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Study of the Hopf functional equation for turbulence:

Duhamel principle and dynamical scaling

Koji Ohkitani∗

School of Mathematics and Statistics, University of Sheffield,

Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.

(Dated: January 5, 2020)

Abstract

We consider a formulation for the Hopf functional differential equation which governs statistical

solutions of the Navier-Stokes equations. By introducing an exponential operator with a func-

tional derivative, we recast the Hopf equation as an integro-differential functional equation by the

Duhamel principle. On this basis we introduce a successive approximation to the Hopf equation.

As an illustration we take the Burgers equation and carry out the approximations to the leading

order.

Scale-invariance of the statistical Navier-Stokes equations in d-dimensions is formulated and

contrasted with that of the deterministic Navier-Stokes equations. For the statistical Navier-Stokes

equations, critical scale-invariance is achieved for the characteristic functional of the d-th derivative

of the vector potential in d-dimensions. The deterministic equations corresponding to this choice of

the dependent variable acquire the linear Fokker-Planck operator under dynamic scaling. In three

dimensions it is the vorticity gradient that behaves like a fundamental solution (more precisely,

source-type solution) of deterministic Navier-Stokes equations in the long-time limit.

Physical applications of these ideas include study of a self-similar decaying profile of fluid flows.

Moreover, we reveal typical physical properties in the late stage evolution by combining statistical

scale-invariance and the source-type solution. This yields an asymptotic form of the Hopf functional

in the long-time limit, improving the well-known Hopf-Titt solution. In particular, we present

analyses for the Burgers equations to illustrate the main ideas and indicate a similar analysis for

the Navier-Stokes equations.

PACS numbers: Valid PACS appear here

∗Electronic address: K.Ohkitani@sheffield.ac.uk
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I. INTRODUCTION

The problem of Navier-Stokes turbulence remains a major challenge in theoretical physics

and mathematics. In particular deriving the statistical properties of solutions to the Navier-

Stokes equations (i.e. the governing equations) in a purely deductive manner has been

regarded as a difficult task. On the other hand there are attempts to describe statistical

properties of turbulence on the basis of approximations relying on physical ideas. In this

paper we consider and revisit a formulation from first principles.

Roughly speaking, there are two different ways in writing down equations that govern

statistical solutions of the Navier-Stokes equations. One method uses the characteristic

functional of the velocity field as the basic variable, which is the Fourier transform of the

probability measure of the velocity and its governing equation is called the Hopf equation.

The other method deals directly with the probability measure of the velocity field and the

corresponding Liouville equation is called the Hopf-Foias equation, see e.g. [1–9]. See also

[10–20] for related works and [21–38] for mathematical works.

It is fair to say that methods of solving the Hopf equation are at the moment under-

developed. There are at least two different approaches to determine the Hopf functional.

One is to try solving the functional equation as is, taking realizability into account. This

approach faces formidable difficulty. The other one starts from deterministic solutions of

a nonlinear PDE and after taking average we can try determine a functional form of the

Hopf functional at least asymptotically. While the latter approach is available only when

the deterministic PDE is explicitly solvable, it does give a hint as to how the functional

actually behaves. As our understanding of the Hopf equation is limited at the moment, it

makes sense to combine the both approaches.

In view of physical applications, we recall self-similar solutions often reveal typical prop-

erties of nonlinear problems in fluid mechanics [39]. To exemplify our approach, here we

first consider the Burgers equations and indicate extensions to handle the Navier-Stokes

equations. The Burgers equations on their own footing appear as a physical model for com-

pressible fluid motion, see e.g. [40]. We show in particular how the source-type solution (to

be defined below) determines the Hopf functional for the Burgers equations in its long-time

limit through self-similarity, when we choose the dependent variable suitably. This general-

izes the well-known expression of the Hopf-Titt solution the final period decay, which totally
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neglects the nonlinear terms. It should be noted an explicit form of the source-type solutions

for the multi-dimensional Burgers equations are obtained as a by-product, which have not

been reported before. We will clarify which ideas carry over to the Navier-Stokes equations

in two and three dimensions.

The purpose of this paper is two-fold. First, we will recast the Hopf functional differential

equation into an integral equation by introducing a kind of Duhamel principle and thereby

yielding a successive approximations systematically. In so doing we will make use of symbolic

manipulations. Second, we will clarify the concept of scale-invariance for the statistical

Navier-Stokes equations by extending a previous work by Rosen [41] and combine it with

the source-type solutions of the deterministic equations.

The rest of this paper is organised as follows. In Section II, after reviewing its scaling

property, we convert the Hopf equation for the 3D Navier-Stokes equations into an integral

equation with the use of an exponential operator. We introduce a successive approximation

on this basis. In section III, dynamic scaling property for 1D statistical Burgers equation

is described. In section IV, dynamic scaling property for d-dimensional statistical Navier-

Stokes equations is described. In Section V, the implications of the source-type solutions

on the late-stage behavior of the Hopf functional are discussed. Section VI is devoted to a

summary and outlook. In Appendix A, a formal derivation of the action of the exponential

operator is stated. In Appendix B the leading-order approximation is presented for the

Burgers equation. In Appendix C, an error estimate is of the successive approximation is

derived. Finally, Appendix D recalls the self-similar solution of the Burgers equation.

II. HOPF EQUATION FOR THE BURGERS EQUATION

There are many publications on the Hopf equations, for example [42–49]. We will revisit

this equation from a fundamental viewpoint. To illustrate the basic idea, we mainly consider

the Burgers equation for simplicity. Statistical solutions of this equation have been studied

in many works, such as [50–58].

