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Abstract

The original data produced by the Shuttle Radar Topography Mission (SRTM) tend to have an abundance

of voids in mountainous areas where the elevation measurements are missing. In this paper, deep learning

models are investigated for restoring SRTM data. To this end, we explore generative adversarial nets, which

represent one state of the art family of deep learning models. A conditional generative adversarial network

(CGAN) is introduced as the baseline method for filling voids in incomplete SRTM data. The problem

regarding shadow violation that possibly arises from the CGAN restored data is investigated. To address this

deficiency, shadow geometric constraints based on shadow maps of satellite images are devised. In addition,

a shadow constrained conditional generative adversarial network (SCGAN), which incorporates the shadow

geometric constraints into the CGAN, is developed. Training the SCGAN model requires both the remote

sensing observations (i.e., the original incomplete SRTM data and satellite images) and the ground truth data

(i.e., the complete SRTM data, which are manually refined from the incomplete SRTM data with the reference

of in-situ measurements). The integration of the multi-source training data enables the SCGAN model to be

characterized by comprehensive information including both mountain shape variation and mountain shadow

geometry. Experimental results validate the superiority of the SCGAN over the comparison methods, i.e., the

interpolation, the convolutional neural network (CNN) and the baseline CGAN, in SRTM data restoration.

Keywords: SRTM data restoration, multi-source data, shadow geometric constraints, shadow constrained

conditional generative network.

1. Introduction

In 2000, the National Aeronautics and Space Administration (NASA) and the National Geospatial Intelli-

gence Agency (NGA) operated the Shuttle Radar Topographic Mission (SRTM), which acquired SRTM data

(elevation data) covering more than 80% of the earth’s surface between the north latitude 60 degree and south

latitude 56 degree (Rodriguez et al., 2005, 2006; Farr et al., 2007; Wendleder et al., 2016). The SRTM data5
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have been widely used in the field of remote sensing, such as natural disaster monitoring (Jafarzadegan &

Merwade, 2017), meteorological forecast (Yue et al., 2015), and glacial evolution detection (Lee et al., 2015;

Yang et al., 2015). In addition, digital elevation models (DEMs) were created based on the SRTM data.

The highly accurate DEMs are of great significance to topographic mapping (Toutin, 2008), hydrological

simulation (Rizzoli et al., 2017), and flood control (Yue et al., 2017). The accuracy of DEM data highly10

relies on that of the SRTM data. Therefore, there are strict requirements for the SRTM data accuracy.

However, numerous voids (missing data) exist in SRTM data, especially in mountainous regions. One reason

for this deficiency is that it is difficult for radar to capture steep terrains. Furthermore, the environment in

mountainous areas is particularly complex, and there may be numerous environmental sources of noise that

interfere with radar signals, resulting in incomplete and blurry data. These missing data regions account15

for 0.3% of the surveyed area (Kellndorfer et al., 2004; Hall et al., 2005; Hirt, 2018). The completeness and

accuracy of the SRTM data are negatively affected by missing data in mountainous areas. One widely used

strategy for SRTM data restoration is manually refining the data by consulting alternative observations.

Furthermore, the raw SRTM data tend to contain numerous outliers which need to be manually removed.

Manually removing outliers may achieve highly accurate terrain restoration. In the condition that the scale20

of the data is huge and voids are relatively common, the accurate manually manipulated restoration requires

intensive human labor. Furthermore, manual refinement is subjective such that the restoration accuracy sig-

nificantly depends on the person who does the manual work. On the contrary, automatic refinement methods

provide an objective means for SRTM data restoration with little human intervention. However, automatic

refinement may not outperform the manual refinement with intensive human observations, as long as the25

automatic strategy is designed in an ad hoc manner with limited representational power. In this scenario,

how to automatically restore the SRTM data for mountainous regions in a precise manner is a challenging

and important topic in the remote sensing literature. One goal of our work is to develop a novel deep learning

based automatic SRTM data restoration strategy, which achieves state of the art performance for automatic

SRTM data restoration.30

Most existing automatic data restoration methods in the literature repair incomplete SRTM data based

on interpolation. In practical void filling tasks, various interpolation techniques have been adopted. Among

these, the inverse distance weighting (IDW) interpolation and the Kriging interpolation techniques are widely

used for filling voids in general situations especially for those with medium sizes and in relatively flat low-

lying areas. Moreover, spline interpolation, triangular irregular network and their extensions are used for35

addressing the void filling tasks in more specific situations (Reuter et al., 2007). However, interpolation based

methods tend to induce biases, resulting in discontinuous and unsmooth boundaries (Grohman et al., 2006).

Additionally, terrain characteristics around the incomplete region significantly influence the performance of

the interpolation methods. For example, the same interpolation method performs quite differently with
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respect to different neighboring terrain characteristics. Therefore, it was suggested that interpolation based40

methods should involve the topographical characteristics as cues to repair incomplete terrain (Reuter et al.,

2007; Heritage et al., 2009; Arun, 2013). In the light of this observation, researchers used various auxiliary

data to form geological cues for guiding the filling of no-data regions. Ling et al. (Ling et al., 2007) were

among the first to interpolate void data according to valley trends in satellite images. However, it is not

clear how this valley interpolation method can be extended to mountainous situations. Subsequently, quite45

a few interpolation methods involving auxiliary DEM data (Reuter et al., 2007; Karkee et al., 2008; Milan

et al., 2011) were proposed. However, these methods are not scalable to DEM data with different resolutions

and the auxiliary DEM data are not always available. Different from using DEM as auxiliary data, Hogan et

al. (Hogan & Smith, 2010) proposed to refine interpolation results by using geometric shadow constraints.

However, shadow cues alone provide a relatively sparse source of information, and the method involves solving50

a difficult and non-convex optimization problem which is computationally expensive.

