al. 2017), and emerging results from these areas indicates close links between the appearance of the first 



ceramic cooking containers and the processing of aquatic resources. Our aim was to test whether the use of 

early pottery in RFE was also linked to processing of aquatic resources, or to other kinds of plant or animals.  

 

2. Regional setting  

  

Unlike the surrounding regions of East Asia, only one Late Paleolithic site - Golyi Mys 4 - is known from 

the Lower Amur River (Derevianko et al. 2006: 69–72). This site lacks pottery but yields microblade cores 

and scrapers. From 18,000 to 11,000 cal BP the Amur region experienced climatic amelioration, leading to 

the expansion of coniferous and mixed coniferous broad-leaved forests. Pottery starts to emerge at around 

the same time, but Russian archaeologists initially attributed these early ceramic layers to the Neolithic 

period and assumed that they dated to the Holocene. Radiocarbon dating has since demonstrated that the 

oldest pottery layers date to the Late Glacial (e.g. Kuzmin 2015, 2017). Sites with pre-Holocene pottery 

assemblages are widely scattered across the RFE, and are now defined as representing the onset of an ‘Initial 

Neolithic’ that is defined by the appearance of pottery and some other Neolithic novelties like polished 

axes, bifacially retouched or polished projectiles, new types of scrapers and art objects (e.g. Kuzmin 2002; 

Zhushchikhovskaya 2005; Derevianko and Medvedev 2006; Shevkomud and Yanshina 2012). Despite their 

neighboring disposition and synchroneity, these two cultures are distinguished quite sharply and separated 

by the vast empty area.   

 

2.1. Sites and Pottery Assemblages of the Osipovka Culture 

 

The Osipovka Culture includes around 70 archaeological sites, of which at least 15 have been excavated. 

All are located on the banks of the main Amur River and are associated with some of the earliest human 

occupation of the Lower Amur region so far discovered. The full time-range of the Osipovka Culture is 

13,260 ± 100 to 9,890 ± 230 yr BP or 16,200-10,700 cal BP (Kuzmin 2006b; Kuzmin and Shevkomud 

2003; Shevkomud and Kuzmin 2009; Shevkomud and Yanshina 2012). Two stages are tentatively outlined 

in the Osipovka culture (Table 1): the first stage is represented by the artifacts collected from disturbed 

layers while the second stage provides the majority of data including in situ contexts of stone tools and 

pottery. The most studied sites are Gasya, Khummi and Goncharka-1 (Figure. 1). 

The Gasya site is located ca. 80 km downstream from the Khabarovsk on the cliff 13-16 m above the Amur 

river. The stratified site was excavated between 1975 and 1990 (Derevyanko, Medvedev 2006), leading to 

the recovery of cultural remains from different periods (e.g. Derevianko and Medvedev 2006). The 14C 

dates for the charcoal samples from Osipovka Culture are in the range 12,960-10,875 yr BP or 15,870-

12,660 cal BP. This age is further supported by thermoluminescence dating of the pottery itself (Kuzmin et 



al. 2001). Several dozen potsherds of the Osipovka Culture have been recovered from the site, with major 

part of them derived from the lower cultural layers, while a few potsherds were dispersed throughout the 

upper layers, some in association with later artefacts. The oldest levels included fragments of crudely-made, 

plant fiber-tempered pottery with parallel grooves serving as rudimentary decoration (Figure 2). Among 

them, one vessel was reconstructed as a flat-bottomed container with a volume of ca. 5.5–6 litres. It was ca. 

25–27 cm high, with thick walls of around 1.2–1.7 cm in width (e.g. Derevianko and Medvedev 2006; 

Kuzmin 2006a). There are traces of carbonised remains on both external and internal surfaces of the pottery, 

indicating that it had probably been used for cooking. 

The Khummi site is the easternmost one of the Osipovka Culture, and was excavated between 1991-1997 

(Lapshina 1999). The site is located ca. 20 km upstream from the city of Komsomolsk-on-Amur (Figure 1), 

on the ca. 30 m high bank of the Amur River. The cultural deposits are relatively homogenous, and contain 

materials primarily attributed to the Initial Neolithic. The 14C dates for the Osipovka cultural stratum 

correspond with two stages of the Osipovka culture and span the broad range of ca. 13,260-10,375 yr BP 

or 16,240-11,820 cal BP (Kuzmin 1997). Only around 40 potsherds of the Osipovska Culture were 

recovered from this site, despite extensive excavation of the Late Glacial horizons (Figure 2), further 

suggesting that pottery was used on a very limited scale. Although it is difficult to separate these findings 

into earlier and later phases in terms of the layers, considering the design of potsherds, most of potsherds 

appear to correlate with the oldest stage of Osipovka Culture (Yanshina, Lapshina 2008; Shevkomud and 

Yanshina 2012: 195-207; 249). 

The Goncharka-1 is the best-studied site of the Osipovka Culture, and is located ca. 20 km upstream from 

the city of Khabarovsk, on the high terrace situated ca. 20 m above the river (Shevkomud and Yanshina 

2012). The lower horizon (layers 4-5) of the site represents the earliest stage of the Osipovka Culture and 

have 14C dates on charcoal that fall between 12,500-12,055 yr BP or 15,070-13,750 cal BP. The upper 

horizon (layer 3B, Russian labelling is “3Б”) belong to the late stage of the Osipovka Culture, and has been 

dated to 11,340-9890 yr BP or 13,300-10,650 cal BP (on charcoal samples) and 11,650-10,060 yr BP or 

13,590-11,330 cal BP (on foodcrusts) (Kuzmin 2006b; Kuzmin and Shevkomud 2003; Shevkomud and 

Kuzmin 2009; Shevkomud and Yanshina 2012). Most artefacts, household structures and evidence of ritual 

activities are found in layer 3B. More than 2000 potsherds of the Osipovka Culture have been recovered 

from the site, but only 130 of these are derived from the oldest layers (4-5) (Shevkomud and Yanshina 

2012).  

In general, there is substantial variability within the pottery of the Osipovka Culture, though all pottery 

appear to have had flat bottoms and thick walls. Their shapes are either conical or slightly restricted in the 

upper part. The clay paste was tempered with diverse materials, including rocks, dried clay or grog, with 



plant tempers used infrequently at the early stage. Scraping with hard comb-like tools inside and sometimes 

outside vessels is the most specific way of pots processing and meets at both stages of the Osipovka culture. 

