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Magnetic stray fields in nanoscale magnetic tunnel junctions
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Bapna,3 Roy W. Chantrell,1 Sara A. Majetich,3 and Richard F. L. Evans1, †

1Department of Physics, The University of York, York, YO10 5DD, UK
2Department of Physics, Mahasarakham University, Thailand
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The magnetic stray field is an unavoidable consequence of ferromagnetic devices and sensors leading to a

natural asymmetry in magnetic properties. Such asymmetry is particularly undesirable for magnetic random

access memory applications where the free layer can exhibit bias. Using atomistic dipole-dipole calculations

we numerically simulate the stray magnetic field emanating from the magnetic layers of a magnetic memory

device with different geometries. We find that edge effects dominate the overall stray magnetic field in patterned

devices and that a conventional synthetic antiferromagnet structure is only partially able to compensate the field

at the free layer position. A granular reference layer is seen to provide near-field flux closure while additional

patterning defects add significant complexity to the stray field in nanoscale devices. Finally we find that the

stray field from a nanoscale antiferromagnet is surprisingly non-zero arising from the imperfect cancellation of

magnetic sublattices due to edge defects. Our findings provide an outline of the role of different layer structures

and defects in the effective stray magnetic field in nanoscale magnetic random access memory devices and

atomistic calculations provide a useful tools to study the stray field effects arising from a wide range of defects.

I. INTRODUCTION

Magnetic Random Access Memory (MRAM) is a promis-

ing technology for low-power non-volatile device memory

[1]. With the breakthrough of a suitable materials system in

CoFeB/MgO for spin-transfer-torque MRAM (STT-MRAM)

devices [2] significant progress has been made towards full-

scale commercialisation and a move to non-volatile memory

technology [1, 3]. A key requirement for wide-scale use of

STT-MRAM is device reliability, requiring effectively unlim-

ited write operations, but also data retention for at least 10

years and consistency of operation. Despite its apparent sim-

plicity, the properties of ultrathin CoFeB/MgO films are sur-

prisingly complex, with intricate magnetic interactions [4–

6] and nanoscale structural [7], thermal [8–10] and dynamic

effects[11].

One problem not often considered is that of stray magnetic

fields originating from MRAM devices and also affecting their

magnetic characteristics. These stray magnetic fields are a

source of non-uniformity in nanoscale devices and can have a

significant influence on the magnetic properties, thermal sta-

bility and switching characteristics [2]. In the supplementary

information [12] we present experimental measurements of

the role of these stray fields on the magnetoresistance and re-

laxation time of individual MTJs. The methodology is de-

scribed in detail in Bapna et al [9]. The experimental data

show the importance of edge fields in nanoscale devices and

how these can be compensated for with different device struc-

tures.

Previous theoretical studies of magnetostatic stray fields

[9, 13] have considered a continuum micromagnetic ap-

proach which is sufficient for continuous materials. However,

nanoscale MTJs are only a few atoms thick and their fabrica-
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tion and patterning leads to a diverse range of defects. Mod-

elling these defects goes beyond the capabilities of micro-

magnetic approaches, and atomistic models are needed [14].

A similar problem arises when considering the magnetostatic

stray field, where the sources are no longer a uniform contin-

uum of atoms and have inherent structural and magnetic order.

This problem grows with higher temperatures where thermal

spin fluctuations are significant and the dipole fields can statis-

tically vary in time. Crucially the temperature dependence of

the magnetization and finite size effects are important when

considering stray fields emanating from nanoscale magnetic

dots. Antiferromagnets also play an essential stabilizing role

in many spintronic devices, and macroscopically their stray

field is zero. At the nanoscale this is not necessarily the case

and such effects are not accessible using a standard continuum

magnetostatic approach.

The magnetostatic stray field for a perpendicular

CoFeB/MgO/CoFeB MTJ increases as the diameter is

reduced. Failure to offset the resulting loop shift causes the

critical current to be larger than necessary, leading to greater

power consumption. However, it is yet unclear how best to

minimize this stray field. The simulations described here

examine several different strategies using an atomistic dipole-

dipole approach. We find that edge effects are particularly

important for nanoscale MRAM devices and that defects and

antiferromagnets can contribute statistical variations in the

stray field leading to an additional natural variance in device

properties.