The 1D Burgers equation written in standard notations

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(1)

3



satisfies invariance under the following set of (static) scaling transformations

x→ λx, t→ λ2t, u→ λ−1u,

where λ(> 0) is an arbitrary parameter. Hence,

Property 1: if u(x, t) is a solution to (1), so is λu(λx, λ2t).

The characteristic functional for the velocity is defined by

Φ[θ(x), t] =

〈

exp

(

i

∫ ∞

−∞
u(x, t)θ(x)dx

)〉

,

where 〈 〉 denotes an ensemble average taken with respect to an initial velocity distribution.

It satisfies Hopf functional differential equation (FDE, hereafter)

∂Φ

∂t
= LΦ, (2)

where [76]

LΦ ≡ i

2

∫

θ(x)
∂

∂x

δ2Φ

δθ(x)2
dx+ ν

∫

θ(x)
∂2

∂x2
δΦ

δθ(x)
dx.

The Hopf functional Φ satisfies some realizability conditions. It is required that

Φ[θ(x)]|θ(x)≡0 = 1

and positive-definiteness

n
∑

k=1

n
∑

l=1

Φ[θk(x)− θl(x)]ckc
∗
l =

〈∣

∣

∣

∣

∣

n
∑

k=1

ck exp

(

i

∫

u(x, t)θ(x)dx

)

∣

∣

∣

∣

∣

2〉

≥ 0,

hold for n = 1, 2, 3, . . . . We are interested in solutions of (2) that satisfy those conditions at

any time t ≥ 0. Even though it is a linear equation, no general method for its solutions is

known.

Scale-invariance of the Hopf equation for the 3D Navier-Stokes equations has been studied

in [41]. For the statistical solutions of the 1D Burgers equations, the corresponding argument

goes as follows. Under the following set of transformations

θ(x) → θ(λx), u(x) → λu(λx),

where λ(> 0) is an arbitrary parameter, the Hopf equation becomes

∂Φ

∂t
= λ2LΦ[θ(λx), t].

This can be made invariant by scaling the time variable as t→ λ−2t. Hence,
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Property 2: if Φ[θ(x), t] is a solution to (2), so is Φ[θ(λx), λ−2t].

In particular, let us consider the heat diffusion equation

∂u

∂t
= ν

∂2u

∂x2

by ignoring the nonlinear term of the Burgers equation. The corresponding FDE reads

∂Φ

∂t
= ν

∫

θ(x)
∂2

∂x2
δΦ

δθ(x)
dx,

which can be solved explicitly[1, 2] as

Φ[θ(x), t] = Φ0

[

1√
4πνt

∫

exp

(

−(x− y)2

4νt

)

θ(y)dy

]

≡ Φ0[exp (νt△) θ], (3)

where △ = ∂2

∂x2 denotes the Laplacian. This is called the Hopf-Titt solution and it follows

from the self-dual property of gt

(gt ∗ u0, θ) = (u0, gt ∗ θ), (4)

where gt(x) =
1√
4πνt

exp
(

− x2

4νt

)

denotes the heat kernel and (f, g) =
∫

f(x)g(x)dx an inner-

product. In this case, the characteristic functional does not essentially change its form, rather

its argument develops following a heat flow. This method of solutions may be regarded as

a FDE version of method of characteristics, e.g. [59–61].

We now consider an operator D, defined formally by

D ≡
∫

dxθ(x)
∂2

∂x2
δ

δθ(x)
(5)

and write above solution heuristically (symbolically) as follows

Φ[θ(x), t] = exp

(

νt

∫

dxθ(x)
∂2

∂x2
δ

δθ(x)

)

Φ0[θ] ≡ exp (νtD) Φ0[θ].

In other words we define D by its action on Φ[θ] as follows

exp (νtD) Φ[θ] ≡ Φ[exp (νt△) θ]. (6)

Note that (5) is a purely symbolic notation whose meaning is given by (6).

We may regard the operator on the left-hand side as a functional version of “shift oper-

ator” on the basis of the above solution [77]. In other words, we turn a particular solution

(3) into a definition of the new operator D. Its meaning is to update all the arguments, θ(x)

in this case, in the operand functional by convoluting the heat kernel.
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With this understanding, we can now recast the Hopf equation as follows

exp (νtD)
∂

∂t
exp (−νtD) Φ[θ, t] =

i

2

∫

θ(x)
∂

∂x

δ2Φ

δθ(x)2
dx. (7)

This allows us to convert the Hopf equation into an integral equation by a straightforward

application of the Duhamel principle

Φ[θ(x), t] = exp (νtD) Φ0[θ] +
i

2

∫ t

0

exp (ν(t− s)D)

∫

θ(x)
∂

∂x

δ2Φ

δθ(x)2
[θ(x), s]dxds. (8)

It may be in order to compare (8) with the integral form of deterministic Navier-Stokes

equations.[75] Defining yet another operator G by

G ≡ i

2

∫ t

0

ds exp (ν(t− s)D)

∫

dxθ(x)
∂

∂x

δ2

δθ(x)2
,

the integral form of the Hopf equation can be written

Φ = Φ̃ +GΦ,

where Φ̃ = Φ0[exp(νt△)θ] is the Hopf functional for the heat flow. See Appendix A for its

formal derivation. It is noted that the operator G depends on time t, while its dependence

is suppressed for simplicity. In passing we note that (8) resembles the Lipmann-Schwinger

equation in scattering theory in quantum mechanics.