Though the information extracted from auxiliary data improves the interpolation accuracy, it only fo-

cuses on local data characteristics. Generally, most existing interpolation based methods neither consider

the global information contained in the non-void regions nor are they capable of learning heuristics from

the global data variation to fill the voids. These limitations can possibly be addressed by exploiting deep55

learning models. Most deep learning models (e.g., convolutional neural networks (CNNs)) require a large

amount of training data. Deep models learn extensively from big data and produce effective representations

characterized by global and local features that have been exhibited. Therefore, deep learning models are

capable of characterizing the global information based on non-void data and deriving terrain variation trends

for void filling.60

In contrast to most traditional deep learning methods such as CNNs that only model one unique net, a new

family of deep learning models, i.e., generative adversarial nets (GANs) (Goodfellow et al., 2014), has recently

been proposed in the literature. Specifically, one GAN model consists of two nets, i.e., a generator and a

discriminator. The generator takes noise as inputs and tries its best to generate data (e.g., images) as realistic

as ground truth data. The discriminator, on the other hand, tries its best to discriminate the generated data65

from the ground truth. The two nets play an adversarial game and their capabilities of generating realistic

data and discriminating generated data are both maximized during the adversarial training process. The

adversarial training is terminated when the generated data appear so realistic that the discriminator cannot

distinguish them from the ground truth. Compared with traditional deep learning models such as CNNs, a

GAN has two advantages which make it a promising means for SRTM restoration. One is that a GAN does70

not necessarily require a large amount of training data, because in the training procedure it generates new

data that enlarge the training dataset. The other advantage is that a GAN not only memorizes information

extracted from training data but also learns to generate novel but plausible new instances that appear to be
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drown from the same distribution as the real data. These two advantages reveal the potential of GANs as

a means for SRTM data restoration. It is common in practice that only a small set of the void and ground75

truth patch pairs are available and GANs can be trained with a small size training dataset. Meanwhile, unlike

CNNs which restore data by retrieval from memorized information, GANs have the capability of imagination

and can derive heuristics from training data and restore terrain data in a more comprehensive manner.

To take advantage of the representational power of GANs, an SRTM restoration framework is developed

based on GANs. Rather than employing its original form which takes noise as the generator’s inputs, we80

commence by investigating the possible way for SRTM data restoration based on conditional generative

adversarial nets (CGANs). Specifically, regions containing voids are taken as the inputs of the generator of

a CGAN and such conditional data reduce the ambiguities arising from the noise inputs. In addition, the

complete SRTM data are taken as the target outputs of the generator of the CGAN and thus the generator

and discriminator are adversarially trained in a supervised fashion. The void filling CGAN was previously85

investigated in our preliminary work (Dong et al., 2018). It is considered as one baseline method in this

paper.

However, the baseline CGAN has limitations for void filling. First, it is a straightforward data-driven

approach without considering the geometric characteristics of terrains. It may restore the terrain in a way

that just follows terrain variation heuristics but violates certain terrain geometric constraints. Second, the90

baseline CGAN is dependent on the quantity and quality of complete SRTM data that can be provided.

The training samples themselves may contain errors or may be produced by a separate void filling procedure

and so may also lead to restorations that violate geometric constraints. Therefore, the baseline CGAN alone

cannot guarantee that the restored data follow the geometric nature of terrains. This deficiency motivates

us to develop geometric cues for constraining the CGAN for the purpose of accurate SRTM data restoration95

subject to terrain topological nature. One such geometric property arises from observing cast shadows in

terrain imageries. We make an attempt to introduce additional cast shadow supervision to the CGAN.

This shadow constrained conditional generative adversarial net (SCGAN) encourages the restored SRTM

data to adhere to shadow geometry constraints, potentially leading to improvements in the non-void regions.

Compared with existing interpolation based methods, our SCGAN model learns a powerful representation100

of SRTM data and comprehensively characterizes the relationship between missing data and valid data. It

excludes the need of auxiliary DEMs and avoids the problem of ambiguous resolutions from different DEMs.

Furthermore, in contrast to most existing deep learning models such as CNNs and the baseline CGAN which

are completely driven by data, our SCGAN takes into account the effects of mountain shadow conditions

and accordingly constructs geometric constraints based on shadow maps to guide the training process of the105

SCGAN model. It thus has the potential of avoiding the inaccurate restoration that violates terrain shadow

geometry.
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Incomplete SRTM data(a) Shadow map(c)Complete SRTM data(b)

Fig. 1. A sample of data.

The organization of the paper is as follows. Section 2 describes the data catalog of our study areas.

Section 3 introduces the baseline CGAN model for SRTM data restoration and discusses its limitations.

Section 4 investigates the shadow geometrics for mountainous regions and Section 5 develops the shadow110

constraints with respect to the shadow geometrics. Section 6 describes how to incorporate the shadow

constraints as supervision information and presents the shadow constrained conditional generative adversarial

net (SCGAN). Section 7 describes the restoration procedure based on the SCGAN. Section 8 presents and

analyzes the empirical evaluations of the SCGAN and comparison methods. Section 9 concludes our work.

2. Data catalog for study areas115

Training our proposed SCGAN model for SRTM data restoration requires three types of data for the same

moutainous regions, i.e., (a) incomplete SRTM data, (b) complete SRTM data and (c) shadow maps. A

region in the southwest of China is selected as the study area. The region covers a geographical rectangle

from the northwest corner 29◦N85◦E to the southeast corner 28◦N86◦E. The required data are obtained for

the region.120

There are multiple versions of SRTM data available. The original SRTM data (SRTM version 1) have

a lot of voids but lack the indications of peaks, water bodies and coastlines. Therefore, the data are not

appropriate for scientific research and remote sensing missions. The data of SRTM version 21 indicate peaks,

water bodies and coastlines (Boncori, 2016), but still have plenty of voids. Most of the missing data of SRTM

version 3 were filled except for some small regions in the mountainous areas. SRTM version 4.1 completed125

by the International Center for Tropical Agriculture (CIAT) produces the seamless SRTM data without data

missing (Jarvis et al., 2008).

Taking into account the qualities of different versions of SRTM data, the data from SRTM version 2 are

taken as (a) incomplete SRTM data, and those from SRTM version 4.1 are taken as (b) complete SRTM

1https://dds.cr.usgs.gov/srtm/version2_1/
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data. In addition, (c) shadow maps covering the same regions as SRTM data are extracted from satellite130

images. Fig. 1 displays sample patches of (a) an incomplete SRTM data patch, (b) a complete SRTM data

patch, and (c) a shadow map patch for the same region.

The three types of data (a), (b) and (c) are obtained through different means. The original incomplete

SRTM data, i.e., the data (a), are obtained from shuttle shipped radar. The data from SRTM version 4.1, i.e.,

the data (b), are refined from the original incomplete SRTM data with the reference of in-situ measurements.135

The shadow maps, i.e., the data (c), are obtained by processing the Landsat-5 satellite multispectral images.

Training our proposed SCGAN model involves both aerial and in-situ measurements. Therefore, the SCGAN

not only provides a new deep learning model that incorporates shadow geometrics but also forms a novel

data fusion framework that integrates satellite, shuttle based radar and in-situ observations data.