II. STACK STRUCTURES

Practical MRAM devices have a number of limitations

compared to simple functioning magnetic tunnel junctions,

where the devices must have high durability, high thermal

stability, consistent performance, fabricatable with low an-

nealing temperatures and manufacturable at gigabit volumes.

The prototypical MTJ (Fig. 1(a)) satisfying the basic require-
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ments of spin-transfer torque magnetic random access mem-

ory (STT-MRAM) consists of a bilayer of CoFeB sandwich-

ing a thin MgO tunnel barrier[2]. The MgO layer performs

two essential functions: a spin tunnelling barrier with large

tunnelling magnetoresistance [1] and a large interfacial per-

pendicular magnetic anisotropy[1, 2, 5]. The high magnetic

anisotropy is essential to stabilize the magnetic orientation

of the CoFeB layers and its interfacial nature gives a strong

thickness dependence of the anisotropy. Therefore differ-

ent thickness layers have different coercivities and thresh-

old currents for STT switching, providing a natural reference

layer (RL) and free layer (FL). The free layer is required to

have lower stability than the reference layer and in simple

CoFeB/MgO/CoFeB devices with a dual layer structure must

be around 1.3 nm thick to ensure perpendicular anisotropy but

not too high to prevent switching[2]. Thicker layers are possi-

ble by using an additional MgO capping layer[13, 15] to pro-

vide additional perpendicular anisotropy, but this has negative

consequences for device resistance and is incompatible with

spin-orbit torque switching [16] which has a speed and dura-

bility advantages for certain applications.

While useful for research purposes the prototypical MTJ

has a number of deficiencies as a practical MRAM device, re-

quiring high annealing temperatures to crystallize the CoFeB

layers and having a large shift in the threshold switching cur-

rent for parallel and anti-parallel orientations of the free layer

due to the stray magnetic field originating from the reference

layer[9]. Practically this is compensated by adding a pinned

layer (PL) which is magnetically stable and coupling this layer

antiferromagnetically to the reference layer, forming a syn-

thetic antiferromagnet structure, or SAF. The antiferromag-

netic coupling between the PL and RL is engineered by using

a thin metallic layer of Ir or Ru which mediates the RKKY

exchange interaction across the layers [17]. The thickness of

the PL can be adjusted to reduce the stray magnetic field at the

free layer position and therefore reduce the asymmetry in the

threshold STT switching current. A simplified stack structure

with a SAF included is shown in Fig. 1(b) with the addition of

bottom pinned layer (PL) and exchange coupling layer. Here

we have assumed that the PL is stabilized partially by the ad-

dition of a bottom MgO layer to provide high anisotropy and

also by exchange coupling to the reference layer.

The addition of the SAF mitigates the problem with the

stray magnetic field originating from the reference layer but is

somewhat inflexible, requiring precise fabrication of magnetic

layers with atomic level precision. Practical devices therefore

typically use thicker magnetic layers more resistant to small

fabrication divergences and also provide more flexibility in

materials choices, including heavy metal doping to improve

crystallization and diffusion during manufacture. For thicker

layers the interfacial anisotropy from the MgO tunnel barrier

is no longer sufficient to sustain perpendicular anisotropy, and

so typically a CoPt alloy or multilayer is used to provide addi-

tional perpendicular anisotropy for the thicker layers, shown

in Fig. 1(c). Some devices optionally include an antiferro-

magnetic layer beneath the pinned layer to provide an uncon-

ditionally stable exchange bias field to ensure long-term sta-

bility of the pinned layer magnetization. Typically the anti-
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FIG. 1. Visualisation of alternative thin film stack structures for pro-

totypical MTJs and practical MRAM devices for prototypical bilayer

MTJ (a), prototypical bilayer MTJ with synthetic antiferromagnet

reference and pinned layer(b) and more ’traditional’ MTJ structure

with synthetic antiferromagnet reference and pinned layers with an-

tiferromagnet exchange biasing layer (c). Colour Online.

ferromagnet is IrMn or PtMn due to the high Néel tempera-

ture and large magnetic anisotropy [18–21]. While the bulk

magnetization of an antiferromagnet is essentially zero, at the

nanoscale atomic lattice defects and the non-collinear nature

of the antiferromagnetic spins may lead to a magnetic stray

field not usually accounted for in MRAM device designs.