We are in a position to introduce a successive approximation

Φn+1 = Φ̃ +GΦn (n = 0, 1, 2, . . .)

to derive a Neumann series for the Hopf functional

Φ = (I −G)−1Φ̃ = (I +G+G2 +G3 + . . .)Φ̃.

The zero-th order approximation is given by the above (3). The first order approximation

is given by

Φ ≈ (I +G)Φ̃,

which is reminiscent of the Born approximation in scattering theory.

In order to apply this approximation in practice, numerical evaluation of the above in-

tegral would be needed. Here we restrict attention to leading order analysis to see how
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the successive approximations look like and what conditions are required to assure conver-

gence of the successive approximations. Taking the initial Hopf functional of the following

Gaussian form

Φ0[θ] = exp

(

−1

2

∫∫

Q(x′, x′′)θ(x′)θ(x′′)dx′dx′′
)

,

where Q(x′, x′′)= 〈u(x′, 0)u(x′′, 0)〉 denotes the initial velocity correlation function, we find

GΦ̃ = − i

2

∫ t

0

ds

{ −1

4πνs

∫∫∫

dxdx′dx′′eν(t−s)△θ(x)Q(x′, x′′)
x′ + x′′ − 2x

2νs
e−

(x′−x)2

4νs
− (x′′−x)2

4νs

+
1

2πνs

∫

dxeν(t−s)△θ(x)

∫∫

dx′dx′′Q(x′, x′′)e−
(x′−x)2

4νs eνt△θ(x′′)

×
∫∫

dx′dx′′Q(x′, x′′)
x′ − x

2νs
e−

(x′−x)2

4νs eνt△θ(x′′)

}

Φ0[e
νt△θ], (9)

where we have denoted a function of x′′ eνt△θ(x′′) = 1√
4πνt

∫

exp
(

− (x′′−y)2

4νt

)

θ(y)dy, See

Appendix B for the derivations.

It is in order to derive a sufficient condition for the convergence of the above successive

approximation. Define the operator norm of G by

‖G‖ ≡ sup
Φ̃

‖GΦ̃‖
‖Φ̃‖

.

By a standard argument [62, 63], provided that ‖G‖ < 1 we have

‖(I −G)−1 − (I +G+ . . .+Gn−1)‖ ≤
∞
∑

m=n

‖G‖m

= ‖G‖n(1− ‖G‖)−1

→ 0, as n→ ∞.

Because

‖GΦ̃‖ ≤
‖Φ̃‖
2

∥

∥

∥

∥

∥

∫ t

0

ds

∫

eν(t−s)△θ(x)
∂

∂x

{

eνs(△
′+△′′)Q(x′, x′′)−

(∫

dx′′eνs△
′

Q(x′, x′′)eνt△θ(x′′)

)2
}

dx

∥

∥

∥

∥

∥

,

we find that

1

2

∥

∥

∥

∥

∥

∫ t

0

ds

∫

eν(t−s)△θ(x)
∂

∂x

{

eνs(△
′+△′′)Q(x′, x′′)−

(∫

dx′′eνs△
′

Q(x′, x′′)eνt△θ(x′′)

)2
}

dx

∥

∥

∥

∥

∥

< 1

is sufficient for the convergence. It is shown in Appendix C that the condition is satisfied,

for example, if

C

ν

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥

L1

‖Q(x, y)‖L1(R2)

(

1 + ‖Q(x, y)‖L1(R2)‖θ‖2L∞

)

< 1, (10)

where C is a non-dimensional constant. In particular, it is satisfied when ν is large.
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III. DYNAMIC SCALING FOR THE HOPF EQUATION FOR BURGERS EQUA-

TION

In [41], scale-invariance of the 3D Navier-Stokes equations have been discussed and used

to study a self-similar decaying process of turbulence. We present a variant of its argument

adapted to one-spatial dimension.

A. Dynamic scaling: deterministic version

We will be interested in a decaying process of Burgers ’turbulence’. We consider solutions

with forward self-similarity, where the relevant scaling parameter is
√

2a(t+ t∗) with a

constant a(> 0).

We generalize static scaling transformations using a dynamically-rescaled time variable.

Applying a set of dynamic scaling transformations

ξ =
x

√

2a(t+ t∗)
, τ =

1

2a
log

t+ t∗
t∗

u(x, t) =
1

√

2a(t+ t∗)
U(ξ, τ)

to the Burgers equation with 2at∗ = 1, we obtain

∂U

∂τ
+ U

∂U

∂ξ
= a

∂

∂ξ
(ξU) + ν

∂2U

∂ξ2
. (11)

Note that the dynamically-scaled Burgers equation, when linearized, coincides with a linear

Fokker-Planck equation, that is, a Fokker-Planck equation with a linear drift term, associated

with the Ornstein-Uhlenbeck process. It should be noted that the associated stochastic

process reaches stationarity while Brownian motion (i.e. the Wiener process) does not.

Note the distinction in behaviors of D and D∗ below. It has a conservative term in the form

a∂ξ(ξU), rather than the drift term aξ∂ξU only. It is known that solutions to (11) converges

to a steady solution as τ → ∞. See Section V and Appendix D for the steady solution.

B. Dynamic scaling: statistical version

In principle there are two ways to derive the Hopf equation for the dynamically-scaled

Burgers equation. We will show that they actually lead to the same result. To avoid prolif-
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eration of notations, we use the same symbol Φ for the Hopf functional for the dynamically-

scaled equations, which can be distinguished by the argument.