Besides, the earliest potsherds have featureless cord marks on the outer surfaces instead of decoration, while 

the latest vessels are decorated in different patterns typically by comb-like tools (Figure. 2-3) (Yanshina 

2017). 

 

2.2. Sites and Pottery Assemblages of Gromatukha Culture 

 

The Gromatukha Culture has been less well researched. To date, only eight sites have been discovered, and 

only three have been excavated. The sites are situated in different kinds of landscapes compared to those 

of Osipovka Culture, with some directly on the banks of Amur River, but others also situated on the banks 

of its smaller northern tributaries. The chronology of the Gromatukha Culture overlaps to some extent with 

the Selemdga Palaeolithic Culture, suggesting that pottery was in use at some sites but not at others.  

The Gromatukha site was used to define the Gromatukha Culture and provides almost all the available 

information for it (Okladnikov and Derevyanko 1977). The site is situated on the high bank of the Zeya 

River, a tributary joining the middle course of the Amur River (Figure 1). The main excavations took place 

in the 1960s (Okladnikov and Derevianko 1977), and smaller-scale work has been done in the 2000’s to 

2010’s (Derevyanko et al. 2004; Derevianko et al. 2017). The 14C dates for the lowest cultural component 

of the Gromatukha site were run on charcoal and fall in the range of 12,380– 9895 yr BP or 14,820-11,200 

cal BP. Direct 14C dating of pottery using oxygen and oxidation temperature of 400 C resulted in ages of 

ca. 13,240–13,310 yr BP or 15,900–16,000 cal BP (O’Malley et al. 1999), confirming the Late Glacial age 

of the Gromatukha pottery. Sixteen 14C dates on foodcrusts fall within 12,400–9150 yr BP or 15,010-10,190 

cal BP (Derevyanko et al. 2017). Based on pottery analysis (Shevkomud and Yanshina 2012: 213-230) and 

parallel 14C dating, two stages of the site occupation could be tentatively recognized. The earliest stage is 

in the range of 12,530–12,170 yr BP or 15,120-13,900 cal BP, while the latest one has ages of 10,060–

9,150 yr BP or 11,970-10,190 cal BP (Derevyanko et al 2017). 

Several hundred pottery fragments have been recovered (Okladnikov and Derevianko 1977; Shevkomud 

and Yanshina 2012: 213-230). The vessels have a slightly conical shape, both flat and round bottoms, thick 

walls of ca. 0.7-1.3 cm tempered with layers of grass additives with some stabbing patterns on the surfaces. 

The pottery vessels also have cord marks on their surfaces, with grooves on both internal and external 

surfaces (Figure 2). Dense zigzag lines arranged in horizontal bands adorn the vessels from top to bottom. 

However, pots in the later horizon are characterized by significant reductions in the amount of plant fibers 



additives, cord marks and zigzag patterns (detailed reviews of this subject can be found in: Shevkomud and 

Yanshina 2012: 207-228; Yanshina 2017).  

 

3. Materials  

 
To investigate the use of the earliest pottery in the RFE, absorbed lipid residues were extracted from one 

pottery sherds from Khummi (n=1), Gasya (n=3), Goncharka-1 (n=19) and Gromatukha (n=5) sites (Table 

2). All the samples were small sherds (ca. 3-5cm square) without carbonized deposits on the surface. While 

these samples are partly correlated with the clear-defined stages of each of the two cultures, some of them 

are lacking their contextual information.  

Pottery sherds from Khummi and Gasya have no contextual information while 14C dates of these sites show 

very wide time ranges: 13,260-10,375 yr BP or 16,240-11,820 cal BP in the former, 12,960-10,875 yr BP 

or 15,870-12,660 cal BP in the latter. Therefore, the analyzed samples can be dated only within these broad 

limits, although both sites have the oldest dates for the Osipovka culture and the smallest collections of 

potsherds.    

The contexts of the samples from Goncharka-1 are summarized in table 4. The estimated ages of each 

sample are based on the 14C dates of charcoal, stratigraphy, and the contexts. Most of the samples belong 

to the horizon 3B and correspond to the late stage of the Osipovka culture while some of them belong to 

lower layers.  

All the Gromatukha sherds analysed are from the excavation in 1965-1966 without the information of grids 

and layers. Given their appearance (intensively corded surfaces, greater amount of grass additives and the 

design pattern), all five samples are associated with the early stage of the Gromatukha culture and therefore 

with the Bølling-Allerød period. Direct 14C dates of such kind of pottery vary from 12,530-11,440 yr BP or 

15,117-13,136 cal BP although later dates cannot be excluded (Derevianko et al. 2017).   

 

4. Methods  

 
4.1. Lipid residue extraction from ceramic powder 

Lipid residue analysis was conducted following established acidified methanol protocols (Craig et al. 2013, 

Papakosta et al. 2015). Briefly, methanol was added to the drilled ceramic powder sample (4 ml of methanol 

to 1 g of sample) which was then sonicated for 15 minutes. Concentrated sulfuric acid (800 μl) was added 

to acidify the samples which were then sealed and heated at 70 °C for 4 hours. After cooling to room 

temperature, lipids were extracted with n-hexane (3 x 2 ml) and directly analyzed by Gas Chromatography 

Flame-Ionization Detection (GC–FID) for the quantification, Gas Chromatography – Mass Spectrometry 



(GC–MS) for the biomarker identification as well as Gas Chromatography–combustion–Isotope Ratio Mass 

Spectrometry (GC–c–IRMS) for the measurement of compound-specific carbon stable isotopic ratios. 

 
Additionally, where additional sample was available, solvent extraction was conducted following 

established protocols (Evershed et al. 1990). Here, lipids were extracted using DCM/MeoH (2:1 v/v, 3 x 

2ml). The solvent was removed, dried under a gentle stream of N2 and silylated with N, O-

bis(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane (70 °C, 1 hour). The resulting total 

lipid extract (TLE) was dried under N2.  The extracts were dissolved in n-hexane before analysis by GC–

MS. 

 
4.2. Gas Chromatography (GC–FID) 

 
General screening and quantification of the lipid extract was realised by GC-FID (gas chromatography - 

flame ionization detector). Analyses were carried out using an Agilent 7890A gas chromatograph (Agilent 

Technologies, Cheadle, Cheshire, UK). The injector was splitless and maintained at 300 °C and injected 1 

µl of sample into the GC. The column used was a 100% Dimethylpolysiloxane DB-1 (15 m x 320 µm x 0.1 

µm; J&W Scientific, Folsom, CA, USA). The carrier gas was hydrogen with a constant flow rate of 2 ml 

min-1. The temperature program was set at 100 °C for 2 minutes, rose by 20 °C min-1 until 325 °C. This 

temperature was maintained for 3 minutes. Total run time was 16.25 minutes. The lower boundaries of 

interpretable archaeological lipid extract were 5µg g-1 of sherd sample powder (Evershed et al. 2008). 