III. ATOMISTIC DIPOLE FIELDS

Most studies of stray magnetic fields utilise either classi-

cal Maxwellian magnetostatics for simple geometrical shapes

[22], or numerical micromagnetics where the magnetic vector

potential is considered in the continuum limit. While such ap-

proaches are suitable for large scale devices, the exceptionally

thin films and device sizes less than 50 nm needed for MRAM

approach the limits of applicability of the continuum approx-

imation. At the electronic level the spin polarised electron

density is a continuous property of a magnetic material, but

with a strong spatial dependence and localised in the vicin-

ity of the atomic nuclei even for classically itinerant magnets

such as Fe and Co [23]. Where the moments are well-localised

the dipole-dipole approximation[22] is often employed which

considers each atom as a point source of magnetic field and is

a good approximation when considering most magnetic mate-

rials. Considering an atom at any point in space i experiences

a dipole (induction) field Bi from all nearby magnetic dipole

moments j, the magnetic field is given by

Bi =
µ0

4π
∑

j

[

3r̂i j(r̂i j ·m j)−m j

|ri j|3

]

(1)

where ri j is the distance between point i and the magnetic

moments at point j, r̂i j is a unit vector from site i to j, m j is

the magnetic moment at site j, and µ0 := 4π ×10−7 H/m.
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In the above definition we explicitly exclude the self-term

acting within each dipole, since this field always opposes the

dipole magnetic moment and has no effect on the dynamics

of local moments. As noted by Kittel [24], the dipole field at

the centre of a spherical lattice of dipoles is zero at the centre,

which is different from the Maxwellian field of H = −M/3

found in micromagnetic calculations. Classically this is re-

solved by invocation of a Lorentz sphere which provides the

apparently absent demagnetizing field [24]. However, with

modern computational approaches we can compute the dipole

field of a large (100 nm) finite sphere exactly which naturally

agrees with the analytical limit that the dipole field at the cen-

tre of a sphere is zero. The origin of this discrepancy is likely

the self term for point dipoles [22] though the resolution of

a disagreement between dipole and Maxwellian fields is be-

yond the scope of the present article. It is important however

to state the difference in the two approaches and for an infi-

nite thin film the local demagnetizing field computed from the

dipole-dipole approximation in Eq. 1 is H = −2M/3 rather

than H = −M. Outside the magnetic material the computed

magnetic field is of course identical between the Maxwellian

micromagnetic and dipole-dipole approach. In the following

analysis we neglect the self-field within the magnetic material

and include only the free magnetic induction arising from the

dipoles, i.e. B := µ0H where H is the dipole-dipole field.

The dipole-dipole interaction decays proportional to

1/|ri j|
3 and so the long-range nature of the dipole-dipole in-

teraction requires significant computational power. For a sys-

tem of N atoms each dipole is interacting with N − 1 dioples

and, thus, an atomistic calculation would lead to a computa-

tional complexity proportional to N(N − 1) ∼ N2. To make

such calculations feasible we have implemented a massively

parallel and scalable calculation of the atomistic dipole-dipole

field within the VAMPIRE code [14, 25]. For the parallel atom-

istic dipole-dipole solver we first collate atomic positions, mo-

ments and spin directions from each processor in the calcula-

tion onto the main processor, since the standard parallelisa-

tion in the VAMPIRE code [14, 25] uses a parallel geometric

decomposition where the moments are distributed among all

the processors [25]. The positions, moments and spins are

then broadcast to all processors so that every processor has a

complete copy of the system. Although this is expensive in

memory, for moderately sized systems of a million spins this

is only tens of megabytes (MB) per processor. The advan-

tage of this approach is that each processor now has access

to the complete set of spin, moment and position data and

is able to compute the dipole-dipole field calculation for any

spin i. The fields for local moments on each processor are

then computed by considering all other dipole moments in a

simple brute force approach, computing Eq. 1 directly for ev-

ery other magnetic dipole moment in the system. We split this

calculation into two separate processing loops for i < j and

for i > j to avoid the redundant check that i 6= j within the

main computation loop to improve performance. Our parallel

implementation is highly scalable with a computational cost

of approximately N2/Np where Np is the number of proces-

sors used for the computation. Typically N2 >> Np leading

to near ideal scaling for the computational complexity of this
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FIG. 2. Computed stray magnetic field emanating from a single ref-