Method 1: We first apply dynamic scaling and then move onto a statistical description.

By (11) it is straightforward to check the characteristic functional of the velocity

Φ[θ(ξ), τ ] =

〈

exp

(

i

∫ ∞

−∞
U(ξ, τ)θ(ξ)dξ

)〉

satisfies

∂Φ

∂τ
=

i

2

∫

θ(ξ)
∂

∂ξ

δ2Φ

δθ(ξ)2
dξ + ν

∫

θ(ξ)
∂2

∂ξ2
δΦ

δθ(ξ)
dξ + a

∫

θ(ξ)
∂

∂ξ

(

ξ
δΦ

δθ(ξ)

)

dξ

=
i

2

∫

θ(ξ)
∂

∂ξ

δ2Φ

δθ(ξ)2
dξ + ν

∫

∂2θ

∂ξ2
δΦ

δθ(ξ)
dξ − a

∫

δΦ

δθ(ξ)
ξ
∂θ

∂ξ
dξ, (12)

that is,
∂Φ

∂τ
=
i

2

∫

θ(ξ)
∂

∂ξ

δ2Φ

δθ(ξ)2
dξ +

∫

θ(ξ)

(

ν
∂2

∂ξ2
+ a

∂

∂ξ
ξ

)

δΦ

δθ(ξ)
dξ. (13)

Method 2: We first consider a statistical description and then apply dynamic scaling.

We write

Φ[θ(x), t] = Ψ[ζ(y), τ ],

where ζ(y) ≡ θ(
√

2a(t+ t∗)x), y =
√

2a(t+ t∗)x. By
∂ζ
∂t

= 1
2(t+t∗)

y ∂θ
∂y

we find

∂Φ

∂t
=

∫

δΨ

δζ

∂θ

∂t
dy +

∂Ψ

∂τ

∂τ

∂t
=

∫

δΨ

δζ

1

2(t+ t∗)
y
∂θ

∂y
dy +

∂Ψ

∂τ

1

2a(t+ t∗)
.

By the scaling of Φ, the right-hand side equals 1
λ2L, that is,

=
1

2a(t+ t∗)

(

i

2

∫

ζ(y)
∂

∂y

δ2Ψ

δζ(y)2
dy + ν

∫

ζ(y)
∂2

∂y2
δΨ

δζ(y)
dy

)

.

Hence we obtain

∂Ψ

∂τ
+ a

∫

δΨ

δζ
y
∂ζ

∂y
dy =

i

2

∫

ζ(y)
∂

∂y

δ2Ψ

δζ(y)2
dy + ν

∫

ζ(y)
∂2

∂y2
δΨ

δζ(y)
dy,

which matches the previous expression (13) by rewriting ζ(y) → θ(ξ).

C. Operator D∗ for the modified heat kernel

Consider a linearization of (11), the linear Fokker-Planck equation,

∂V

∂τ
= a

∂

∂ξ
(ξV ) + ν

∂2V

∂ξ2
.

9



Its solution is given by

V (ξ, τ) = g̃τ ∗ V0 ≡
(

a

2πν(1− e−2aτ )

)1/2 ∫

R1

eaτV0(e
aτy) exp

(

− a

2ν

(ξ − y)2

1− e−2aτ

)

dy,

where g̃τ denotes a modified heat kernel and * convolution as defined above. It is convenient

to define an operator D∗ and write symbolically the solution to the above Fokker-Planck

solution as

V (ξ, τ) = exp(ντD∗)V0 = exp (τ {ν△+ a∂ξ(ξ·)})V0.

In the limit of τ → ∞ we have

V (ξ, τ) → exp
( ν

2a
D
)

V0(ξ)
∣

∣

∣

V0=Mδ
=M

√

a

2πν
exp

(

− a

2ν
ξ2
)

,

where M =
∫

V0(η)dη. Here we have made use of the formula

1

ǫ
f
(x

ǫ

)

→Mδ(x); as ǫ→ 0,

which holds for any localised function f with M =
∫

f(x)dx.

D. Duhamel principle for the scaled Hopf equation

Replacing ν△ with ν△ + a∂ξ(ξ·) in (7) we can write the dynamically-scaled version of

the Hopf equation as

exp (ντD∗)
∂

∂τ
exp (−ντD∗) Φ[θ(ξ), τ ] =

i

2

∫

θ(ξ)
∂

∂ξ

δ2Φ

δθ(ξ)2
dξ,

from which we find

Φ[θ(ξ), τ ] = exp (ντD∗) Φ0[θ(ξ)] +
i

2

∫ τ

0

exp (ν(τ − s)D∗)

∫

θ(ξ)
∂

∂ξ

δ2Φ

δθ(ξ)2
[θ(ξ), s]dξds.

(14)

We are interested in studying the long-time limit Φ[θ(ξ)] = limτ→∞ Φ[θ(ξ), τ ], but the eval-

uation of the second term on the right-hand side faces difficulty. In Section V we will show

how we may obtain an asymptotic expression Φ[θ(ξ)], working directly from the definition

of Hopf functional.

For the scaled-version of the Hopf equation for the linearized equation, that is, the first

term on the right-hand side of (14), we have

exp (ντD∗) Φ0[θ(ξ)] = 〈exp(i(g̃τ ∗ V0, θ)〉 .
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Unlike the original heat kernel, self-duality (g̃τ ∗V0, θ) = (V0, g̃τ ∗ θ) does not hold in general

for the modified kernel g̃τ . It holds when V0 is an homogeneous function of degree -1, that

is, λV0(λx) = V0(x) for all λ > 0 (just like the Dirac delta function).