Furthermore, one alternative way for looking at the SRTM data types is from the perspective of spatial140

resolution. In this scenario, two widely used SRTM data types are SRTM 3 Arc-Second global data with the

resolution of 90 m and the SRTM 1 Arc-Second global data with the resolution of 30 m, separately. It is

worth noting that one mission goal of SRTM is to attain an altitude accuracy in terms of root mean square

error (RMSE) within the order of magnitude 10 m (Mukul et al., 2017). Though the SRTM 1 Arc-Second

dataset provides data with acceptable altitude accuracy for most of the relatively flat low-lying areas, the145

goal for accurately completing high altitude voids is still challenging. Most existing interpolation methods

cannot achieve the accuracy specified in the SRTM mission goal for restoring missing high altitude data.

In our work, we will forward the state of the art research one step further by developing the deep learning

based SCGAN restoration strategy. Experimental evaluations show that our new method is capable of

obtaining a restoration accuracy closer to the SRTM mission goal based on different types of data used here.150

More specifically, experimental results validate that our new strategy improves not only the performance for

enhancing the quality of the high resolution SRTM 1 Arc-Second data but also the interpolation accuracy for

the low resolution SRTM 3 Arc-Second dataset. Therefore, the SCGAN is a general methodology for remote

sensing surface restoration. It is not confined to filling voids for one specific type of remote sensing data but

can be generalized to restoring various remote sensing data.155

3. A Baseline Conditional Generative Adversarial Net for Filling SRTM Voids in Mountainous

No-data Areas

This section introduces our baseline conditional generative adversarial net (CGAN) for SRTM mountainous

data restoration. We commence by presenting the basic structure of the CGAN and describe how to apply it

to the task of filling SRTM voids in mountainous no-data areas. The limitations of the baseline CGAN are160

discussed at the end of the section.
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Generator

Discriminator

Cross entropy loss

L1-loss

Losses

Shadow maps

Complete SRTM 

data

Cross entropy loss

L1-loss

Shadow ceiling loss

Mountain curvature loss

Losses

Incomplete SRTM 

data

Train Discriminator with 

cross entropy loss

Train Generator with 

cross entropy and L1 

loss Restored data

Train Discriminator with 

cross entropy loss

Train Generator with 

all losses

CGAN model

Shadow constrained CGAN model

Fig. 2. SRTM data restoration by the CGAN and SCGAN models.

3.1. Conditional Generative Adversarial Nets

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Creswell et al., 2018; Zhan et al., 2018)

have shown great effectiveness in learning the distribution of a dataset and generating new data. However,

the basic GAN takes random noise as the generator’s inputs which lead to ambiguity in generating new data.165

Additionally, the original GAN also suffers from locally optimal solution and gradient disappearance that

possibly lead to considerable inaccuracy. Our motivation is to train the generator of a GAN to generate data

for void regions. In this scenario, one input to the generator is a data patch consisting of both valid and void

regions, and the generator is expected to fill the void regions and output a restored complete data patch.

Therefore, in contrast to the basic GAN, the generator is trained with incomplete data as inputs rather than170

random noise. This further motivates us to exploit a more comprehensive GAN structure, i.e., conditional

generative adversarial net (CGAN) (Isola et al., 2017; Antipov et al., 2017), for the purpose of restoring the

SRTM data in no-data mountainous areas. Specifically, the valid regions in the incomplete data patches

provide conditioning for guiding the data generation process. The CGAN model takes such conditioning

input as latent codes which address the lack of control in the basic GAN. The CGAN structure is introduced175

in the next subsection.

3.2. Filling SRTM Voids via Conditional Generative Adversarial Nets

The conditional generative adversarial net (CGAN) for SRTM data restoration is illustrated within the black

dash rectangle in Fig. 2. The CGAN model comprises a generator G and a discriminator D. Both the
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generator G and the discriminator D are structured in terms of the U-net deep learning structure (Gatys180

et al., 2016; Shelhamer et al., 2017; Yu et al., 2018), separately.

The generator G takes incomplete SRTM data (with elevation in void regions set to be zero) as inputs

and outputs the restored SRTM data. An incomplete SRTM data patch and its restored SRTM data patch

produced by the generator are represented as the matrices HV and HG, respectively. The input-output

relation of the generator G is formulated as follows:185

HG = G(HV ). (1)

The ground truth SRTM data patch is represented as the matrix H, which covers the same region as that

of HV . The discriminator D takes both a restored data patch HG and its ground truth data patch H as

an input and outputs a score D(HG, H) that determines the dissimilarity between HG and H in terms of a

score value in the interval [0,1].

The generator G aims at producing the restored SRTM data HG so as to resemble the ground truth data190

H as best as possible. This is effected by training G with respect to minimizing two loss functions, which

evaluate the similarity from two perspectives separately. The first loss is an ℓ1 norm between HG and H:

L1 = |HG −H|. (2)

L1 provides an objective similarity measure between HG and H. The second loss provides a similarity

measure between HG and H obtained from the discriminator as follows:

LG = E[log(1−D(HG, H))]. (3)

As D(HG, H) indicates the dissimilarity between HG and H, the term 1 − D(HG, H) represents the195

similarity between them judged by D. The expectation and logarithm operations are taken to form a

principled formulation. In this scenario, the loss LG measures the similarity between HG and H from the

view of discriminator D. Minimizing LG encourages the generator G to fool the discriminator D as much as

possible.

In addition, the goal of the discriminator D is to try its best to discriminate generated data from ground200

truth data. To this end, the discriminator D is trained by maximizing the following loss:

LD = E[logD(HG, H)]. (4)

The loss LD is the expectation of the logarithm of the dissimilarity score provided by D. Training D by

maximizing the loss LD increases the capability of D for discriminating data generated by G from ground

truth data.

The sum of the losses (2) and (3) for training the generator G and the loss (4) for training the discriminator205
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D forms the overall loss for training the CGAN as follows:

LCGAN = αL1 + LG + LD, (5)

where α is an empirical scaling parameter. The expectation and logarithm operations enable (3) to be easily

incorporated into the principled formulation in terms of a cross entropy loss as follows:

LD + LG = E[logD(HG, H)] + E[log(1−D(HG, H))]. (6)

Therefore, the loss LCGAN can be considered as the combination of a cross entropy loss and an ℓ1 loss.

Training G and D leads to the minimization and maximization of the loss LCGAN, respectively. Therefore,210

the optimal G∗ and D∗ are obtained by the min-max optimization of the loss LCGAN in (5) as follows:

(G∗, D∗) = arg min
G

max
D

LCGAN. (7)

Algorithm 1: Training procedure for the CGAN model.

Input: Incomplete SRTM data HV , complete SRTM data H.

for the number of training iterations do

Update G :

Take mini-batch examples from input to do restorations;

Update parameters of G via minimizing the sum of (2) and (3) by using the Adam optimizer.