 
4.3. Gas Chromatography – Mass Spectrometry (GC–MS) 

 

GC–MS analysis was carried out using an Agilent 7890A series chromatograph attached to an Agilent 

5975C Inert XL mass-selective detector with a quadrupole mass analyser (Agilent technologies, Cheadle, 

Chershire, UK). A splitless injector was used and kept at 300 °C. Helium was used as the carrier gas and 

inlet/column head-pressure was constant. A DB-5ms column coated with 5% phenyl-methylpolysiloxane 

column (30 m × 0.250 mm × 0.25 μm; J&W Scientific, Folsom, CA, USA) was used for general scanning. 

The oven temperature was set at 50 °C for 2 min, then raised by 10 °C min−1 until it reached 325 °C where 

it was held for 15 min until the end of the run. The GC column was inserted directly into the ion source of 

the mass spectrometer. The ionisation energy of the mass spectrometer was 70 eV and spectra were obtained 

between m/z 50 and 800. 

 
To obtain the ratio of phytanic acid diastereomer (SRR/RRR)  (Lucquin, Colonese, et al. 2016) and detect 

aquatic biomarkers (Evershed et al. 2008) a DB-23(50%-Cyanopropyl)-methylpolysiloxane column (60 m 



×  0.250 mm  ×  0.25 μm; J & Scientific, Folsom, CA, USA) was used with the mass spectrometer in 

selected ion monitoring (SIM) mode. The oven temperature was set at 50 °C for 2 min, then raised by 10 °C 

min-1 until it reached 100 °C, then raised by 4 °C min-1 to 140 °C, then by 0.5 °C min-1 to 160 °C, then by 

20 °C min-1 to 250 °C where it was maintained for 10 min. The first group of ions (m/z 74, 87, 213, 270) 

monitored 4,8,12-trimethyltridecanoic acid (TMTD) fragmentation, the second group of ions (m/z 74, 88, 

101, 312) correspond to pristanic acid, the third group of ions (m/z 74, 101, 171, 326) corresponding to 

phytanic acid and the fourth group of ions (m/z 74, 105, 262, 290, 318, 346) corresponding to u-(o-

alkylphenyl) alkanoic acids with carbon length C16 to C20. Helium was used as the carrier gas with a flow 

rate of 2.4 mL min-1. The relative abundance of two diastereomers of phytanic acids is quantified by the 

integration of the m/z 101 ion. This is reported as %SRR = SRR/total phytanic acid x 100.  

   

4.4. Gas Chromatography – combustion – Isotope Ratio Mass Spectrometry (GC–c–IRMS) 
 
In order to compare with modern and archaeological authentic animal/plant samples, stable carbon isotope 

(δ13C) values of two major saturated fatty acids (C16:0 and C18:0) were analyzed by GC-c-IRMS, following a 

published procedure (Craig et al. 2012). An Isoprime 100 (Isoprime, Cheadle, UK) linked to a Hewlett 

Packard 7890B series GC (Agilent Technologies, Santa Clara, CA, USA) with an Isoprime GC5 interface 

(Isoprime Cheadle, UK) was used, with a DB-5MS ultra-inert fused-silica column (60 m x 0.25 mm id x 

0.25 μm film thickness). One μL of the acid/methanol extracts, diluted in hexane, was injected using the 

splitless mode where it was vaporized at 300 °C. The temperature was set for 0.5 min at 50°C, then increased 

by 25°C min-1 to 175 °C, 8 °C min-1 to 325 °C and held for 20 min. As the carrier gas, ultra-high purity 

grade helium was used with a flow rate of 3 ml min-1. The gas flows eluting from the column were split into 

two streams. One was directed respectively into an Agilent 5975C inert mass spectrometer detector (MSD), 

for the sake of sample identification and quantification, while the other was directed through the reactor 

tube to oxidize all the carbon species to CO2. A clear resolution and a baseline separation of the analyzed 

peaks were achieved. 

 
Eluted products were ionized in the mass spectrometer by electron impact and ion intensities of m/z 44, 45 

and 46 were recorded for automatic computing of the 13C/12C ratio of each peak in the extracts. Computation 

was made with IonVantage and IonOS software (Isoprime, Cheadle, UK) and based on comparisons with 

standard reference gas (CO2) of known isotopic composition that was repeatedly measured. The δ13C values 

obtained are expressed in per mill (‰) relative to the Vienna Pee Dee Belemnite (V-PDB) international 

standard. The accuracy (< 0.3‰) and precision (< 0.5‰) of each instrument was determined on n-alkanoic 

acid ester standards of known isotopic composition (Indiana standard F8-3). Each sample was measured in 

replicate (S.D. 0.1‰ for each fatty acid). Values were also corrected subsequent to analysis to account for 



the methylation of the carboxyl group that occurs during acid extraction. Corrections were based on 

comparisons with a standard mixture of C16:0 and C18:0 fatty acids of known isotopic composition processed 

in each batch under identical conditions. For a comparison with archaeological data, values were adjusted 

for the effects of the variation of the atmospheric δ13C between the Pleistocene and Holocene (Schmitt et 

al. 2012). 

 
5. Results 

  
The results show interesting contrasts in early pottery use between the middle and lower Amur sites. All 

samples yielded interpretable amounts of lipids (i.e. > 5μg g-1 sherd) with a mean value of 346μg g-1 and 

maximum value of 5009μg g-1(Table 3). The acidified methanol extracts mainly consist of short to long-

chain fatty acids, dominated by mid-chain saturated fatty acids such as palmitic acid (C16:0) and stearic acid 

(C18:0), unsaturated fatty acids such as oleic acid (C18:1), as well as mid to long chain n-alkane.  A typical 

partial chromatogram of these samples is shown in Figure 4.  

 

5.1. Identification of aquatic derived lipids 

 
Previous analysis of organic residues of Late Glacial pottery in Japan have demonstrated that a high 

proportion of sherds were used for processing aquatic resources (Craig et al. 2013; Lucquin, Gibbs et al. 