IV. DYNAMIC SCALING FOR HOPF EQUATION FOR NAVIER-STOKES

EQUATIONS

Dynamic scaling can be applied to the Hopf equation for the Navier-Stokes equations

without any problem. Scaling properties of the Hopf equation has been discussed in [41],

which we generalize here into d-spatial dimensions. We will show that if a critical condi-

tion in the statistical solution is achieved, the Hopf functional takes the simplest form of

self-similarity. This is crucial in improving the Hopf-Titt solution with a “near-Gaussian”

solution associated with the heat-kernel. The final form would be more complicated with

other choices of dependent variables.

A. Dynamic scaling (deterministic version)

For the incompressible Navier-Stokes equations written in standard notations

∂u

∂t
+ u · ∇u+∇p = ν△u, (15)

∇ · u = 0,

static scale-invariance implies the following

Property 1’: if u(x, t) is a solution to (15), so is λu(λx, λ2t).

By applying the dynamic scaling transforms

u(x, t) =
1

√

2a(t+ t∗)
U (ξ, τ),

ξ =
x

√

2a(t+ t∗)
, τ =

∫ t

0

ds

λ(s)2
=

1

2a
log

t+ t∗
t∗

,

we obtain the scaled version of the Navier-Stokes equations, also known as the Leray equa-

tions
∂U

∂τ
+U · ∇ξU = −∇ξP + ν△ξU + a(ξ · ∇ξU +U ),

∇ξ ·U = 0.

11



B. Dynamic scaling (statistical version)

The characteristic functional of the velocity

Φ[θ, t] =

〈

exp

(

i

∫

u(x, t) · θ(x)dx
)〉

satisfies

Φ[θ, t] = Φ[θ⊥, t], Φ[θ, t]∗ = Φ[−θ, t], |Φ[θ, t]| ≤ 1,

where θ⊥ denotes a solenoidal projection of θ.

The Hopf equation can be written

∂Φ

∂t
= LΦ, (16)

where

L ≡ i

∫

dx θ⊥j (x)
∂

∂xk

δ2

δθj(x)δθk(x)
+ ν

∫

dx θj(x)△
δ

δθj(x)
.

Note that a set of dilation transforms θ(x) → λd−1θ(λx), u(x) → λu(λx) leave
∫

u · θdx
invariant. Also note that functional derivatives transform as

δ

δθj(x)
→ λ

δ

δθj(λx)

to ensure
[

δ

δθj(x)
, θk(x

′)

]

= δjkδ(x− x′),

where δ(·) denotes the Dirac delta function. On the other hand, the operator L transforms

as

L→ iλd+1

∫

dx θ⊥j (λx)
∂

∂xk

δ2

δθj(λx)δθk(λx)
− νλd

∫

dx θj(λx)△
δ

δθj(λx)

= λ2L,

where the last line follows by x→ λ−1x. The Hopf equation then takes the form

(

∂

∂t
− λ2L

)

Φ
[

λd−1θ(λx), t
]

= 0,

or
(

∂

∂t
− L

)

Φ
[

λd−1θ(λx), λ−2t
]

= 0,

after rescaling t. Hence we conclude that

Property 2’: if Φ [θ(x), t] is a solution to (16), so is Φ
[

λd−1θ(λx), λ−2t
]

.
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It is important to observe that, unlike the deterministic case, the invariance property

depends on the spatial dimension d. In particular, statistics of the velocity field attains

criticality when and only when d = 1 in the sense that the argument of Φ[·] takes a simplified

form as θ(t1/2x). It is noted that with the choice of velocity, θ(x) of the characteristic

functional for the 1D Burgers equation acquires the same physical dimension as that of 1/ν.

We may contrast the situation with the deterministic counterpart of invariance Property 1’

for the Navier-Stokes equations, which is not critical with the use of the velocity variable. We

would have used the vector potential to achieve criticality for the deterministic Navier-Stokes

equations [64].

In Property 2’, if we consider the Hopf functional of the vorticity, we have

Φ
[

λd−2θ(λx), λ−2t
]

for the scaled functional. Likewise, if we consider the Hopf functional

of the vorticity gradient, we have Φ
[

λd−3θ(λx), λ−2t
]

for the scaled functional. Thus, by

choosing the variable suitably we can make the prefactor of θ(λx) vanish, achieving statisti-

cal criticality, which renders the analysis of the Hopf equation the simplest possible one. It

is noted that for with the choice of vorticity gradient, θ(x) of the characteristic functional

for the 3D Navier-Stokes equations acquires the same physical dimension as that of 1/ν.

To be more specific, we derive dynamically-scaled Hopf equation following the two dif-

ferent ways as above.

Method 1: We apply dynamic scaling to the Navier-Stokes equations and move onto

the statistical description.

∂Φ

∂τ
= i

∫

θ⊥j (ξ)
∂

∂ξk

δ2Φ

δθj(ξ)δθk(ξ)
dξ + ν

∫

θj(ξ)△ξ

δΦ

δθj(ξ)
dξ + a

∫

θj(ξ)(ξ · ∇+ 1)
δΦ

δθj(ξ)
dξ,

(17)

or

∂Φ

∂τ
= i

∫

θ⊥j (ξ)
∂

∂ξk

δ2Φ

δθj(ξ)δθk(ξ)
dξ+ν

∫

θj(ξ)△ξ

δΦ

δθj(ξ)
dξ−a

∫

δΦ

δθj(ξ)
(ξ · ∇+ d− 1) θj(ξ)dξ.