Update D :

Take restored data HG of G and complete data H as inputs;

Update parameters of D via maximizing (4) by using the Adam optimizer.

end

Output: G∗ and D∗.

The min-max training procedure with respect to (7) is an adversarial training process, which can be

thought as a competition game between the generator G and the discriminator D. The two nets thus

play the adversarial game and their capabilities of generating realistic data and discriminating generated215

data are both maximized. Although the discriminator D tries its best to distinguish HG from H, it is the

generator G which finally wins the game, resulting in an equilibrium in which the discriminator D is unable

to differentiate between the restored data and the ground truth data. Therefore, the generator G∗ optimized

by the adversarial training process is believed to have the capability of generating realistic SRTM data for

filling the data voids. The training process uses the Adam optimizer (Zhu et al., 2017) for computing the220

minimization and maximization. The overall training process for the CGAN is shown in Algorithm 1. The

CGAN is employed as a baseline for restoring realistic SRTM data.
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3.3. Limitations

The baseline CGAN model has great potential in restoring SRTM data because of its effective representational

power. Our preliminary study (Dong et al., 2018) has validated its effectiveness over the interpolation based225

methods. However, the baseline CGAN has limitations in void filling. Firstly, it is a straightforward data

driven approach without the consideration of terrain geometric characteristics. It restores terrains in a

way that follows terrain variation heuristics but may violate terrain geometric constraints. For example, as

illustrated in Fig. 3, it is very likely for the CGAN to restore the void region, which is in fact concave, into an

incorrect convex shape. This is because the CGAN trained based on valid and ground truth data is prone to230

infer an unknown shape from valid adjacent data. For the case in Fig. 3, it is more likely for the CGAN to fill

the void with a convex shape because the void region is adjacent to a convex peek. However, this restoration

obviously violates the true terrain geometry. Secondly, the performance of the baseline CGAN depends on

the quantity and quality of complete SRTM data that are available. The training samples themselves may

contain errors or may also lead to restorations that violate the terrain geometry if they are produced by a235

separate void filling procedure. Therefore, the baseline CGAN alone cannot guarantee that the restored data

follow the geometric nature of terrains.

Data void 

region

Possible CGAN  restoration

Ground truth

Light direction

Fig. 3. Limitations of the CGAN model. The incorrect restoration would be apparent if cast shadows were
not or inappropriately considered.

The cast shadows provide useful information for improving the CGAN restoration accuracy. For example,

in Fig. 3, according to the light direction, the void region is in a shadow. If the void region is incorrectly

restored into a convex shape (the black dash curve in Fig. 3), a large part of or even the whole restored240

shape would be illuminated and this violates the shadow cues. In this case, restoration with a concave shape

resembling the ground truth (the red solid curve in Fig. 3) is supposed to satisfy the shadow condition.

Furthermore, the shadow cues also provide a remedy for correcting the errors induced by the low-quality
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SRTM data. Therefore, in the following sections, we will investigate the shadow geometrics and incorporate

the shadow cues into the CGAN SRTM data restoration model.245

4. Shadow Geometry

θ

𝑥ex 𝑥en

H(𝑥ex)

H(𝑥en)
Shadow ceiling

Shadow area

Light direction

𝑥s
H(𝑥s)

𝑐(𝑥s)

Fig. 4. Mountain shadow geometry.

Any region with large altitude variations (e.g., mountainous areas) contains locations where the sun is

occluded when not directly overhead. These cast shadow regions provide informative geometric cues that

can aid SRTM void data filling. The basic geometry of shadowing is illustrated in Fig. 4. The sun is treated

as a point source. Let s = [s1, s2, s3] be a unit length vector indicating the sun light direction. The angle250

between the light direction and the ground plane is denoted by θ = arccos(s3), where s3 is the third entry of

s and represents the vertical component of the normalized sun light direction vector s. Consider a 2D slice

through the DEM that is parallel to both the light direction and the up vector (as illustrated in Fig. 4). A

pair of locations (xen, xex) ∈ Xsbound ⊂ X × X are defined as a shadow entrance point and a shadow exit

point, respectively. Here X×X contains all location pairs and Xsbound contains all pairs of shadow boundary255

locations.

The shadow ceiling is the line connecting the shadow entrance and exit points. Let H(x) denote the

altitude of terrain at the location x. It is clear that the shadow ceiling and light direction are parallel, which

satisfies:

H(xen)−H(xex)

||xen − xex||
= tan(θ). (8)

The relationship between the elevations of the shadow boundary and the light direction in (8) leads to260
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the first shadow cue (C1) in our work:

∀(xen, xex) ∈ Xsbound,
H(xen)−H(xex)

||xen − xex||
− tan(θ) = 0. (9)

Furthermore, the region below the shadow ceiling lies in a cast shadow and this shadow area is denoted

as the set of locations Xs. The elevation of the shadow ceiling at a location xs ∈ Xs in the shadow area is

represented as c(xs, H) which is given by:

c(xs, H) =
H(xex)||xs − xen||+H(xen)||xs − xex||

||xs − xen||+ ||xs − xex||
. (10)

The altitude H(xs) at any location xs within a shadow area must be lower than the ceiling elevation265

c(xs, H). This observation provides the second shadow constraint (C2) in our work:

∀xs ∈ Xs, H(xs) < c(xs, H). (11)

In addition, the terrain must be convex along the light source direction at a shadow entrance point. Let

s̄ = [ s1√
s2
1
+s2

2

, s2√
s2
1
+s2

2

]T denote the orthogonal projection of s onto the ground plane. The second directional

derivative of H along direction s̄ must be negative. Using a finite difference approximation of the second

derivative, we obtain:270

H ′′

s̄ (x) ≈ H(x+ s̄) +H(x− s̄)− 2H(x). (12)

The convexity constraint results in the third shadow cue (C3) in our work:

∀(xen, xex) ∈ Xsbound, H ′′

s̄ (xen) < 0. (13)

5. Shadow Constraints

We show how to reframe the shadow cues obtained from the previous section as differentiable loss functions

for the use within a machine learning scheme.