erence layer 1 nm thick in the x− z plane (a). The legend is capped

at maximum fields of ± 200 mT to better show weaker fields in the

vicinity of the free layer shown by the dashed line. The calculated

axis field along the line x = y = 0 is shown in (b) showing a slow

decay away from the reference layer, indicated by the shaded area.

Color Online.

part of the calculation. This allows the calculation of direct

dipole-dipole interactions for systems of 1M dipoles on a few

tens of processor cores in a few minutes.

IV. RESULTS

Having defined the different basic kinds of MRAM device

structures, we now consider the title problem: the strength

and anisotropy of the magnetic stray field from the different

magnetic layers of a device. We consider an idealistic MRAM

device uniformly patterned into a 25 nm diameter cylinder.

A. Prototypical bilayer MTJ

Let us first consider the prototypical bilayer MTJ with ref-

erence and free layers, shown schematically in Fig. 1(a). Here

the reference layer is fixed and emits a stray magnetic field

aligned with the magnetization of the layer. As noted ear-

lier, we compute only the magnetic field in free space and

ignore the Maxwellian self-term contribution within the mag-

netic material. Both magnetic layers are assumed to be CoFeB

with a saturation magnetization of Ms = 1.35 MA/m. We omit

the free layer from all our calculations as we wish to study

the stray field emanating directly from the reference (and

later pinned) layers. The computed strength and z-component

of the magnetic field emanating in the vicinity of the refer-

ence layer (uniformly magnetizated along the +z-direction) is

shown in Fig. 2(a). The net magnetic field at each point is

computed directly from the full 3D problem of atomic source

dipoles given by Eq. 1. Within the reference layer the dipole

field opposes the magnetization and is much larger than the

field outside the device. The colour scale is saturated at ±0.2



4

to better highlight the structure of the stray field outside the

magnetic layer, where larger fields are displayed with the satu-

rated colour intensity. The position of the free layer above the

reference layer is indicated by the dashed line. As expected

for any free ferromagnet, the stray field is emitted parallel to

the magnetization leading to a net positive bias field of around

+65 mT at the position of the free layer. This naturally leads

to a bias of the minor hysteresis loop [2, 8, 13] and a similar

shift of the threshold current for spin transfer torque switch-

ing and is undesirable for device operation. The field strength

along the centre axis of the nanodisk is shown in Fig. 2(b)

showing a slow decay of the field strength moving along the

z-axis away from the magnetic layers. At the dot edges the

stray field is highly non-linear due to the need for flux closure

and leads to large magnetic fields in excess of 100 mT at the

free layer edges. For larger device diameters the edge effect

is less important as the low flux region in the centre of the de-

vice dominates the average field, but for small diameters these

large fields will become much more dominant.