(18)

It should be noted that when d = 1 the final term simplifies (that is, reduces to the drift

term only).

Method 2: We start with the statistical formulation and apply dynamic scaling to it.

We apply the following set of transformations

Φ = Ψ [ζ, τ ] ,

13



ζ = (2a(t+ t∗))
d−1
2 θ

(

√

2a(t+ t∗)x
)

, τ =
1

2a
log

t+ t∗
t∗

to the Hopf equation. Setting y =
√

2a(t+ t∗)x, we have

∂ζj
∂t

=
1

2(t+ t∗)

(

(d− 1)ζj + yk
∂ζj
∂yk

)

and

∂Φ

∂t
=

∫

δΦ

δζj

∂ζj
∂t
dy +

∂Φ

∂τ

∂τ

∂t
=

∫

δΦ

δζj

1

2(t+ t∗)

(

(d− 1)ζj + yk
∂ζj
∂yk

)

dy +
∂Φ

∂τ

1

2a(t+ t∗)
,

which equals

=
1

2a(t+ t∗)

∫ (

iζ⊥j
∂

∂yk

δ2Φ

δζj(y)δζk(y)
+ νζj△

δΦ

δζj(y)

)

dy

by virtue of a substitution L→ 1
λ2L. Hence we find

∂Φ

∂τ
+ a

∫

δΦ

δζj

(

(d− 1)ζj + yk
∂ζj
∂yk

)

dy =

∫ (

iζ⊥j
∂

∂yk

δ2Φ

δζj(y)δζk(y)
+ νζj△

δΦ

δζj(y)

)

dy,

which agrees with the above result (18) when a replacement ζ(y) → θ(ξ) is made.

We make a set of two observations. (1) For the Hopf equation, critical scale-invariance

is attained when we use a characteristic functional of the d-th derivatives of the vector

potential. (2) For the corresponding scaled Navier-Stokes equations (i.e. the Leray equa-

tions), the dissipative term takes the form of the linear Fokker-Planck operator. This in

principle provides a method of deriving long-time asymptotics of the Hopf functional for the

Navier-Stokes equations, just as for the Burgers equations (see below).

V. SOURCE-TYPE SOLUTIONS AND THEIR IMPLICATION ON HOPF FUNC-

TIONALS

To illustrate physical applications of the ideas developed here, we revisit the Burgers

equations in one and two spatial dimensions. A source-type solution[78] is a forward self-

similar solution, which starts from the Dirac delta function (in a variable attaining statistical

criticality) and ends in a near-Gaussian universal profile associated with the heat-kernel. We

will show how it is crucial to choose a dependent variable to have the source-type solutions

in the analysis of statistical solutions and the role they play in the determination of Hopf

functionals in the late stage. Source-type solutions for the Burgers equations have been

studied extensively [65–68], where their existence has been established in multi-dimensions,

but an explicit functional form has been given only in one dimension.
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A. One-dimensional Burgers equation

We will find a steady solution of (11) by taking the long time limit τ → ∞. By the

Cole-Hopf transform, the scaled velocity can be written

U(ξ, τ) = −2ν

∂ξ
∫

R1 ψ0(λη) exp

(

− a

2ν

(ξ − η)2

1− e−2aτ

)

dη

∫

R1 ψ0(λη) exp

(

− a

2ν

(ξ − η)2

1− e−2aτ

)

dη

,

where ψ0 is the initial velocity potential. The numerator can be written by taking the

derivative under the integral sign and integration by parts
∫

R1

λψ′
0(λη) exp

(

− a

2ν

(ξ − η)2

1− e−2aτ

)

dη.

Now, noting λ = eaτ ,

λψ′
0(λη) → Kδ(η) as τ → ∞,

where K =
∫∞
−∞ U0(ξ)dξ =

∫∞
−∞ ψ′

0(ξ)dξ = ψ0(∞) − ψ0(−∞). Note that U0(ξ) denotes the

initial (localised) velocity, not to be confused with U(0). The numerator tends to

K exp
(

− a

2ν
ξ2
)

,

whereas the denominator tends to its indefinite integral. Hence U(ξ) = limτ→∞ U(ξ, τ) is

given by

U(ξ) = −2ν
K exp

(

− a

2ν
ξ2
)

C +K
∫ ξ

0
exp

(

− a

2ν
η2
)

dη
,

where C is a constant. Fixing C as U(0) = −2νK/C, we find

U(ξ) =
U(0) exp

(

− a

2ν
ξ2
)

1− U(0)
2ν

∫ ξ

0
exp

(

− a

2ν
η2
)

dη
= −2ν

∂

∂ξ
log

{

1− U(0)

2ν

∫ ξ

0

exp
(

− a

2ν
η2
)

dη

}

.

See Appendix D for an alternative derivation.

In the literature [65–67] it is often written U(0) = F (K) for some function F , but we

need to be more specific here. DefiningM =
∫∞
−∞ U(ξ)dξ, it is can be readily computed that

U(0) =

√

8aν

π
tanh

M

4ν
.

In fact, we know that M = K because of the conservation of the L1-norm of the velocity

under time-evolution of the Burgers equation. This fact will be used below.
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B. Higher-dimensional Burgers equations

Let us consider the two-dimensional case. Again using the Cole-Hopf transform, the

scaled velocity reads

Ui(ξ, τ) = −2ν

∂ξi
∫

R2 ψ0(λη) exp

(

− a

2ν

|ξ − η|2
1− e−2aτ

)

dη

∫

R2 ψ0(λη) exp

(

− a

2ν

|ξ − η|2
1− e−2aτ

)

dη

.