5.1. Shadow segmentation275

Shadow segmentation of an image is normally conducted based on pixel intensities under the light source

(Chandraker et al., 2007; Wu et al., 2010; Liao et al., 2017; Villarini et al., 2017). The real shadow areas are

supposed to be represented by the zero-intensity pixels in an image. However, affected by inter-reflections

and ambient illumination, shadow areas are often represented by low (non-zero) pixel intensities. Therefore,

one way for detecting shadow areas is to compare the pixel intensity one by one with a global threshold (Lu280

& Drew, 2005; Chung et al., 2009). Additionally, different from pixel intensity based shadow segmentation

methods, some researchers constructed automatic shadow segmentation models with respect to the physical

phenomenon of sunlight scattering (Polidorio et al., 2003). Furthermore, in recent years, multispectral images
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have been widely used for shadow segmentation in the research field of remote sensing. Shadow segmentation

methods according to the intrinsic association between multi-band data and shadow regions (Hogan & Smith,285

2010; Teke et al., 2011) have also been developed. Multispectral images characterize shadow information in

a more comprehensive manner than single channel densities and shadow segmentation methods based on

multispectral images are considered as state of the art methods.

Taking into account the accuracy and robustness of the shadow segmentation methods reviewed above,

the multi-band thresholding technique is employed (Hogan & Smith, 2010) to perform shadow segmentation.290

Specifically, three bands (near infrared, mid-infrared and thermal infrared bands) of multispectral satellite

images from Landsat-5 are used for shadow segmentation. Let Ik(x) denote the normalized pixel intensity

at x in the k-th band. The segmentation indicator F (x) is formulated as follows:

F (x) =

K
∏

k=1

(1− Ik(x))
ϕk , (14)

where ϕk is an empirical parameter. A shadow threshold η is applied to the segmentation indicator F (x),

resulting in the location set Xs of the shadow region as follows:295

x =







∈ Xs, if F (x) > η;

/∈ Xs, otherwise.
(15)

Conducting the thresholding operation (15) for every pixel results in a shadow map of the same size as

the image, as shown in Fig. 5. In our work, the black regions in a shadow map represent shadow regions,

and the non-black regions exhibit terrain information.

Near infrared band Mid-infrared band Thermal infrared band
Shadow 

segmentation results

Fig. 5. Shadow segmentation.

5.2. Shadow geometric constraints for SRTM data restoration

Based on the shadow cues introduced in Section 4 and the shadow maps obtained in Section 5.1, we develop300

shadow geometric constraints for SRTM data restoration. In order to integrate shadow constraints into a

machine learning scheme, the shadow constraints are represented in the form of loss functions. Specifically, we
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design functions that take on a large positive value when a shadow constraint is violated and zero otherwise.

HG(x) is denoted as the restored elevation at a geographical point with the location x. The first shadow

cue (C1) in (9) is that the altitudes of shadow boundary satisfy (8). Therefore, the shadow boundary loss305

function LB is proposed to penalize the situation that Xsbound of HG violates the shadow cue (C1) as follows:

LB = | |HG(xen)−HG(xex)|
||xen − xex||

− tan(θ)|. (16)

Furthermore, the second shadow cue (C2) in (11) leads to a positive loss in the case that a restored

altitude in a shadow area is higher than the corresponding shadow ceiling elevation. An indicator function

is used to characterize the shadow cue (C2) as follows:

Hε[HG(xs)− c(xs, H)] =
1

2
[1 +

2

π
arctan(

HG(xs)− c(xs, H)

η
)]. (17)

where the parameter η is empirically set to be one in most situations (Chan et al., 2000; Li et al., 2008). This310

results in a value of one if the restoration violates the shadow cue (C2) and zero otherwise. The indicator

function (17) is used to enhance the disagreement penalty between the restored SRTM data and the true

SRTM data, and obtain the shadow ceiling loss function Lc with respect to the shadow cue (C2) as follows:

LC =
∑

xs ∈ Xs

Hε(HG(xs)− c(xs, H)). (18)

Additionally, according to the shadow cue (C3) in (13), a large loss is imposed if the restored shadow

entrance point is located at a valley rather than a peak. Following (12), a convexity characterization function315

is defined as follows:

t(HG, H) =
HG(xen + 1) +HG(xen − 1)

2
−H(xen). (19)

Accordingly, another indicator function is denoted as follows:

Hε(t(HG, H)) =
1

2
[1 +

2

π
arctan(

t(HG, H)

µ
)], (20)

where the parameter µ is empirically set to be one in most situations (Chan et al., 2000; Li et al., 2008). This

results in a value of one if the restoration violates (13) and zero otherwise. The shadow entrance curvature

loss function Lv with respect to the shadow cue (C3) is formulated as follows:320

LV =
∑

xen ∈ Xen

Hε(t(HG, H)). (21)
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6. The Shadow Constrained Conditional Generative Adversarial Net

The baseline CGAN model is able to restore SRTM data with the great capability of feature representation

and generation. However, as discussed in Section 3.3, the CGAN model does not take into account terrain ge-

ometry and may generate irrational restoration that violates shadowing conditions. To address this problem,

geometric shadow constraints, i.e., the loss functions (16), (18) and (21), are incorporated into the CGAN325

loss to achieve shadow guided training. This strategy is referred to as the shadow constrained conditional

generative adversarial neural network (SCGAN). Specifically, the overall loss function for the SCGAN is

denoted as follows:

LSCGAN = LCGAN + λBLB + λCLC + λVLV, (22)

where the parameters λB, λC, and λV balance the effects of different terms in the overall loss function. The

training process of the SCGAN model is an adversarially (min-max) game between the generator G and the330

discriminator D. Therefore, the final optimal Ĝ and D̂ are obtained by the min-max game as follows:

(Ĝ, D̂) = arg min
G

max
D

LSCGAN. (23)

The conditions for our SCGAN arise from two folds. Firstly, different from the original GAN whose generator

is fed with noise, our generator takes in an incomplete patch with voids and produces a complete patch.

Despite the voids, the input patch has non-void data which provides a guiding condition of terrain adjacency

for the generator to fill the voids. Secondly, we equip the SCGAN with terrain shadow cues, which enable335

shadow geometric conditions for the adversarial learning of the SCGAN model. The structure of the SCGAN

is illustrated inside the blue solid line box in Fig. 2. The SCGAN model takes incomplete SRTM data as

inputs and complete SRTM data as targets with shadow maps as additional supervision. It employs the

same U-net deep structures as the original CGAN. The SCGAN model learns the data variation in SRTM

data with respect to losses enhanced by geometric shadow constraints, which enable the SCGAN to encode340

knowledge of shadow cues. Therefore, unlike the baseline CGAN which is solely driven by training data, our

SCGAN not only learns from valid data but also follows geometric rules. Especially, the SCGAN has the

potential of avoiding the incorrect CGAN data restoration that violates the shadow cues. It thus potentially

results in more effective restoration than the baseline CGAN.