B. Defects in bilayer MTJs

An important consideration for nanoscale devices is the role

of defects arising due to deposition, annealing and pattern-

ing of the devices. The diversity of such effects is an expan-

sive topic and we are only beginning to be able to address

their relative importance to device operation, however we are

able to consider the likely polygranular nature of annealed

CoFeB/MgO. This arises due to the polygranular nature of

the thin MgO layer [26] which is imparted to the amorphous

CoFeB layers during annealing and crystallization [27]. We

model this by considering a polygranular structure to the de-

vice generated using a voronoi tessellation. An example struc-

ture is shown in Fig. 3(a) which has been patterned into a 25

nm diameter cylinder. Additionally some of the edge grains

have been removed during the patterning process to simulate

patterning defects which may occur at such sizes. The role of a

polygranular structure on the overall magnetic properties and

switching dynamics will be the subject of a future study[28],

but here we consider the stray field from a single polygranu-

lar reference layer in a simple bilayer MTJ topology, shown

in Fig. 3(b,c). The stray field at the free layer position visibly

adopts the underlying structure of the polygranular reference

layer shown in the top-down view in Fig. 3(b), in particular

the edge defects which visibly affects the non-linear field at

the device edges. The side view in Fig. 3(c) shows a similar

average field profile to the single continuous layer in Fig. 2(a),

but flux closure and non-uniformities are clearly visible near

the layer interface. Collectively even simple defects add addi-

tional complexity when considering the stray field in devices

and are of course random in nature. This will naturally impact

the consistency of device operation when considering gigabit

device arrays and may be an additional factor to consider in

device manufacture, particularly at smaller process nodes.

In the case of prototypical MTJs with and without defects

the non-uniform magnetic fields contribute to three effects.

The first is a large asymmetry of the hysteresis loop, seen as a
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FIG. 3. Computed stray fields from a polygranular reference layer.

(a) Visualization of the polygranular structure of the layer and edge

defects arising from the patterning process. (b) Top-down view of

the stray field computed at the centre of the free layer showing an

imprint of the polygranular structure in the stray magnetic field. (c)

Side view of the computed stray field for the polygranular structure,

showing non-linearities and flux closure close to the interface. Color

Online.

bias field shift of the loop to one side depending on the mag-

netic orientation of the reference layer [9]. The second is a

different threshold switching current considering the parallel

to anti-parallel (P → AP) orientations of the reference and free

layers, and anti-parallel to parallel (AP → P). This second ef-

fect has the same physical effect as the first, with a simple

bias field. This adds an effective magnetic anisotropy to one

of the two configurations (e.g. P), and reduces the effective

anisotropy for the opposite orientation (e.g. AP). This there-

fore increases the current required to initiate STT switching

for the orientation of the larger effective anisotropy config-

uration, and provides a comparable reduction in the thresh-

old current for the lower anisotropy configuration. The third

effect of the non-uniform magnetic fields is to influence the

nature of the reversal mechanism. The reversal of nanoscale

dots is usually assumed to be coherent [29], while energy bar-

rier simulations [29], room-temperature atomistic simulations

[8] and experimental measurements [9] find that the rever-

sal is edge nucleated due to thermal fluctuations. Stray field

non-uniformities at the dot edges will contribute an additional

preference for nucleated reversal, though at room temperature

the reversal mechanism of dots below the single domain limit

∼ 20 nm in diameter is already dominated by thermal effects

and are superparamagnetic [8]. Importantly, the strength of

the non-uniform stray field edge effects is probably of sec-

ondary importance to the reversal mechanism compared to

thermal fluctuations, since these are dominant for such thin

films and small devices [8]. In contrast, the average stray field

at the free layer will lead to a macroscopic asymmetry of the

hysteresis loop and switching current. Compensating these

stray-field effects is essential for reliable device operation and

we now consider the addition of an antiferromagnetically cou-
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pled pinned layer to compensate the stray field from the refer-

ence layer at the location of the free layer.

C. MTJ with SAF geometry

Here we consider a simplified structure based on the proto-

typical CoFeB/MgO/CoFeB MTJ nanodot structure consist-

ing of a 1 nm thick reference layer, 1.3 nm thick free layer

(not included) and variable thickness pinned layer, tP with a

cylindrical device diameter of 25 nm, shown schematically in

Fig. 1(b). Collectively the pinned and reference layers form

the SAF. As before the magnetization of the reference layer is

set along the +z direction while the pinned layer set along the

−z direction to attempt to reduce the strength of the stray field

emanating from the reference layer at the free layer position.