2016, Lucquin et al. 2018). Here, in the Amur region, the full range of aquatic biomarkers, i.e. ω-(o-

alkylphenyl) alkanoic acids containing 18 and 20 carbon atoms with at least one isoprenoid fatty acids 

(Evershed et al. 2008), were identified in only two samples, one from Khummi (KHM1) and one from 

Goncharka 1 (Amur3). A further four samples (GSH3; GCK09; and Amur 4, 5 and 10) contained fatty acids 

relatively enriched in 13C and consistent with measurements made on modern marine fish and salmonids 

that migrate into the Lower Amur River. These samples also have a higher relative amount of the SRR 

diastereomer of phytanic acid (i.e. >80 %) which is also typical of aquatic organisms (Lucquin, Gibbs et al. 

2016). To summarize, the Lower Amur samples all bear evidence for the processing of aquatic resources. 

 

5.2. Identification of non-aquatic derived lipids 

 
The isotope characterization of individual lipid molecules can also be used distinguish whether pottery was 

used to processes ruminants or non-ruminant fats. The difference in δ13C values between the two major 

fatty acids (C16:0 and C18:0) was calculated (Δ13C) for each sample. Samples with Δ13C values of less than -

1 ‰ are considered to have been derived from ruminant fats (e.g.  Dudd and Evershed 1998, Copley et al. 

2003, Craig et al. 2012, Robson et al. 2019), as the C18:0 fatty acid is relatively depleted in ruminant tissues 

due to bacterial processing in the rumen (Copley et al. 2003). Although Δ13C values are a relative measure 



considered to be independent of local stable carbon isotopic variation, values obtained from East Asian 

authentic reference ruminant fats confirm the validity of this criteria (Lucquin, Gibbs et al. 2016; Craig et 

al. 2013). This approach enabled us to identify ruminant adipose fats in a number of the RFE samples (i.e. 

GSH01, 02; GCK01, 02, and 08; Amur4 and 5; and GMT01, 02, 04, and 06). Samples with lower Δ13C also 

have lower relative amounts of the SRR isomer of phytanic acid, more typical of measurements made on 

ruminant tissues, the other major source of this compound (Lucquin, Colonese et al. 2016). Interestingly, 

there is a clear difference in the %SRR between pottery from the different reaches of the Amur river (Figure 

5) - samples from the middle Amur (Gromatukha) have a lower %SRR (mean 68.0%, median 66.6%), while 

pottery from sites in the lower Amur (Khummi, Gasya and Goncharka 1) (mean 88.3%, median 87.3%), 

supporting the interpretation that ruminant products were processed in the Middle Amur pottery whilst there 

were absent or at much lower frequency in the Lower Amur pottery. 

 

5.3. Investigating the mixing of resources 

 

The results from our lipid residue analysis of Late Glacial pottery from sites on the Amur River indicate 

spatial variability in use. It appears that aquatic resources like salmonids predominated in the resources 

processed in pottery at the Lower Amur sites, while ruminants formed the main resource processed at the 

Middle Amur site. Additionally, other kinds of plants, freshwater fish or wild non-ruminants may also have 

been processed in the vessels. In order to investigate the extent of resource mixing at the different early 

pottery sites we applied a concentration dependent mixing model (Fernandes et al. 2014) that used the 

δ13C16:0 and δ13C18:0 values, and %SRR as proxies (Lucquin, Colonese et al. 2016).  This model was used 

to examine the likely proportions of lipids derived from plants (acorns and chestnuts), freshwater fish, wild 

boar, wild ruminants and salmonids to each pot. The model assumes that the pottery vessels were used 

multiple times, and thus averages a number of individual measurements made on authentic reference fats. 

It provides a more accurate overview of how a pottery vessel has been used, as it accounts for uncertainties 

in specific measurements while taking into account of the fact that fatty acid content can vary between 

different foodstuffs.  The model outputs percentage values in terms of lipid contribution by weight of 

salmonids versus ruminants (Table S1). The results indicate that ruminant fats only made a significant 

contribution in the Gromatuka pottery, whereas salmonids made a much greater contribution at the Lower 

Amur sites, especially at Goncharka 1 and Gasya, where some vessels may have been used exclusively for 

processing salmonids (Figure 6).  

 

6. Discussion 

 



This study presents the first organic residue analysis of Late Glacial pottery assemblages from the RFE. 

The results indicate that early pottery was being used in different ways along different sections of the Amur 

River – ceramic vessels were used to process aquatic resources at sites on the lower parts of the river 

(Osipovka Culture), while significant contribution from ruminant animals to the pottery content was 

observed in the middle reaches (Gromatukha Culture), although this study demonstrate a result from the 

limited numbers of samples. This is noteworthy as these pottery traditions show clear difference in terms 

of production techniques as above-mentioned. 

The fact that early pottery along the Lower Amur is linked to the processing of aquatic resources is perhaps 

not particularly surprising given that sites are located along the main banks. Moreover, the Amur River has 

around 100 freshwater species and several anadromous fish (such as salmon) which migrate from the late 

spring to early autumn, all of which would have offered abundant resources to prehistoric populations. In 

addition, Gasya has direct technological evidence for fishing activities, with several net sinker weights 

recovered from layers that have early pottery (Derevianko and Medvedev 2006: 130). However, it is 

important to note that bone fishhooks, fibre nets, traps, weirs and baskets would not have survived in the 

acidic soil conditions. This means that the current results represent the first direct evidence for an 

association between early pottery and the exploitation of aquatic resources in the Lower Amur River.  

Whether exploitation of fish and the development of ceramic cooking containers formed part of a more 

general pathway towards growing sedentism along the Lower Amur remains unclear. The only sites with 

evidence of more substantial house pit structure are the Khummi (Lapshina 1999; see also Derevianko and 

Medvedev 2006) and Goncharka 1 (e.g. Shevkomud and Yanshina 2012), while other sites appear only to 

have had surface structures. Both would have been adequate for occupations involved at harvesting fish 

runs, most of which occur anyway in the warmer months. Thus, it seems unlikely that the appearance of 

the first pottery strictly coincided with a shift towards settled village societies. Pottery could easily have 

been made, fired and cached at seasonal fish harvesting sites by aggregating populations that were more 

dispersed at other times of the year.  