7. SRTM Data Restoration via The Shadow Constrained Conditional Generative Adversarial345

Net

7.1. Training The SCGAN

A training data sample comprises a complete SRTM data patch, an incomplete SRTM data patch and a

shadow map for the same region. Fig. 1 shows one training data sample. Training the SCGAN requires
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a dataset consisting of the training data samples. The training process is a min-max game between the350

generator G and the discriminator D. The generator G takes incomplete SRTM data HV as inputs and

generates restored SRTM data HG. To make the restored SRTM data HG more realistic, the generator G

seeks to minimize loss functions (2) and (3). Furthermore, computing the optimal generator Ĝ involves the

supervision in terms of minimizing loss functions (16), (18) and (21) in addition to (2) and (3). The additional

supervision makes the restored SRTM data HG satisfy the shadow cues (C1), (C2) and (C3). Additionally,355

the discriminator D tries its best to distinguish the differences between the restored SRTM data HG and

the complete SRTM data H by maximizing loss functions (4). The training process employs the Adam

optimizer (Zhu et al., 2017) for computing the minimization and maximization. The Adam optimizer makes

the training of the SCGAN model converge fast with economical computing resources. In addition, the

Adam optimizer employs an independent adaptive learning rate strategy, which enables the computation360

for large-scale parameter optimization even more efficient. The training procedure is shown in Algorithm 2.

Algorithm 2: Training procedure for the SCGAN model.

Input: Incomplete SRTM data HV , complete SRTM data H and shadow maps.

for the number of training iterations do

Update G :

Take mini-batch examples from input to do restorations;

Update parameters of G via minimizing the sum of (2), (3), (16), (18) and (21) by using

the Adam optimizer.

Update D :

Take restored data HG of G and complete data H as inputs;

Update parameters of D via maximizing (4) by using the Adam optimizer.

end

Output: Ĝ and D̂.

When the discriminator D cannot distinguish the differences between HG and H, the generator G wins the

min-max game. In this scenario, the well trained generator Ĝ is believed to have the capability of restoring

accurate SRTM data from incomplete SRTM data.365

7.2. SRTM Data Restoration Based on The SCGAN

The trained generator of the SCGAN takes incomplete SRTM data as inputs and results in the restored SRTM

data. The restoration diagram is shown in Fig. 6. Complete SRTM data and shadow maps are not required

in the restoration procedure. The information conveyed by complete SRTM data and shadow maps plays an

important supervision role in the training process. It encourages the SCGAN to restore the SRTM data as370

close to the complete SRTM data subject to the shadow constraints as possible. The proposed SCGAN is

a parametric model. The trained generator of the SCGAN restores SRTM data without the requirement of

either complete SRTM data or shadow maps. Benefiting from the supervised training with respect to the
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Generator

Incomplete SRTM data Restoration

Fig. 6. SRTM data restoration via the generator of the SCGAN.

complete data and shadow maps, the restoration is encouraged to both resemble the ground truth and satisfy

the shadow constraints.375

8. Experimental evaluations

8.1. Evaluations based on SRTM 3 Arc-Second global data

The resolution of the SRTM 3 Arc-Second global data used in the experiments is 90 m. It is observed that

there is a correlation between elevation error and altitude in the SRTM 3 Arc-Second global data for our

investigated mountainous areas (Zhang et al., 2018). Specifically, for the region with an altitude less than 1000380

m, the elevation error is generally between 10 m and 20 m. For the region with an altitude around 4000 m,

the elevation error is more than 40 m. For complex terrains with even higher altitudes, the elevation error can

be larger than 100 m. Additionally, noisy radar signals may lead to a standard deviation of SRTM data error

greater than 100 m in some mountainous areas. The altitudes of the investigated areas are higher than 4,000

m, and the SRTM 3 Arc-Second global data involved in training or testing may suffer an error larger than 100385

m. In the experiments, we use the widely used Kriging interpolation and IDW interpolation as representative

interpolation methods for comparison. We empirically compare the void filling results obtained from the

Kriging interpolation, the IDW interpolation, the CNN, the baseline CGAN and the proposed SCGAN.

Specifically, thirty six non-overlapping scenes are used to evaluate different methods. For the three learning

based models, i.e., the CNN, the baseline CGAN and the proposed SCGAN, cross validations are performed390

by using thirty three scenes and three scenes for training and testing, respectively. We use manually corrected

SRTM data (SRTM version 4.1) and shadow maps as labelled training data to train the three learning based

models. Then we use incomplete SRTM data as testing data to empirically evaluate the performance of the

three learning based models for data restoration. It should be noted that the training data and the testing

data are completely different data covering non-overlapped regions. Additionally, the three learning based395

models do not see any testing data during the training process, and the training data are not used for testing

the models.
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Fig. 7. SRTM 3 Arc-Second global data restoration results. Red boxes highlight regions in which the relative
performance is most apparent.
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8.1.1. Qualitative evaluations

Fig. 7 illustrates the void filling results obtained from the straightforward interpolation, the CNN, the

baseline CGAN and the SCGAN. The first row in Fig. 7 displays the incomplete SRTM data. The second,400

third, fourth and fifth rows illustrate the void filling results obtained from different methods, separately. The

bottom row shows the ground truth SRTM data. Each red box surrounds a local patch for which different

methods represent different restoration performances. It is clear that the results from the SCGAN model

agree best with the ground truth SRTM data among the four methods.

Fig. 8. The sectional view location marked in terms of a red line. The patch on the left is an SRTM 3
Arc-Second global data patch with void regions, and the patch on the right is its corresponding shadow map.

Fig. 9. The cross section view (for restored data along the red marked line in Fig. 8).

In order to further illustrate the performance of different methods qualitatively, the sectional view of405

a restored mountain curve along 85◦08′E at around 28◦19′N is investigated. The specific sectional view

location is illustrated as the red line in Fig. 8. The sectional views of the mountain curve restored from
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different methods are shown in Fig. 9. The top row shows the full sectional view and the bottom row displays

the zoomed in restored curves with respect to one no-data shadow area. The altitude of the investigated

region in Fig. 9 varies roughly from 5000 m to 6500 m. The Kriging interpolation tends to produce an410

over-smooth curve at the summit area but exhibits unfavorable fluctuations at relatively flat regions. The

IDW interpolation produces an unfavorable abrupt change at the summit area. In contrast, the results

obtained from all the deep learning based approaches vary more smoothly at the same area and show better

resemblance to the complete data. It is clear that the SCGAN outperforms the interpolation methods, the

CNN, and the baseline CGAN methods in terms of both the overall mountain curves and the shadowed415

mountain curves.

