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Abstract—Energy storage is an enabler of low carbon 
electricity generation, however several studies have shown that its 
use can cause a non-trivial increase in carbon emissions even if the 
storage has 100% round-trip efficiency. To understand the impact 
of storage operation and demand response on emissions, it is 
necessary to determine the marginal emissions factor (MEF) at the 
time the storage or demand response was operated. This paper 
presents statistical approaches to determining regional MEFs 
using data on regional electricity demand and generation by fuel 
type, with a simple power flow model used to determine 
consumption emissions by region. The technique is applied to the 
electricity system in Great Britain in 2018. It is found that the 
impact of storage varies widely by location and operating mode, 
with the greatest emissions reductions achieved when storage is 
used to reduce wind curtailment in areas which consume high 
levels of fossil fuel generation, and the greatest emissions increases 
occurring where storage is used for wind balancing in areas where 
wind is not curtailed. The difference between the highest emissions 
reduction and highest emissions increase is found to be significant, 
at 785 gCO2 per kWh that passes through storage. 

Keywords—emissions factors, decarbonization, storage, 
flexibility, demand-side response 

I. INTRODUCTION 

Energy storage is an enabler of inflexible, uncontrollable, 
and unpredictable low carbon electricity generation. In recent 
years, the costs of energy storage systems have fallen 
dramatically as a result of technology improvements, 
particularly in the area of electrochemical storage [1], and cost 
reductions are expected to continue into the future [2]. Energy 
losses associated with use of storage naturally result in an 
increase in greenhouse gas (GHG) emissions associated with all 
generation that passes through storage [3]. However, many 
studies have shown that use of storage to shift load from high 
demand hours to low demand hours, or to arbitrage on wholesale 
electricity prices, can cause a non-trivial increase in emissions 
even if the storage has a round-trip efficiency of 100% [4-8]. 
The effect of storage operation on emissions depends upon the 
marginal emissions factors (MEFs) at the times of charge and 
discharge, i.e. the effect of changes in load on system emissions. 
If charging storage causes an increase in generation from a 
relatively high carbon source (e.g. coal or gas), and discharging 
storage causes a decrease in generation from a relatively low 
carbon source (e.g. gas or renewables), then the net result is an 
increase in carbon emissions. 

MEFs, which depend upon the marginal generating plant in 
a given period (e.g. half-hour), can be contrasted with average 
emissions factors (AEFs, also known as “carbon intensity”), 
which are a function of the generation mix in that same period. 
To understand the effect on carbon emissions of an intervention 
such as operation of storage or implementation of energy 
efficiency or demand response measures, MEFs should be used, 
since use of AEFs would unrealistically imply that all generating 
plant modify their output by the same proportion in response to 
a change in load. Since MEFs can be hard to determine 
accurately, particularly in systems like Great Britain’s that do 
not follow the conventional approach of centralised ‘optimal 
dispatch’, AEFs are often used in carbon accounting [9]. 
However, several studies have shown that use of AEFs may 
grossly misestimate the avoided (or additional) emissions 
resulting from an intervention [10-13]. 

MEFs can be calculated over a range of timeframes. Long-
run MEFs [14] are used to understand the effect of long-term 
changes to demand, such as the impact on particular 
infrastructure investment decisions, while short-run MEFs are 
used to understand the effect of short-term changes to demand 
(such as those arising from operation of storage). In this study 
we investigate the impact of storage operation on emissions, 
focusing on short-run MEFs. 

Two main approaches have been used to develop short-run 
MEFs: 1) economic dispatch models, and 2) statistical models 
based on empirical data. Economic dispatch models typically 
use a merit order based approach, with the assumption that 
generators are dispatched in order of marginal cost, where the 
last generator needed to meet demand sets the marginal 
emissions rate for the system [12]. Dispatch models have been 
used to derive MEFs in the US [15-17] and Europe [10, 18, 19], 
often using generator utilisation (i.e. capacity factors) as a proxy 
for variable operating cost and hence position in the merit order. 
Statistical models typically use linear regressions of historical 
data to determine MEFs. In Great Britain, this approach was 
used by Hawkes on half-hourly system data from 2002-2009 
[11] (building on foundations laid by others [20, 21]) and by 
Thomson et al to understand the avoided emissions from use of 
wind power from 2009-2014 [22]. Linear regression has also 
been used to determine MEFs for Ireland [8], the US [6, 7, 12, 
13, 23], and Portugal [24]. 