Figure. 4 shows slices through the computed z-component of

the stray field for different thicknesses of the bottom pinned

layer. For the symmetric case where both the pinned and ref-

erence layers are 1 nm thick in Fig. 4(a), the stray field from

the pinned and reference layers is anti-symmetric and exactly

zero between the two layers. When the free layer is included

the symmetry is naturally broken, but here we are only inter-

ested in the net field at the free layer location. Considering

the central axis of the MTJ (x = 0), the stray field only ap-

proaches zero between the two layers, with a low field with

opposite polarity as one moves away from the structure. The

field along the x = y = 0 axis shown in Fig. 4(i) is weaker

than for the isolated case but the relative proximity of the two

oppositely magnetized layers leaves a stray field of approxi-

mately 20 mT at the free layer location. A clear feature of the

nanoscale device including a SAF is the persistent large edge

field necessary for flux closure as with the simple bilayer de-

vice. This field is highly non-linear within the space for the

free layer indicated by the dashed line. As expected this field

is symmetric around the circumference of the dot as shown in

Fig. 4(b). Due to the cylindrical nature of the device the fring-

ing field makes a large contribution to the areal average stray

dipole field at the free layer position.

Expanding the pinned layer thickness to 1.2 nm increases

the moment and therefore decreases the field at the centre of

the free layer position to less than 10 mT, accounting for the

closer proximity of the reference layer as shown in Fig. 4(c,d).

The width of the high-field edge region shown in Fig. 4(d)

is reduced compared to the single layer but still makes up a

large fraction of the average areal field at the centre of the free

layer location. While the field along the central axis is sig-

nificantly reduced, the edge effects still remain with a large

fringing field at the device edges. This fundamentally com-

promises the role of the SAF in compensating the average field

and demonstrates the importance of edge field effects.

Further increasing the pinned layer thickness to 1.5 nm as

shown in Fig. 4(e,f) now overcompensates the stray field in the

axial region of the free layer with a small negative field. How-

ever, the fringing field in the edge region is both narrowed and

weaker compared with the 1.2 nm thick layer. The overcom-

pensating field in the centre of the free layer now balances the

fringing field so that the average field across the device ap-

proaches zero, but now with competing dipole field contribu-

tions at the centre and edge of the free layer. This reduces the

strength of the edge field which contributes to the edge nucle-

ation reversal mode and therefore may favour a more coherent

reversal mechanism.

In Fig. 4(g,h) a large pinned layer thickness of 2 nm is in-

cluded. The stray field from the pinned layer now dominates

the reference layer, with large negative fields at the free layer

position along the x = y = 0 axis. The edge effects are much

weaker than for thinner pinned layers but clearly the compen-

sating role of the pinned layer is no longer working. However,

some engineered bias field on the free layer may be benefi-

cial for STT switching. For STT switching there is a natural

imbalance in the P → AP and AP → P switching thresholds

due to the different origin of the spin torque. For the AP →
P case the spin transmitted through the reference layer pro-

vides a torque on the free layer causing it to align with the

reference layer. For the P → AP switching case the smaller

reflected spin current is responsible for generating a torque on

the free layer, therefore requiring a larger current to switch to

the AP configuration. These effects are partially compensated

by the low and high device resistance in the P and AP states

respectively which naturally increases the current flow in the

P configuration. However, a weak energetic preference for the

AP configuration would reduce the threshold current for P →
AP switching and may be advantageous for device operation.

While not sensible for a traditional SAF, an overcompensating

pinned layer may be advantageous for STT-MRAM devices.

D. Stray field from an antiferromagnet

Finally we consider the stray field from a nanoscale anti-

ferromagnet, used as an exchange biasing layer to make the

pinned layer unconditionally stable. Practically this is impor-

tant in terms of the resilience of MRAM devices to large ex-

ternal magnetic fields. If the chip is exposed to a sufficiently

large magnetic field to reverse the pinned layer, then for a

uniaxial pinned layer the device would no longer function.

In contrast, the unidirectional nature of the exchange biased

pinned layer means that the data would likely be erased but

the device would still function once the field is removed. Be-

ing antiferromagnetic, one usually assumes that the stray field

emanating from it is zero, since there is no net magnetic mo-

ment. However, at the atomic scale the magnetic moments are

quite large and so close to the layer one might expect some

small stray fields. In addition, edge and interface effects can

lead to a small net moment in the antiferromagnet, which is of

course required for exchange bias to work.