Whether the presence of seasonal fish harvesting sites triggered a major expansion in early pottery use is 

also unclear, but appears doubtful. Excavators at all four Lower Amur sites have noted that pottery appears 

to have been used in only very limited quantities, with only a few tens of sherds recovered from the Initial 

Neolithic levels. The numbers of sherds is also much lower than at Incipient Jōmon sites in Japan, which 

broadly date to the same period (e.g. Keally et al. 2003; Kuzmin and Shevkomud 2003), and early pottery 

in the RFE may perhaps have been used for restricted purposes, such as the preparation of novel or 

ceremonial foods at annual aggregation sites.  



Linking the appearance of early pottery in the RFE with the onset of major climatic and environmental 

shifts is also difficult. Reconstruction of paleoenvironmental conditions in the RFE indicates: i) the 

dominance of birch and alder forests at ca. 15,500–13,900 cal BP during the Older Dryas cold phase; ii) 

light conifer forests with larch groves during the warmer Bølling–Allerød interstadial, ca. 14,900–12,900 

cal BP; and iii) the shrub birch and alder formations during the Younger Dryas cold phase, ca. 12,900–

11,500 cal BP (Kuzmin 2006b, 2010; see also Klimin et al. 2004). Clearly, early pottery appears at sites 

that date to both warmer and colder phases (see: Table 1).  In contrast, in other parts of East Asia the very 

earliest pottery seems to appear during some of the coldest climatic conditions in the entire Late Pleistocene 

(e.g. Kawahata et al. 2017, Meyer et al. 2016), perhaps because aquatic foods may have provided an 

important alternative to depleted supplies of terrestrial resources.  

Interestingly, however, the contrasting use of early pottery in the RFE appears to correlate with different 

pottery-making traditions. Technological and stylistic analysis has identified three distinct ceramic 

traditions in East Asia during the Late Glacial: the Lower Amur (Osipovka Culture), the Incipient Jōmon 

and the Transbaikal/Middle Amur (including the Gromatukha Culture) (Yanshina 2017). While organic 

residue analysis now appears to show that both Osipovka and the separate Incipient Jōmon pottery tradition 

both shared a focus on processing aquatic resources (Figure 7), our results from Gromatukha may suggest 

that pottery from the Transbaikal/Middle Amur tradition, which is found in more continental areas, may 

have been used in a different ways. This pottery making tradition embraces other early pottery sites like 

Ust’Karenga in the Transbaikal Region, and further research could clarify whether this was also being used 

to process ruminants rather than aquatic resources.  

  

 

6. Conclusions 

  
The use of the Late Glacial pottery that appears around 16,000 years ago in the RFE has long been unclear. 

This study provides the first direct evidence for early pottery use at sites along the Amur River dated from 

ca. 16,200 to 10,200 years ago. The results provide several answers but also generates new questions. First, 

we expected a close general link between early pottery and the processing of aquatic resources, as has 

already been demonstrated for Japan, Korea and Sakhalin Island. This ‘aquatic model’ seems applicable in 

the RFE - but only for sites of the Lower Amur Osipovka Culture – where we have confirmed the long-

suspected association between the emergence of pottery and what was probably equated to seasonal 

harvesting of migratory fish. However, the early pottery at Gromatukha on the Middle Amur was being 

used in a very different way, and the high contribution of ruminants to the pottery content showed a 

strikingly different pattern of use. Second, these contrasts in use appear to map closely onto the two very 



different pottery-making traditions that have been identified in the region (Yanshina 2017), perhaps 

pointing to greater local variability in the development and early use of pottery in the RFE than has hitherto 

been appreciated. Potentially, the results from Gromatukha may indicate a contrasting and more 

‘continental’ mode of early pottery use, which does not follow the ‘aquatic model’ identified in surround 

regions. More work is needed to establish whether other early pottery sites in surrounding regions of Siberia 

also follow this alternative pattern.   
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Figure Captions:   

 

Fig. 1. Location of the sites investigated in this study (Osipovka Culture: Goncharka-1, Gasya, Khummi 
sites; Gromatukha Culture: Gromatukha site)  

 

Fig. 2. Typological differences between pottery of the Osipovka and Gromatukha cultures. Shapes 
and main patterns of the ceramic vessels of the Gromatukha (1-3, 8) and Osipovka cultures (4-9). 1, 3, 5, 

7 – Shevkomud and Yanshina 2012: fig. 111-112; 6 – Naganuma et al 2005; 8-9 - Yanshina 2017.  

 

Fig. 3. Pottery from the Osipovka and Gromatukha Cultures form entirely different ceramic 

traditions. These photographs highlight some of the main differences in pottery fabric, tempers and 

surface treatments: Gromatukha (8-12), Khummi (13-15), and Goncharka-1 (16-18) sites. Note 

differences in temper, surface treatment, and zigzag pattern between two ceramic traditions. Type I. 
Temper: grog (15, 18b), gravel inclusions (12 b, 18a), grass additions (9, 12 a). Type II. Surface treatment: 

grooves rolling by cord wrapped tool (8-9, 11), haphazard cord impressions (14), combing by hard toothed 

tool (13, 16). Type III. Zigzag pattern: stepping by cord wrapped tool (8, 10, 11) and rolling by hard toothed 
tool (17).    

 

Fig. 4. Partial total ion and selected ion chromatograms of extracts from a pottery sherd from 

Khummi (Osipovka Culture) (Sample KHM01).  
 

A (1): Characteristic distribution of aquatic oil components: total ion chromatogram that showing lipids 

typical for a heated and degraded aquatic oil, dominated by medium- and long-chain saturated and mono-
unsaturated fatty acids (FA) and isoprenoid fatty acids. б,ω-dicarboxylic acids (■) with carbon chain ranges 

of C8-C13 resolved on a DB-5 chromatography column. B. Heating of aquatic oils: Ion chromatogram (m/z 

105) showing the presence of щ-(o-alkylphenyl) alkanoic acids with 16( ), 18(+), 20(#) carbon atoms. C: 

Isoprenoid fatty acids identified: Ion chromatogram (m/z 101) showing isoprenoid fatty acids, TMTD: 

4,8,12-trimethyltridecanoic acid, Pri: pristanic acid and Phy: phytanic acid resolved on a DB-5 

chromatography column. D: Separation of SRR and RRR diastereomers: Ion chromatogram (m/z 101) 
shows the ratio of phytanic acid diastereomers (SRR and RRR) resolved on a DB-5 chromatography 

column. 