Li et al [7] conducted an in-depth study of MEFs in the US 
Midcontinent Independent System Operator (MISO) system, 



giving special attention to the effects of renewables. Using a 
statistical approach, an “expanded MEF” was developed which 
accounts for generation from both emitting and non-emitting 
sources, and this was contrasted with “conventional MEFs” 
which do not include non-emitting sources. The authors also 
made use of 5-min fuel-on-the-margin data published by MISO. 
It was found that when renewables penetration becomes high 
with sufficient dispatchability, accounting for emitting sources 
only significantly overestimates MEFs, and underestimates the 
emissions increases arising from using storage to load shift from 
high demand hours to low demand hours. Since the penetration 
and dispatchability of renewables varies by location, energy 
policies based on MEFs would benefit from specific 
consideration of sub-regional differences in consumption and 
fuel mix. 

The importance of location has been noted in several other 
studies [6, 12, 25]. Hittinger and Azevedo [6] estimated the 
effect of bulk storage on net emissions in 20 sub-regions in the 
United States, finding that net system CO2 emissions resulting 
from storage operation range from 104 to 407 gCO2/kWh of 
delivered energy depending upon location, storage operation 
mode, and assumptions regarding carbon intensity. Tranberg et 
al [25] developed a real-time carbon accounting method for the 
European electricity market, employing a flow tracing 
methodology to track the flow of electricity by generation 
technology and country of origin. Differences in production and 
consumption intensities were found to be large in countries that 
import power from countries with different generation mixes to 
their own. By way of example, Austria’s generating capacity is 
largely dominated by hydro, so it has a low production intensity 
of 136 gCO2/kWh, however it relies heavily on imported coal 
power from Poland and the Czech Republic, and so its 
consumption intensity is 82% higher than its production 
intensity, at 248 gCO2/kWh. 

In Great Britain, National Grid manages the Carbon 
Intensity Tool [26], a website/API providing data on the carbon 
intensity of electricity generation (i.e. AEFs) in Great Britain. 
This provides both national AEFs and regional AEFs, with the 
regional breakdown achieved using a power flow model. 

Sun et al [27] developed an emissions arbitrage algorithm to 
improve the environmental performance of domestic PV-battery 
systems. Focusing on Great Britain, this projected future time-
varying MEFs out to 2050 and examined the environmental 
benefits of arbitraging on carbon emissions using a simple 
threshold-based charge-discharge strategy, i.e. charging the 
battery when MEF is below a lower threshold, and discharging 
the battery when MEF is above an upper threshold. It was found 
that the CO2 saved relative to the same system with PV only can 
more than pay back the CO2 debt of manufacturing the battery, 
as long as Great Britain moves away from the present-day 
situation where natural gas-fired generators are nearly always 
the marginal generator. 

In this paper, we focus on the regional differences between 
MEFs, and the impact that location might have on the 
effectiveness of storage for reducing CO2 emissions. To 
accomplish this, we develop two statistical approaches to 
calculating regional MEFs, then apply these techniques to Great 
Britain in three different storage operating scenarios. 

II. METHODOLOGY 

A. Determining Regional Marginal Emissions Factors 

In developing a statistical approach to the determination of 
regional MEFs, we bring together three key pieces of work: the 
statistical regression approach  to determining MEFs introduced 
by Hawkes [11]; the spatial resolution of power flows and 
consumption emissions of Bruce and Ruff [26]; and the multiple 
linear regression (MLR) approach to determining the marginal 
displacement factor of wind developed by Thomson et al [22]. 

To determine the impact on carbon emissions of a change in 
a specific region’s electricity demand, it is first necessary to 
approximate the region’s consumption-based emissions, i.e. the 
emissions caused by that region’s electricity consumption, 
taking the distribution of demand and generators into account 
along with the interconnection between regions. For this 
purpose, a power flow model is necessary to determine flows in 
the electricity transmission network and hence associate 
electricity consumption with generation. This approach has been 
applied in Great Britain by Bruce and Ruff on behalf of the 
system operator [26] and in continental Europe by Tranberg et 
al [25]. Both the work of Bruce and Ruff and that of Tranberg 
et al are used in the development of websites, the former for the 
Carbon Intensity website and API 
(www.carbonintensity.org.uk) and the latter for electricityMap 
(www.electricitymap.org). 

The Carbon Intensity API provides historical and forecasted 
regional carbon intensity data, and we make use of the historical 
data here. It is built on a reduced network model of Great Britain, 
which is used to calculate the CO2 transfers between importing 
and exporting regions, accounting for the impedance 
characteristics of the network, constraints, and system losses. 
Carbon intensity factors are given in Table I. 