To assess this we model a 5 nm slab of L12-ordered IrMn3

using an atomistic spin model[21, 30]. The energetics of the

system are described by the spin Hamiltonian:

H =−∑
i< j

Ji jSi ·S j −
kN

2

z

∑
i6= j

(Si · ei j)
2 (2)

where Si is a unit vector of the spin direction on a Mn

site i, kN = −4.22 × 10−22 is the Néel pair anisotropy and
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FIG. 4. Computed dipole fields in the planes y = 0 and z = 3nm (at the centre of the free layer) for pinned layer thicknesses of 1 nm (a,b), 1.2

nm (c,d), 1.5 nm (e,f) and 2 nm (g,h). The colour indicates the magnitude and direction of the z-component of the net dipole field at each point.

The colour key saturates at ±50 mT to focus on the low field data. The position of the free layer is indicated by the dashed line assuming a

spacing of 1 nm of MgO above the central reference layer. An axial line profile for each pinned layer thickness is shown in panel (i) showing

the net cancellation of the field at the free layer position. The magnetic layers are blocked out in grey to clearly show the stray field regions.

(Colour Online).

ei j is a unit position vector from site i to site j, z is the

number of nearest neighbours and Ji j is the exchange interac-

tion. The exchange interactions were limited to nearest (Jnn
i j =

−6.4 × 10−21 J/link) and next nearest (Jnnn
i j = 5.1 × 10−21

J/link) neighbours [21]. The system is initialised with a ran-

dom spin configuration and then zero-field cooled using an

adaptive Monte Carlo[31] to form a single domain ground-

state spin structure with triangular (T1) symmetry [20, 32, 33].

The stray field is computed as above for ferromagnetic lay-

ers using the direct dipole-dipole interaction using Eq. 1 and



7

-15

0

15

-15 0 15

y
d
is
ta
n
c
e
(n
m
)

x distance (nm)

-5

0

5

-15 -10 -5 0 5 10 15

z
d
is
ta
n
c
e
(n
m
)

x distance (nm)

-0.02

-0.01

0

0.01

0.02

D
ip
o
le
f
e
ld
(T
)

a

b c

FIG. 5. Computed stray fields from a 5 nm thick IrMn exchange bi-

asing layer. (a) Side view of the computed stray field for the IrMn

layer, showing a non-zero stray field and edge effects. (b) Top-down

view of the stray field computed at the centre of an adjacent mag-

netic layer. (c) Computed spin configuration in the antiferromagnet

showing the non-collinear nature of IrMn. The contrast indicates the

degree of local spin deviation from the collinear state, saturating at

1% (Si ·n) where n is the sublattice magnetization. Color Online.

plotted in Fig. 5. Here we consider the stray field gener-

ated within a ferromagnet placed in direct contact with the

antiferromagnetic layer, but as for previous calculations the

stray field from the ferromagnet is not calculated. Consider-

ing first the cross-section of the computed field in Fig. 5(a)

it is clear that within the antiferromagnet the dipole fields are

quite strong, and likely add additional magnetic anisotropy.

What is most surprising is the non-zero stray field emanating

from the bulk of the antiferromagnet which is approximately

5 mT along the −z-direction along the central axis of the disk.

While the strength of the field is an order of magnitude weaker

than that of ferromagnetic layers, its non-zero nature is in di-

rect contrast to conventional wisdom regarding antiferromag-

nets. The edge field is similarly weaker than in ferromagnetic

layers and also exhibits some rotational asymmetry as shown

in Fig. 5(b). The asymmetry in the edge field arises due to

different edge crystal terminations and therefore a slight im-

balance in the number of moments in each magnetic sublattice

when considering different surface contributions. This also

explains the observation of a net stray field from the antiferro-

magnet, by considering net magnetic moments on the surface

of the system arising from the imbalance of magnetic sublat-

tices. These net moments then form a surface contribution to

the dipole field which then exhibits a macroscopic stray field

behaviour.