We know that limτ→∞ Ui(ξ, τ) exists, however it is impossible to tell what it is from the

expression above. The numerator can be written

∫

R2

λ∂iψ0(λη) exp

(

− a

2ν

|ξ − η|2
1− e−2aτ

)

dη,

where ∂i =
∂

∂(ληi)
denotes differentiation with respect to the argument. It is important to

realize that, in two-dimensions, to make use of

λ2f(λη) → Kδ(η) as τ → ∞

for localised f with K =
∫

fdη, we must take higher derivatives

∂2

∂ξi∂ξj

∫

R2

ψ0(λη) exp

(

− a

2ν

|ξ − η|2
1− e−2aτ

)

dη.

It then has the definite limit

∫

R2

λ2∂i∂jψ0(λη) exp

(

− a

2ν

|ξ − η|2
1− e−2aτ

)

dη →Mij exp

(

−a|ξ|
2

2ν

)

,

as τ → ∞, where Mij =
∫

R2
∂Ui

∂ξj
dη (i, j = 1, 2) denote constants. This is why we ought to

choose the second derivatives of the velocity potential to achieve criticality.

The argument above identifies a choice of the velocity potential, e.g.

φ = log

(

1− M12

2ν

∫ ξ1

0

∫ ξ2

0

exp
(

− a

2ν
(ξ2 + η2)

)

dξdη

)

,

giving rise to ∂U1

∂ξ2
= −2ν ∂2φ

∂ξ1∂ξ2
. To summarise, the source-type solutions can be written using

the velocity gradient, rather than the velocity, as

∂U1

∂ξ2
=

M12

(1−R(ξ1, ξ2))
2 exp

(

− a

2ν
(ξ21 + ξ22)

)

= −2ν
∂2

∂ξ1∂ξ2
log(1−R(ξ1, ξ2)),
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where

R(ξ1, ξ2) =
M12

2ν

∫ ξ1

0

exp

(

−aξ
2

2ν

)

dξ

∫ ξ2

0

exp

(

−aη
2

2ν

)

dη.

Observe that the velocity gradient has a near-Gaussian form, slightly moderated by R(ξ1, ξ2)

which is small because of the late stage of evolution.

The idea can be extended to any dimensions, noting that we have in d-dimensions

λdf(λη) → Kδ(η) as τ → ∞

with K =
∫

fdη. This explains why we need to choose the d-th derivative of the vector (or

tensor) potential to achieve criticality.

C. Late stage behavior of the Hopf functional for the Burgers equation

We consider an initial-value problem of the Hopf equation (2) for the Burgers and its

scaled counterpart (13). Needless to mention, the Burgers equation and the scaled Burgers

equation describe the same initial-value problem. Likewise, the Hopf equation for the Burg-

ers equation and its scaled counterpart describes the same statistical initial-value problem,

with a common initial probability measure of the velocity field. To realize this, it helps to

recall that the exponent of the characteristic functional, in abridged notations, reads
∫ ∞

−∞
u(x, t)θ(x)dx =

∫ ∞

−∞

1

λ(t)
U

(

x

λ(t)
,

t

λ(t)2

)

θ(x)dx =

∫ ∞

−∞
U(ξ, τ)ζ(ξ)dξ,

where x = λξ, t = λ2τ, ζ(ξ) = θ(λξ).

Once a source-type solution is obtained we can determine an asymptotic form of the Hopf

functional in the late stage. Let us illustrate how this works using the 1D Burgers equation.

We recall that by substituting the Cole-Hopf solution

u(x, t) =

∫ ∞

−∞

x− y

t
exp

(

− 1

2ν

∫ y

u0(x
′)dx′ − (x− y)2

4νt

)

dy

∫ ∞

−∞
exp

(

− 1

2ν

∫ y

u0(x
′)dx′ − (x− y)2

4νt

)

dy

into the definition of Hopf functional

Φ[θ(x), t] =

〈

exp

(

i

∫ ∞

−∞
u(x, t)θ(x)dx

)〉

,

we can in principle obtain the time-dependent Hopf functional. However, the above ex-

pression is obscure in that we must carry out infinite-dimensional (functional) integration
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because 〈. . .〉 =
∫

. . . dµ(u0) denotes an average over initial velocity, which is generally a

formidable task.

We will show that if we focus on the late stage of the decaying process, we can obtain an

asymptotic form of the Hopf functional up to a quadrature. This is done by combining the

dynamically-scaled Hopf equation and the source-type solution in the late stage. In taking

the limit of τ → ∞ almost all the information of the initial data will be lost through the

emergence of the delta function; the information will be squeezed into that of K alone:

Φ[θ(ξ)] =

∫

exp



i

∫ ∞

−∞

√

8aν
π

tanh K
4ν

exp
(

− a
2ν
ξ2
)

1− 1
2ν

√

8aν
π

tanh K
4ν

∫ ξ

0
exp

(

− a
2ν
η2
)

dη
θ(ξ)dξ



 dµ(K), (19)

where dµ(K) = P (K)dK denotes the probability measure of the L1-norm of the initial

velocity, with P (K) its density. Note that the above average is just a definite integral (a

quadrature), whose meaning is clear and that the denominator never hits zero, because

1

2ν

√

8aν

π
tanh

K

4ν
·
∫ ξ

0

exp
(

− a

2ν
η2
)

dη <
1

2ν

√

8aν

π

1

2

√

2πν

a
= 1.