TABLE I.  CARBON INTENSITY FACTORS FOR EACH FUEL TYPE [26] 

Fuel Type Carbon Intensity 
(gCO2/kWh) 

Biomass 120 

Coal 937 

Dutch Imports 474 

French Imports 53 

Gas (Combined Cycle) 394 

Gas (Open Cycle) 651 

Hydro 0 

Irish Imports 458 

Nuclear 0 

Oil 935 

Other 300 

Pumped Storage 0 

Solar 0 

Wind 0 

http://www.carbonintensity.org.uk/
http://www.electricitymap.org/


MEFs are typically calculated using the regression approach 
developed by Hawkes [11], whereby the differences between 
half-hourly carbon emissions from transmission-connected 
generators (ݕ, in gCO2/h), in Hawkes’s case within Great Britain 
over the period 2002-2009, are plotted against the corresponding 
differences in half-hourly national electricity demands (ݔ , in 
kWh/h), with a line of best fit of the form ݕ ൌ  giving the ݔ݉
MEF (݉, in gCO2/kWh). 

To perform this regression on a regional basis, regional half-
hourly electricity demand data is required. The high voltage 
electricity transmission network in Great Britain is connected to 
the lower voltage distribution network at nodes known as “grid 
supply points” (GSPs), and the distribution network is split into 
14 different distribution zones by grouping GSPs on a regional 
basis, to form 14 GSP groups. Half-hourly electricity “take 
volume” data for each of the 14 GSP groups (i.e. the flow 
between the transmission network and distribution network for 
each group) is made available by Elexon and is known as the 
CDCA-I029 report, part of the P114 dataset. 

To determine the marginal impact of a region’s electricity 
demand on its consumption-based carbon emissions, we should 
ideally separate the effect of changes in the region’s demand 
from the effect of changes in national demand (which can cause 
changes to the generation mix in nearby regions). Fig. 1 shows 
a scatter plot of regional consumption-based carbon emissions 
for the South Wales distribution zone (GSP group ID: K) against 
electricity demand in that region and national electricity 
demand. A planar surface is fitted to the data, of the form 

 ȟܥ ൌ ܽȟܦǡ  ܾȟܦ  ܿ (1) 

where ȟܥ  is the change in regional consumption-based 
emissions in region ݅, ȟܦǡ is the change in regional demand, 
and ȟܦ is the change in national demand. The coefficients ܽ, ܾ  and ܿ  are found through MLR. The regional consumption-
based emissions ܥ  for Great Britain are calculated by 
multiplying the regional carbon intensity data (from the Carbon 
Intensity API) by the CDCA-I029 regional demand data. 

 
Fig. 1. Change in regional consumption emissions in South Wales against 
change in regional demand and change in national demand, over the period 11th 
May 2018 to 13th January 2019. 

Since the historical carbon intensity data is only available 
from 11th May 2018 and, at the time of writing, the regional 
electricity demand data is only available up to 13th January 2019, 
the analysis presented here covers the period 11th May 2018 to 
13th January 2019. 

To determine the marginal impact of changes in the region’s 
electricity demand, we are interested in what happens to the 
region’s consumption-based emissions when a change in 
regional demand is equal to the change in national demand, i.e. 
when ȟܦǡ ൌ ȟܦ. The regional MEF, ݉, is thus given by 

 ݉ ൌ ܽ  ܾ (2) 

The MLR approach is compared against regional MEFs 
calculated using a two-dimensional linear regression approach, 
whereby a line-of-best-fit of the form ݕ ൌ ݉ݔ is fitted to a plot 
of change in regional consumption-based emissions ( ȟܥ ) 
against change in regional demand (ȟܦǡ). An example of this 
is shown in Fig. 2. 

 
Fig. 2. Development of regional MEF using a two-dimensional linear 
regression approach, for South Wales over the period 11th May 2018 to 13th 
January 2019. 

B. Storage Operating Scenarios 

To evaluate the impact of energy storage operation on carbon 
emissions, we consider three operating scenarios: 

1. Load leveling 

2. Wind balancing 

3. Reducing wind curtailment 

For the load leveling scenario, it is assumed that storage is 
charged during periods with low net demand and discharged 
during periods of high net demand. To accomplish this, we 
separately calculate the MEFs for the times corresponding to the 
lower quartile of net demand and the upper quartile of net 
demand. Net demand is calculated as system demand minus 
wind output, where system demand is calculated by summing 
the CDCA-I029 regional take volume data and wind output data 
is taken from the BM Reports website/API. 