To illustrate the surface effects of the termination we show a

slice near (y = 0) of the atomic spin structure in Fig. 5(c) rep-

resented by arrows. The contrast shows the deviation of the

local spin direction from the bulk sublattice magnetization,

with black arrows representing a 1% deviation from (Si · n)
where n is the sublattice magnetization. White arrows indicate

0% deviation from the collinear state. The sublattice ordering

over the whole dot is greater than 99% confirming the single

domain nature of the antiferromagnet, and the small reduction

in order is due to surface spin canting resulting from the loss

of coordination at the surface and therefore inducing a small

local spin canting. The data show the existence of a single

plane of collinear atoms at the top surface which is likely the

source of the small stray field in the vicinity of the surface.

It is clear from the data that there is a weak surface canting

of spins at the side walls of the nanodot but these are visually

symmetric suggesting that they are not the direct origin of the

asymmetry in the fringing field considering the ±x sides of the

nanodot. Therefore the origin of the asymmetry must be the

complex interplay between the surface crystal faceting and the

sublattice magnetization, where the dominance of one partic-

ular sublattice at a particular surface leads to a different local

stray field. This view is supported by the data in Fig. 5(b)

showing a continuous variation of the stray fringing field.

The specific stray field from an exchange biasing antiferro-

magnetic layer is likely to be specific to the antiferromagnetic

spin structure, crystal termination and defects and therefore

hard to deterministically account for in device design. The

stray field generated from and antiferromagnet is therefore an

additional source of dispersion of single device properties that

could negatively impact on consistency of device properties

when considering the thermal stability.

V. CONCLUSIONS

In conclusion, we have studied the stray fields emanating

from nanoscale layers in magnetic tunnel junctions using an

atomistic dipole-dipole approach. We have found that edge

effects make a significant contribution to the effective dipole

field at the free layer position in agreement with previous

calculations[13]. Considering a range of thicknesses for a

compensating pinned later in the synthetic antiferromagnetic

structure we find incomplete cancellation of the stray field

from the reference layer with persistent non-linear fields at

the dot edges. A slightly over-compensated field may have

some benefits in compensating for asymmetry in the threshold

switching current considering spin transfer torque switching

for P → AP and AP → P configurations. We have considered

the role of a defected granular structure on the stray field from

a single ferromagnetic layer and find that patterning defects

have a strong influence on the edge stray field and the granu-

lar structure is imparted to the free layer with a non-uniform

field. The stray field in close proximity to the grains exhibits

flux closure which may be important considering very thin

layers magnetic layers in close proximity. Finally we have

considered the stray field from an antiferromagnetic layer and

have found that the stray field is non-zero at the nanoscale

due to imperfect cancellation of the sublattice magnetization

at the surfaces. This stray field makes an additional contribu-

tion to the thermal stability of the pinned layer which leads to

a natural distribution of device properties.

While we have studied only a fixed size device of 25 nm due

to computational limitations, the edge effects are quite gen-

eral, and will give a smaller contribution to the average field
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in the free layer for larger devices and more significant for

smaller devices. The strength of the edge field suggests that it

may be beneficial to pattern the free layer with smaller dimen-

sions than the reference layer so that it is contained entirely

within the uniform region of the stray field, as previously pro-

posed by [9] et al. The effectiveness of the SAF structure

is also more challenging at the nanoscale due to these sig-

nificant edge effects, and so more complex designs could be

considered, with a thicker circumferential (ring-like) compen-

sating pinned layer to counteract the edge effects. For smaller

devices approaching 5 nm in diameter the fringing field will

be dominant with no uniform axial component, making field

cancellation using a SAF particularly difficult. This presents

additional challenges for the manufacturing of such small de-

vices and may require a different geometry such as a continu-

ous granular pinned layer spanning multiple devices to ensure

uniformity of stray fields.

Defects present a particular challenge considering dipole

fields, since the film morphology can influence the specific

characteristics at the nanoscale. In particular orange-peel cou-

pling effects can become important [34] and even percolated

exchange coupling[35–37]. Future devices utilizing shape

anisotropy to enhance thermal stability for sub-20nm lateral

dimensions [38–40] rely on a full understanding of dipole in-

teractions at the nanoscale, and so similar atomistic calcula-

tion methods presented here can be used to model the role of

different physical defects on the effective thermal stability and

in particular their switching dynamics.
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