 



Fig. 5. Plot of the Δ13C and %SRR of lipids extracted from early pottery from sites on the Amur 

River; The values are compared to the reference range of aquatic oils and ruminant fats based on 

authentic samples (Lucquin et al 2016, Lucquin et al 2018) corrected for the recent burning of fossil fuels. 

Red circles: Khummi, orange: Gasya, brown: Goncharka-1, and blue: Gromatukha. Plots with asterisk 

meet full criteria of aquatic biomarkers (Evershed et al. 2008).   

 

Fig. 6. Estimated percentage contribution of salmonid and wild ruminant resources using a 

concentration-dependent mixing model. The model parameters have been previously described (Lucquin 
et al. 2018). Box plots show model output for individual sample. The boxes represent a 68% credible 

interval while the whiskers represent a 95% credible interval. The horizontal continuous line indicates the 

mean while the horizontal discontinuous line indicates the median. 
 

Fig. 7. Comparative plot of the δ13C values of C16:0 and C18:0 n-alkanoic acids extracted from pottery 

from Russian (RFE – this study) and Japanese pottery (refs). A: Samples from Amur river basin, 

Osipovka culture (black) and Gromatukha culture (red), B: Samples from Incipient Jōmon (Lucquin et al. 
2018). Closed symbols represent samples meeting the full criteria for aquatic biomarkers (Evershed et al. 

2008). The data is compared with reference ranges for authentic reference lipids from both modern and 

archaeological material (Lucquin et al. 2016, Shoda et al. 2017, Hansel et al. 2004, Evershed et al. 2008, 
Ackman and Hooper 1968) plotted at 95% confidence. M: Marine, S: Salmonids, WB: Wild Boar, FW: 

Freshwater, WR: Wild Ruminant and NU: acorns and nuts.  
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Table 1 List of Sites and Samples analyzed in this study. OD – older dryas. AB –Allerød- Bølling 
interstadial. YD- Younger Dryas 

 

Table 2. List of Sites and Samples analyzed in this study. OD: older dryas, AB: Allerød-Bølling 
interstadial, YD: Younger Dryas, EH: Early Holocene. 

 

Table 3. Pottery sherds from Russian Amur region selected for lipid residue analysis. FA (Cx:y) = 

fatty acids with carbon length x and number of unsaturations, phy = phytanic acid, pri = pristanic acid, 

TMTD = 4,8,12- trimethyltridecanoic acid. Phy(xx) refers to the ratio of SRR% (Lucquin, Colonese et al. 

2016). APAA (Cn) = ω-(o-alkylphenyl) alkanoic acids with carbon length n. tr = trace. DCx = α,ω-

dicarboxylic acids with carbon length x. Aquatic oils are interpreted from APAA (C20, 22) with at least 

one isoprenoid fatty acids (Evershed et al. 2008) while ruminant fats are interpreted from  
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Table 1. Calibrated dates of the two stages of the Osipovka culture 

14C bp  cal BP Key sites Number of dates  
Material for 

dating  

13260-12055  16200-13700 
Khummi, Gasya, Goncharka-1, layer 

4-5 
6  Charcoal 

11650-9890 13600-10700 Goncharka-1, layer 3   18  
Charcoal, 

Foodcrust 

     

 

 

 

 

 

 



 

Table 2. List of Sites and Samples analyzed in this study. OD: older dryas, AB: Allerød-Bølling 

interstadial, YD: Younger Dryas, EH: Early Holocene. 

  
Site  Cultural Complex  No. of Sherds  Climate stage Age / Dates (cal BP).  

Khummi Osipovka  1 OD/AB /YD 

 

16240–11820 

Gasya Osipovka 3 OD/AB 

 

15870-12660  

Goncharka 1 Osipovka 19 OD/AB /YD/EH 

 

15070–10650 

Gromatukha  Gromatukha  5 OD/AB 

 

15120–13840 

 

 

 

 

 



Table 3. Pottery sherds from Russian Amur region selected for lipid residue analysis. FA (Cx:y) = fatty acids with carbon length x and number of unsaturations, 

phy = phytanic acid, pri = pristanic acid, TMTD = 4,8,12- trimethyltridecanoic acid. Phy(xx) refers to the ratio of SRR% (Lucquin, Colonese et al. 2016). APAA 

(Cn) = ω-(o-alkylphenyl) alkanoic acids with carbon length n. tr = trace. DCx = α,ω-dicarboxylic acids with carbon length x. Aquatic oils are interpreted from 

APAA (C20, 22) with at least one isoprenoid fatty acids (Evershed et al. 2008) while ruminant fats are interpreted from the combination of the lower 13C value 

and lower relative amounts of the SRR isomer (<75%) of phytanic acid  (Copley et al.. 2003, Lucquin, Colonese et al. 2016). 

 

 
Laboratory 

Code 

Site Lipid 

conc. 

(µg g-1 ) 

Major Compounds detected C16:0 

δ13C 

(‰) 

C18:0 

δ13C 

(‰) 

Δ13C 

(C18:0-

C16:0) 

Interpret

ation 

KHM01 Khummi 171 FA(C9:0-20:0, C18:1, C15, 17br), DC(C7-14), APAA(C16, 18, 20 ), phy(89), pri, tmtd, DHA, 7-Oxo-DHA -28.6 -28.6 0.0 Aquatic 

GSH01 Gasya 11 FA(C12:0-24:0, C16:1,18:1), phy(86), pri, n-alkane (C14-29), DHA, 7-Oxo-DHA -28.4 -29.7 -1.3  

GSH02 Gasya 64 FA(C10:0-24:0, C16:1,18:1), phy(84), pri, n-alkane (C14-29), DHA, 7-Oxo-DHA -27.5 -29.4 -1.9  

GSH03 Gasya 72 FA(C14:0-20:0, C17br), DC(C8-9), phy(92), pri, n-alkane (C11-29), DHA, retene, 7-Oxo-DHA -24.2 -24.1 0.1  

GCK02 Goncharka 1 26 FA(C12:0-26:0,C18:1, C17br), DC(C9), phy(93), pri, n-alkane (C15-27), DHA, 7-Oxo-DHA -26.2 -27.6 -1.5  

GCK04 Goncharka 1 15 FA(C14:0-24:0,C16:1,18:1, C12br), phy(90), pri, n-alkane (C13-29), DHA, retene, 7-Oxo-DHA   

GCK05 Goncharka 1 8 FA(C14:0-28:0), phy(tr), pri, n-alkane (C14-29), DHA, retene, 7-Oxo-DHA   