For the wind balancing scenario, it is assumed that storage is 
charged during periods when wind power output is highest, and 
discharged during periods when wind power output is lowest, in 
order to smooth wind power output. To accomplish this, MEFs 
are separately calculated for the times corresponding to the 
lower and upper quartiles of wind output. 

For the reducing wind curtailment scenario, we make the 
assumption that storage is charged using excess wind power that 
would otherwise be curtailed, and discharged during periods 
with low wind power output. Excess wind power has zero MEF, 
and the MEF for periods of low wind power is calculated for the 
times corresponding to the lower quartile of wind output. 

III. RESULTS 

Using the MLR methodology laid out above, the regional 
MEFs for the 14 distribution zones of Great Britain are 
determined and shown in Fig. 3 (“3D fit”). For comparison we 
also show the regional MEFs as calculated using a simple two-
dimensional linear regression of regional consumption-based 
emissions against regional demands (“2D fit”), and the regional 
AEFs. Distribution zone IDs are given alongside summary 
statistics in Table II. 

 
Fig. 3. MEFs for the 14 distribution zones in Great Britain over the period 11th 
May 2018 to 13th January 2019 as developed using the multiple linear 
regression approach (3D fit), along with MEFs developed using a two-
dimensional linear regression approach (2D fit) and AEFs. 

From Fig. 3, it is clear that regional MEFs span a significant 
range, from 28.8 gCO2/kWh in East Midlands up to 468.5 
gCO2/kWh in South Scotland. The three regions with the highest 
regional MEFs are East Midlands, South England, and South 
Wales, and the three regions with the lowest regional MEFs are 
South Scotland, North East England, and North West England. 

In comparing the MLR approach with the two-dimensional 
linear regression approach, it is clear that the two-dimensional 
approach gives higher values in all regions, and that the two 
approaches give very similar results in all but a small number of 
regions. The most noteworthy exceptions are zones E (West 
Midlands), C (London), and D (North Wales). In the most 
extreme case, West Midlands, the two-dimensional approach 

gives a value of regional MEF that is four times that calculated 
using the MLR approach. 

TABLE II.  GSP GROUPS, ALONG WITH NET TAKE VOLUMES OVER THE 
PERIOD 11TH MAY 2018 TO 13TH JANUARY 2019 

ID Location Net Take 
(TWh) 

% of 
Total 

A E England 18.07 11.4 

B E Midlands 14.44 9.1 

C London 17.51 11.1 

D N Wales 8.21 5.2 

E W Midlands 14.32 9.1 

F NE England 7.85 5.0 

G NW England 13.25 8.4 

H S England 17.84 11.3 

J SE England 11.31 7.2 

K S Wales 5.78 3.7 

L SW England 7.24 4.6 

M Yorkshire 11.70 7.4 

N S Scotland 9.05 5.7 

P N Scotland 1.46 0.9 

 Total 155.15  

 

As expected, differences between the two approaches are 
most pronounced in regions where the impact of national 
demand on the region’s consumption emissions, ܾ in (1), is high 
relative to the impact of regional demand, ܽ. Unlike the two-
dimensional approach, the MLR approach focuses on the 
changes in regional demand which cause corresponding changes 
in national demand, ensuring that the calculated value of 
regional MEF is not confused by changes in demand elsewhere 
on the system. However, as explained further on, it sometimes 
gives negative values of MEF, so should be used with caution. 

It can also be seen that the regional average emissions factors 
are approximately similar in magnitude to the corresponding 
marginal factors. From the perspective of charging for 
emissions, which would most likely need to be done based on 
average emissions factors rather than marginal emissions 
factors, this is reassuring. 

By multiplying the regional generation mix data made 
available through the Carbon Intensity API (percentage of fuel 
type consumed in each region at each half hour) by the half-
hourly regional demand data, the source of electricity consumed 
in each region is calculated and shown in Fig. 4. It becomes clear 
that the low AEFs in regions such as South Scotland (zone ID: 
N), North East England (F) and North West England (G) are a 
result of the presence of wind, with several large onshore wind 
farms located in the Scottish Lowlands, and nuclear, with two 
plants in South Scotland and one in each of North East England 
and North West England. 



 
Fig. 4. Fuel types consumed in each region of Great Britain over the period 
11th May 2018 to 13th January 2019. 