More specifically, in the bottom subfigure of Fig. 9, there are spikes on the top of the incomplete data

curve. The spikes are considered as outliers and are supposed to be manually removed when applying

most existing interpolation strategies. Our SCGAN method (as well as the alternative deep learning based

methods) does not have such a requirement. It operates automatically without manual manipulations. The420

SCGAN restored curve varies smoothly in the neighborhood where spikes exist in the incomplete data. One

reason for this advantage is that the deep learning strategy automatically learns the data variation heuristics

that are against the appearance of outliers.

8.1.2. Quantitative evaluations

Table 1: PSNR (dB) for the overall investigated region (SRTM 3 Arc-Second global data).

Locations Kriging IDW CNN CGAN SCGAN

28◦31′N 85◦34′E 38.14 38.48 42.41 42.47 43.93

28◦23′N 85◦09′E 37.96 37.18 37.19 37.44 40.14

28◦21′N 85◦29′E 36.86 37.53 37.88 37.97 38.89

Both peak signal to noise ratio (PSNR) and root mean square error (RMSE) are used for quantitatively425

evaluating the restoration accuracy. A larger PSNR value reflects better accuracy. In contrast, a smaller

RMSE value reflects better accuracy. Table 1 shows the PSNR values of the two representative interpolation

methods, the CNN, the baseline CGAN and the SCGAN, separately.

Table 2: RMSE (m) for the overall investigated region (SRTM 3 Arc-Second global data).

Locations Kriging IDW CNN CGAN SCGAN

28◦31′N 85◦34′E 138.25 133.75 84.26 80.56 71.37

28◦23′N 85◦09′E 141.85 155.31 151.88 149.92 107.75

28◦21′N 85◦29′E 141.50 149.33 144.89 141.71 127.59
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Table 3: PSNR (dB) for local shadowed regions (SRTM 3 Arc-Second global data).

Locations Kriging IDW CNN CGAN SCGAN

28◦31′N 85◦34′E 38.99 39.42 42.23 42.24 43.13

28◦23′N 85◦09′E 37.59 38.79 41.82 42.28 42.90

28◦21′N 85◦29′E 36.86 37.28 38.43 38.85 43.82

Table 4: RMSE (m) for local shadowed regions (SRTM 3 Arc-Second global data).

Locations Kriging IDW CNN CGAN SCGAN

28◦31′N 85◦34′E 125.37 125.33 86.57 86.57 53.42

28◦23′N 85◦09′E 148.31 131.83 95.73 86.34 53.71

28◦21′N 85◦29′E 167.53 152.33 136.69 128.45 103.38

Observations from Table 1 indicate that the CNN, the baseline CGAN and the SCGAN significantly

outperform the interpolation methods. The key effective factor is that the deep learning methods characterize430

and learn the varying heuristics of mountains from the training data, and in contrast the interpolation

methods do not explore the training data but just employ test data for restoration. Additionally, benefiting

from incorporating the geometric shadow constraints into training the model, the SCGAN outperforms the

CNN and the baseline CGAN.

Table 2 shows the RMSE values of different methods. Similar to those in Table 1, the CNN, the baseline435

CGAN and the SCGAN exhibit much better RMSE than the interpolation methods, and our SCGAN obtains

the best RMSE among the four methods.

Table 1 and Table 2 evaluate the overall restoration results obtained from different methods. The SCGAN

model achieves the best performance. To further evaluate these methods in detail, the PSNR and RMSE in

shadow regions are calculated and compared among these different methods.440

Table 3 represents the PSNR values in shadow regions obtained by different methods. The deep learning

based methods (i.e., the CNN, the CGAN and the SCGAN) outperform the interpolation methods with higher

PSNR. The CGAN model outperforms the CNN model due to the adversarially training process between the

generator and the discriminator. Additionally, the shadow constraints are the key factors that enable our

SCGAN model to achieve the best performance.445

Table 4 shows the RMSE values in shadow regions obtained by different methods. Similar to Table 3,

the SCGAN model outperforms the alternative comparison models (i.e., the interpolation methods, the CNN

and the baseline CGAN).

The altitude of our study area is higher than 4,000 m, and even around 8,000 m in some regions. It

21



is observed that the valid SRTM 3 Arc-Second global data for the investigated area may suffer from errors450

larger than 100 m (Zhang et al., 2018). We consider an error around 100 m as an acceptable uncertainty

for our study area because it is a small value relative to the investigated altitude as high as from 4,000 m

to 8,000 m. Experimental results validate that our method effectively fills the SRTM data such that the

restored data and the original valid data exhibit the same level of data quality in terms of error. Moreover,

our method outperforms the comparison state of the art methods in terms of data restoration accuracy.455

8.2. Evaluations based on SRTM 1 Arc-Second global data

In order to further validate the effectiveness of our SCGAN, we experimentally evaluate it with the 30 m

resolution SRTM global data, i.e., the SRTM 1 Arc-Second global data2. The SRTM 1 Arc-Second global

data is almost complete with little voids. Applying the SCGAN model to refine the data with little voids

cannot thoroughly evaluate its effectiveness. In order to extensively evaluate the capability of the SCGAN460

in data restoration, we manually delete local data which covers a fairly large regular region from the original

data, artificially making the data considerably incomplete for testing the SCGAN model. Specifically, we

delete the data surrounded by a box in the center of an investigated patch, and the deleted data covers 30%

area of the patch. Different from the randomly shaped void regions in Section 8.1, the manually created void

regions exhibit forms of a regular shape. The clear boundary between void and data regions makes it easier465

for us to examine the variation between filled data and existing data.

Different from the randomly located and arbitrarily shaped voids in the SRTM 3 Arc-Second global

data used in Section 8.1, the voids in the SRTM 1 Arc-Second global data used here are artificially made

with fixed locations and regular shapes. Moreover, the resolution of the SRTM 1 Arc-Second global data

is higher than that of the SRTM 3 Arc-Second global data. In this scenario, we use the nearest neighbor470

(NN) interpolation method, which is widely used for restoring high-resolution data with regular size, as the

representative interpolation method for experimental comparison.

8.2.1. Qualitative evaluations

Fig. 10 illustrates the void filling results obtained from different methods. The three learning based

models, i.e., the CNN, the baseline CGAN, and the SCGAN outperform the NN interpolation, with the best475

results given by the proposed SCGAN model. More specifically, it is observed that the interpolation method

is brute force such that the variation between the filled data and the existing data is visually very abrupt.

In contrast, the SCGAN provides the visually smoothest variation between the filled data and the existing

data, among the comparison methods.