GCK07 Goncharka 1 18 FA(C9:0-20:0, C17br), phy(tr), pri, n-alkane (C13-26), DHA, 7-Oxo-DHA -28.6 -29.3 -0.7  

GCK08 Goncharka 1 217 FA(C9:0-24:0, C15,17br), phy(tr), pri, n-alkane (C12-27), DHA, retene, 7-Oxo-DHA -26.9 -27.9 -1.0  

GCK09 Goncharka 1 31 FA(C13:0-26:0,C18:1, C12,17br), phy(89), pri, n-alkane (C14-27), DHA, retene, 7-Oxo-DHA -24.4 -24.5 0.0  

GCK10 Goncharka 1 23 FA(C9:0-26:0), pri, n-alkane (C12-29), DHA, retene, 7-Oxo-DHA -28.4 -28.1 0.3  

GCK12 Goncharka 1 34 FA(C8:0-26:0, C15br), pri, tmtd, n-alkane (C13-27), DHA, retene, 7-Oxo-DHA   

Amur1 Goncharka 1 462 FA(C12:0-20:0,C15,17br),phy(91), pri, n-alkane (C15-20), DHA -26.7 -27.5 -0.8  

Amur2 Goncharka 1 113 FA(C12:0-20:0,C15br), phy(tr), pri, n-alkane (C15-25), DHA, retene, 7-Oxo-DHA -28.1 -28.7 -0.6  

Amur3 Goncharka 1 144 FA(C12:0-22:0,C17br), APAA(C18,20tr), phy(87), pri, n-alkane (C15-23), DHA -25.5 -26.3 -0.8 Aquatic 

Amur4 Goncharka 1 778 FA(C14:0-20:0, C15,17br), phy(91), pri -24.6 -25.7 -1.1  

Amur5 Goncharka 1 168 FA(C12:0-20:0, C15,17br), phy(84), pri, n-alkane (C15-19), DHA, 7-Oxo-DHA -25.0 -26.0 -1.0  



Amur6 Goncharka 1 376 FA(C16:0-18:0), n-alkane (C15-19), DHA -30.2 -29.8 0.4  

Amur7 Goncharka 1 87 FA(C12:0-26:0, C15,17br), phy(tr), n-alkane (C15-19), DHA, retene, 7-Oxo-DHA -29.4 -29.4 0.0  

Amur8 Goncharka 1 37 FA(C12:0-18:0, C15,17br), n-alkane (C16-18), DHA -29.3 -29.3 0.1  

Amur9 Goncharka 1 80 FA(C12:0-20:0, C15,17br), phy(tr), pri, n-alkane (C15-21), DHA -27.6 -28.5 -0.9  

Amur10 Goncharka 1 44 FA(C12:0-22:0), phy(87), pri, DHA,  7-Oxo-DHA -24.6 -23.1 1.5  

Amur11 Goncharka 1 20 FA(C16:0-18:0), pri, DHA, retene, 7-Oxo-DHA -29.7 -29.5 0.2  

GMT01 Gromatukha 953 FA(C9:0-24:0,C18:1), phy(62), 7-Oxo-DHA -28.0 -30.1 -2.0 Ruminant 

GMT02 Gromatukha 66 FA(C12:0-28:0,C16:1-22:1, C15,17br), DC(C9-16), phy(71), pri, n-alkane (C15-29), DHA, 7-Oxo-DHA -27.6 -29.0 -1.4 Ruminant 

GMT03 Gromatukha 6 FA(C12:0-28:0,C16:1-18:1, C15,17br), pri, n-alkane (C14-29), DHA, 7-Oxo-DHA   

GMT04 Gromatukha 660 FA(C10:0-28:0,C16:1-18:1), APAA(C18), phy(79) -29.2 -30.4 -1.2  

GMT06 Gromatukha 5009 FA(C9:0-22:0,C18:1), phy(60) -28.3 -29.9 -1.6 Ruminant 

  

  

 



Table S1. Contextual data and dates of the samples from Goncharka-1(GCK, Amur) and 

Gromatukha (GMT) sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samle 

ID 

Layer  Estimated 

age,  
14C BP 

Note 

GCK02 layer 3Б 10300 Shevkomud and Yanshina 2012:  fig. 85-86 

GCK04 layer 3Б 10600-10000 

Shevkomud and Yanshina 2012:  fig. 90, 1-

2 

GCK05 layer 3Б 10600-10000  

GCK07 layer 3Б 10600-10000 

Shevkomud and Yanshina 2012:  fig. 90, 6-

7; 91 

GCK08 layer 3Б 10600-10000 Shevkomud and Yanshina 2012:  fig. 78, 1 

GCK09 layer 3Б 10600-10000  

GCK10 layer 3Б 12500-10000 Shevkomud and Yanshina 2012:  fig. 99, 4 

GCK12 layer 3Б 10600-10000 Shevkomud and Yanshina 2012:  fig. 93 

Amur1 layer 3Б 10600-10000  

Amur2 layer 3Б 10600-10000  

Amur3 layer 3Б 10600-10000  

Amur4 layer 3Б 10600-10000  

Amur5 layer 3Б 10600-10000  

Amur6 layer 5 12500-10000  

Amur7 layer 5 12500-10000  

Amur8 layer 5 12500-10000  

Amur9 layer 5 12500-10000  

Amur10 layer 3Б 10000-10600  

Amur11 layer 3Б 10000-10600  

GMT01 uknown 12500-10000  

GMT02 uknown 12500-10000  

GMT03 uknown 12500-10000 

Shevkomud and Yanshina 2012: fig. 115, 1-

3 

GMT04 uknown 12500-10000  

GMT06 uknown 12500-10000  

    

    

    



Table S2. Estimated percentage contribution (average and standard deviation) of resources using a 

concentration-dependent mixing model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Site 

Salmonids 

organisms 

Wild 

ruminant Wild boar 

Freshwater 

organisms 

Plants (acorns 

and chestnuts) 