To evaluate the impact of storage operation on carbon 
emissions we use the storage operating scenarios outlined in the 
previous section. The two-dimensional MEF calculation method 
is used, because the MLR approach sometimes gives negative 
values of MEF. The results are shown in Fig. 5 for the case of 
100% round-trip efficiency. GB-level results are also shown. It 
can be seen that the impact of storage operation on carbon 
emissions varies widely depending upon location and the 
storage operating mode. The reducing wind curtailment 
operating scenario achieves the highest emissions reductions in 
all but three regions, and reductions are greatest in areas which 
consume high levels of fossil fuel power. Emissions reductions 
are lowest in the wind balancing operating scenario, with eight 
of the fourteen regions showing increased emissions. Wind 
balancing in the West Midlands (E) and North Scotland (P) 
appears particularly negative when compared with the savings 
that could be achieved using either of the load leveling or 
reducing wind curtailment scenarios. 

 
Fig. 5. Potential emissions reductions from operating electricity storage in 
each region of Great Britain over the period 11th May 2018 to 13th January 2019, 
for three different storage operating scenarios. 

The load leveling scenario results in emissions reductions in 
all but three regions. This can be contrasted with the findings of 
McKenna et al [8] in their study of the All-Ireland power system, 
where it was found that load leveling always caused an increase 
in emissions. With reduced levels of coal generation in Great 
Britain as a result of a higher costs and the effects of the Large 
Combustion Plant Directive (reduced running hours and plant 
closures), MEF generally rises monotonically with net demand 
in Great Britain, and so load leveling provides emissions 
reductions. 

IV. DISCUSSION AND CONCLUSIONS 

This paper has developed two approaches to determining 
regional marginal emissions factors based on a power flow 
model and historical generation and demand data. These 
approaches were used to determine the impact of energy storage 
operation on carbon emissions across the different regions of 
Great Britain in 2018. It has been found that the emissions 
associated with storage operation vary widely between regions 
and operating modes, with the highest emissions reductions 
being achieved when storage is used to reduce wind curtailment 
in areas which consume high levels of fossil fuel generation 
(such as East Midlands, South England and South Wales). 
Emissions increases are most likely when storage is used for 
wind balancing in areas where there is no wind curtailment. 

The highest emissions reduction, at 630 gCO2/kWh, is 
achieved through reducing wind curtailment in East Midlands, 
and the difference between this and the highest emissions 
increase (wind balancing in West Midlands or North Scotland) 
is over 780 gCO2 per kWh that passes through storage. This is 
significant and, per kWh of electricity delivered, is similar in 
scale to the replacement of coal power with biomass. In the UK, 
the government has committed to phasing out unabated coal 
power by 2025, so such high levels of emissions reductions from 
storage operation will no longer be achievable at that point, 
however until all power generation comes from zero carbon 
sources it will remain the case that storage operation will have 
an impact on carbon emissions, and that that impact will vary by 
geographic location. Also, as the penetration of variable and 
inflexible generation increases, there will be more opportunities 
for storage to reduce emissions. It is anticipated that the methods 
presented in this paper will be particularly useful in countries 
and regions with high levels of generation from fossil fuels, and 
future work could consider different electricity systems. 

To encourage siting and operation of storage such that it has 
the greatest positive impact on emissions reduction in liberalised 
electricity markets, it is important that a strong carbon price is 
set, and that the price paid for electricity reflects the carbon 
intensity of the electricity being consumed. To fully implement 
this approach would require regional, time-dependent electricity 
prices.  

We note that the results in this paper are limited by several 
factors. Firstly, the results for Great Britain have been generated 
using only eight months of data; it is anticipated that the research 
will be extended using at least two years’ worth of data when 
more carbon intensity data are made available in the Carbon 
Intensity API, improving the accuracy of the results. Secondly, 
the emissions factors are calculated quite simply, and could be 
enhanced with generator-level data and part-load thermal 



efficiencies. Thirdly, the analysis is based on historical data, and 
does not consider possible future changes to the generation mix. 
It would be worth looking at future energy scenarios in 
extensions of this work. 

Other future work in this area could consider the impact of 
carbon prices on the operation of storage and resulting carbon 
emissions, and the interplay between economic and 
environmental objectives. It would also be worthwhile to use 
regional marginal emissions factors to understand the potential 
for emissions reductions through demand response, such as 
smart charging of electric vehicles and enhanced heat pump 
operation. 
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