In order to qualitatively evaluate the performance of different methods one step further, we investigate the480

2https://earthexplorer.usgs.gov/
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Fig. 10. SRTM 1 Arc-Second global data restoration results.
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sectional view of restored mountain curves along 85◦03′E at around 28◦13′N . The location of the sectional

view is marked as the red line in Fig. 11.

Fig. 11. The sectional view location marked in terms of a red line. The patch on the left is an SRTM 1
Arc-Second global data patch with manual data deletion, and the patch on the right is its corresponding
shadow map.

Fig. 12. The cross section view (for restored data along the red marked line in Fig. 11).

Fig. 12 illustrates the cross section view for the incomplete data, ground truth (complete data) and four

restoration results. In Fig. 12, the top row shows the full sectional view and the bottom row displays the

zoomed in restored curves within the void region. The NN interpolation method restores the artificial void485

region in the form of an inaccurate zigzag curve. This inaccuracy normally arises in large void regions where

even the nearest neighboring available data samples are little related to the restored data samples. On the

other hand, the curves restored based on the deep learning based methods suffer less from this shortcoming,

because the deep learning methods have learned terrain variations from sufficient training data. Overall, it

is clear that the SCGAN outperforms the interpolation, the CNN and the baseline CGAN methods in terms490
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of both the overall and the local zoomed in mountain curves.

8.2.2. Quantitative evaluations

Table 5: PSNR (dB) for the overall investigated region (SRTM 1 Arc-Second global data).

Locations NN CNN CGAN SCGAN

28◦25′N 85◦23′E 42.27 45.43 46.04 46.57

28◦18′N 85◦27′E 32.39 38.00 39.72 41.30

28◦14′N 85◦05′E 34.39 40.36 43.00 44.34

Table 6: RMSE (m) for the overall investigated region (SRTM 1 Arc-Second global data).

Locations NN CNN CGAN SCGAN

28◦25′N 85◦23′E 86.73 58.45 53.30 52.62

28◦18′N 85◦27′E 270.35 146.85 114.59 90.10

28◦14′N 85◦05′E 214.68 106.52 77.43 65.63

Tables 5 and 6 give the PSNR and RMSE evaluations of the overall restoration results, respectively. The

three learning based models, i.e., the CNN, the baseline CGAN method and the proposed SCGAN model

outperform the interpolation method, with the best the best evaluation metric values given by the SCGAN495

model.

Table 7: PSNR (dB) for local shadowed regions (SRTM 1 Arc-Second global data).

Locations NN CNN CGAN SCGAN

28◦25′N 85◦23′E 47.45 49.92 49.12 50.24

28◦18′N 85◦27′E 41.45 42.15 42.79 43.67

28◦14′N 85◦05′E 52.73 51.96 52.11 52.28

Tables 7 and 8 give the PSNR and RMSE evaluations of the restoration results for local shadow regions,

respectively. Though the three learning based models, i.e., the CNN, the baseline CGAN method and the

proposed SCGAN model generally outperform the interpolation method, one interesting observation arises

that the NN interpolation achieves slightly better performance than the SCGAN in terms of both PSNR500

and RMSE for the patch at the location 28◦14′N85◦05′E. Here the investigated patch and its corresponding

shadow map are illustrated in Fig. 11. One possible reason for the result is that the shadows in the void

data region just cover very small areas, and the interpolation method tends to be superior to the SCGAN
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(and the other learning based methods) in terms of restoring small size data with limited available shadow

information. In contrast, when tackling large region restoration (with both large void regions and large505

shadow regions), the SCGAN overwhelmingly outperforms the NN interpolation method, as observed in the

experimental evaluations in Sections 8.1 and 8.2.

Table 8: RMSE (m) for local shadowed regions (SRTM 1 Arc-Second global data).

Locations NN CNN CGAN SCGAN

28◦25′N 85◦23′E 39.15 23.59 24.37 21.05

28◦18′N 85◦27′E 97.08 83.57 68.32 57.47

28◦14′N 85◦05′E 12.36 20.61 14.65 14.50

9. Conclusions

We have presented a shadow constrained generative adversarial neural network (SCGAN) for filling the voids

of SRTM data in mountainous areas and thus obtained the restored SRTM data. Compared with straightfor-510

ward deep learning models such as the convolutional neural network (CNN) and the conditional generative

adversarial network (CGAN), the proposed SCGAN model has encoded geometric shadow constraints. Un-

like the data driven strategy conducted via the straightforward CNN and CGAN, the geometric shadow

constraints have endowed our SCGAN with knowledge of shadow cues. The geometric shadow constraints in-

corporated into the SCGAN have been in favor of restoring SRTM data satisfying the shadow cues. Therefore,515

the SCGAN has effectively addressed the incorrect restoration which might violate the geological shadow-

ing rules. Empirical comparison results have validated that the SCGAN outperforms the interpolation, the

CNN and the CGAN based methods. Additionally, training our proposed SCGAN model has integrated the

space and in-situ measurements data. Therefore, the SCGAN has not only provided a new deep learning

model that incorporates shadow geometry constraints but also formed a novel data fusion framework that520

integrates data from satellite, shuttle based and in-situ observations. The SCGAN is a general methodology

for remote sensing surface restoration that takes advantage of the virtues of both shadow geometric cues and

deep learning representations. Its application is not confined to filling SRTM voids but can be generalized

to refining other kinds of remote sensing data. In the future, it is worth investigating how to extend our

SCGAN model to other data refinement scenarios such as LiDAR DEM data restoration.525
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Table 9: List of Figure Captions

Figure 1 A sample of data.

Figure 2 SRTM data restoration by the CGAN and SCGAN models.

Figure 3
Limitations of the CGAN model. The incorrect restoration would be apparent

if cast shadows were not or inappropriately considered.

Figure 4 Mountain shadow geometry.

Figure 5 Shadow segmentation.

Figure 6 SRTM data restoration via the generator of the SCGAN.

Figure 7
SRTM 3 Arc-Second global data restoration results. Red boxes highlight regions in which

the relative performance is most apparent.

Figure 8

The sectional view location marked in terms of a red line. The patch on the left is

an SRTM 3 Arc-Second global data patch with void regions,

and the patch on the right is its corresponding shadow map.

Figure 9 The cross section view (for restored data along the red marked line in Fig. 8).

Figure 10 SRTM 1 Arc-Second global data restoration results.

Figure 11

The sectional view location marked in terms of a red line. The patch on the left

is an SRTM 1 Arc-Second global data patch with manual data deletion,

and the patch on the right is its corresponding shadow map.

Figure 12 The cross section view (for restored data along the red marked line in Fig. 11).
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