KHM01 Khummi 27.1 ±16.9 6.5 ±5.8 24.4 ±17.3 29.6 ±19.9 12.4 ±9.2 

GSH01 Gasya 27.5 ±16.8 14.2 ±9.2 17.6 ±13.9 30.2 ±20.5 10.5 ±8.6 

GSH02 Gasya 40.0 ±17.9 12.3 ±8.3 18.0 ±14.7 22.7 ±17.6 7.0 ±6.3 

GSH03 Gasya 89.8 ±5.5 1.0 ±1.1 2.6 ±2.6 4.2 ±4.3 2.4 ±2.4 

GCK02 Goncharka 1 65.8 ±14.4 4.1 ±3.7 12.9 ±11.0 12.6 ±11.4 4.6 ±4.4 

GCK09 Goncharka 1 89 ±5.7 1.2 ±1.2 2.9 ±3.1 4.4 ±4.3 2.5 ±2.5 

Amur1 Goncharka 1 59.8 ±16.1 4.2 ±4.0 15.1 ±13.0 15.4 ±13.4 5.5 ±5.0 

Amur3 Goncharka 1 79.3 ±9.1 2.5 ±2.5 6.5 ±6.3 7.8 ±7.1 3.8 ±3.6 

Amur4 Goncharka 1 85.9 ±6.8 1.7 ±1.7 4.3 ±4.2 5.4 ±5.2 2.7 ±2.7 

Amur5 Goncharka 1 82.9 ±8.2 2.1 ±2.2 4.9 ±4.7 7.0 ±6.7 3.1 ±3.0 

Amur10 Goncharka 1 90.3 ±5.3 0.9 ±0.9 2.3 ±2.4 3.9 ±4.1 2.6 ±2.6 

GMT01 Gromatukha 18.9 ±14 31.7 ±14.7 23.7 ±16.7 18.1 ±15.9 7.7 ±6.7 

GMT02 Gromatukha 34.6 ±17.8 13.9 ±9.7 24.3 ±18.3 20.1 ±16.4 7.1 ±6.3 

GMT04 Gromatukha 21.5 ±13.8 22.5 ±11.4 15.0 ±12.0 26.0 ±18.2 14.9 ±10.9 

GMT06 Gromatukha 15.1 ±12.5 31.4 ±14.7 26.9 ±17.5 17.9 ±15.9 8.7 ±7.5 



 
 

 

 

 

 

 

 

 

Fig. 1. a. The geographical area of this study. b. Location of the sites investigated in this study. The area 

corresponds with the square in a. (Osipovka Culture: Goncharka-1, Gasya, Khummi sites; Gromatukha 
Culture: Gromatukha site) 

 

 

 



 
 

 

Fig. 2. Typological differences between pottery of the Osipovka and Gromatukha cultures. Shapes 

and main patterns of the ceramic vessels of the Gromatukha (1-3, 8) and Osipovka cultures (4-9). 1, 3, 5, 

7 – Shevkomud and Yanshina 2012: fig. 111-112; 6 – Naganuma et al 2005; 8-9 - Yanshina 2017.  

 

 

 

 

 

 

 

 

 

 

 



 
 

Fig. 3. Pottery from the Osipovka and Gromatukha Cultures form entirely different ceramic 

traditions. These photographs highlight some of the main differences in pottery fabric, tempers and 

surface treatments: Gromatukha (8-12), Khummi (13-15), and Goncharka-1 (16-18) sites. Note 

differences in temper, surface treatment, and zigzag pattern between two ceramic traditions. Type I. 
Temper: grog (15, 18b), gravel inclusions (12 b, 18a), grass additions (9, 12 a). Type II. Surface treatment: 

grooves rolling by cord wrapped tool (8-9, 11), haphazard cord impressions (14), combing by hard toothed 

tool (13, 16). Type III. Zigzag pattern: stepping by cord wrapped tool (8, 10, 11) and rolling by hard toothed 

tool (17).    
 



 
 

 

Fig. 4. Partial total ion and selected ion chromatograms of extracts from a pottery sherd from 

Khummi (Osipovka Culture) (Sample KHM01).  

 

A (1): Characteristic distribution of aquatic oil components: total ion chromatogram that showing lipids 
typical for a heated and degraded aquatic oil, dominated by medium- and long-chain saturated and mono-

unsaturated fatty acids (FA) and isoprenoid fatty acids. б,ω-dicarboxylic acids (■) with carbon chain ranges 

of C8-C13 resolved on a DB-5 chromatography column. B. Heating of aquatic oils: Ion chromatogram (m/z 

105) showing the presence of щ-(o-alkylphenyl) alkanoic acids with 16( ), 18(+), 20(#) carbon atoms. C: 

Isoprenoid fatty acids identified: Ion chromatogram (m/z 101) showing isoprenoid fatty acids, TMTD: 

4,8,12-trimethyltridecanoic acid, Pri: pristanic acid and Phy: phytanic acid resolved on a DB-5 
chromatography column. D: Separation of SRR and RRR diastereomers: Ion chromatogram (m/z 101) 

shows the ratio of phytanic acid diastereomers (SRR and RRR) resolved on a DB-5 chromatography 

column. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Fig. 5. Comparative plot of the δ13C values of C16:0 and C18:0 n-alkanoic acids extracted from pottery 

from Russian (RFE – this study) and Japanese pottery (refs). A: Samples from Amur river basin, 
Osipovka culture (black) and Gromatukha culture (red), B: Samples from Incipient Jōmon (Lucquin et al. 

2018). Closed symbols represent samples meeting the full criteria for aquatic biomarkers (Evershed et al. 

2008). The data is compared with reference ranges for authentic reference lipids from both modern and 

archaeological material (Lucquin et al. 2016, Shoda et al. 2017, Hansel et al. 2004, Evershed et al. 2008, 
Ackman and Hooper 1968) plotted at 95% confidence. M: Marine, S: Salmonids, WB: Wild Boar, FW: 

Freshwater, WR: Wild Ruminant and NU: acorns and nuts.  

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 



 

 
 

Fig. 6. Estimated percentage contribution of salmonid and wild ruminant resources using a 

concentration-dependent mixing model. The model parameters have been previously described (Lucquin 

et al. 2018). Box plots show model output for individual sample. The boxes represent a 68% credible 
interval while the whiskers represent a 95% credible interval. The horizontal continuous line indicates the 

mean while the horizontal discontinuous line indicates the median. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Fig. 7. Plot of the Δ13C and %SRR of lipids extracted from early pottery from sites on the Amur 

River; The values are compared to the reference range of aquatic oils and ruminant fats based on 

authentic samples (Lucquin et al 2016, Lucquin et al 2018) corrected for the recent burning of fossil fuels. 

Red circles: Khummi, orange: Gasya, brown: Goncharka-1, and blue: Gromatukha. Plots with asterisk 

meet full criteria of aquatic biomarkers (Evershed et al. 2008).   
 

 

 

 

 

 

 