Note also that the above expression generalizes the Hopf-Titt solution. For small |K/ν|, in
fact we have

Φ[θ(ξ)] ≈
∫

exp

(

iK

∫ ∞

−∞
g̃(ξ)θ(ξ)dξ

)

dµ(K),

where g̃(ξ) =
√

a
2πν

exp
(

− a
2ν
ξ2
)

. Because we have a source-type solution as τ → ∞ with

U0 = Kδ(·), the exponent can be written[79]

i

∫ ∞

−∞
(g̃ ∗ U0)(ξ) θ(ξ)dξ = i

∫ ∞

−∞
U0(ξ)(g̃ ∗ θ)(ξ)dξ = i exp

( ν

2a
D
)

∫ ∞

−∞
U0(ξ)θ(ξ)dξ.

Hence, we find

Φ[θ(ξ)] ≈ exp
( ν

2a
D
)

Φ0[θ(ξ)],

which in the original variables corresponds to

Φ[θ(x)] ≈ exp (νtD) Φ0[θ(x)].

This is nothing but the Hopf-Titt solution. Thus the expression (19) is an improvement of

the Hopf-Titt solution.
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equations
deterministic criticality

achieved with
statistical criticality

achieved with source-type solutions

1D Burgers velocity potential φ velocity u known explicitly

n-D Burgers velocity potential φ ∂nφ
existence known,
made explicit here

2D Navier-Stokes stream function ψ vorticity ω
known explicitly

as the Burgers vortex

3D Navier-Stokes vector potential ψ vorticity gradient ∇× ω existence known,
explicit form unknown

TABLE I: Self-similar (source-type) solutions

D. Source-type solutions for the Navier-Stokes equations

Let us clarify how the results obtained for the Burgers equations can carry over to the

Navier-Stokes equations. As confirmed in Section IV, the derivation of the Hopf equation

for the dynamically-scaled Navier-Stokes equations stand parallel to that of the Burgers

equations. It is also known that there exist self-similar solutions of the 3D Navier-Stokes

equations for small data [70–72]. See also e.g. [73, 74] for recent developments. A self-similar

profile is known to exist, but its functional form is unknown.

A connection of the late-stage behavior of the Hopf functional to the source-type solution

with a suitably chosen dependent variable also holds, if smoothness of solutions is assumed

for the 3D Navier-Stokes equations. It should be noted that this connection itself is valid,

even though the universal profile is not known explicitly. See Table I for a comparison of

studies on source-type solutions of the Burgers and Navier-Stokes equations. No methods

of exact linearization is known for the Navier-Stokes equations, but the existence of forward

self-similar solutions and the conservation of its L1-norm of the suitably chosen unknown

suffice to apply the current methods to the the Navier-Stokes equations.

The source-type solution for the 2D Navier-Stokes equations is known explicitly as the

Burgers vortex[80]

Ω(ξ) =
aΓ

2πν
exp

(

−a|ξ|
2

2ν

)

,

where Γ =
∫

R2 Ω(ξ)dξ denotes a circulation invariant. Following the current approach, the

late-stage Hopf functional is clearly given by

Φ[θ(ξ)] =

∫

exp

(

i
aΓ

2πν

∫ ∞

−∞
exp

(

− a

2ν
ξ2
)

θ(ξ)dξ

)

dµ(Γ).

However, the Burgers vortex solves not only the linearised equation, but it also solves the
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fully-nonlinear equations accidentally, because of its radial-symmetry (dependent on |ξ|
only). For this reason the above Hopf functional is precisely equivalent to, and not an

improvement of the Hopf-Titt solution for the 2D Navier-Stokes equations.

For the 3D Navier-Stokes equations the existence of self-similar solutions is known (in

velocity) in a number of function spaces. The corresponding vorticity gradient gives the

source-type solution implicitly. With this variable it is near-Gaussian and we have the

scaled vorticity curl

X(ξ) close to ′ exp
(

− a

2ν
|ξ|2

)′
,

where the effects of nonlinear terms and incompressibility should be taken into account. We

can in principle write

X(ξ) = F
[

exp
(

− a

2ν
|ξ|2

)

;K
]

,

where F denotes a near-identity non-local functional and K =
∫

R3X(ξ)dξ an invariant.

With this understanding the late-stage Hopf functional can be written

Φ[θ(ξ)] =

∫

exp

(

i

∫ ∞

−∞
F

[

exp
(

− a

2ν
|ξ|2

)

;K
]

θ(ξ)dξ

)

dµ(K).

This motivates a determination of the self-similar profile X(ξ), at least approximately.

VI. SUMMARY AND OUTLOOK

We have studied basic issues of statistical solutions of the Navier-Stokes equations. After

presenting the main ideas using the Burgers equations, we have shown how those ideas carry

over to the Navier-Stokes equations.

First, we have introduced the exponential operator G, which enables us to write the Hopf

equations as an integral equation (in time). By applying the Duhamel principle on this basis,

a successive approximation is formulated. The leading order approximation is presented for

the Burgers equation for an illustrative purpose. This can in principle be extended to the

the Navier-Stokes equations, while the algebra involved would be lengthy because of the

incompressibility condition.

Second, we have seen that the suitable choice of dependent variables, that achieve criti-

cal scale-invariance of statistical solutions of the Burgers and Navier-Stokes equations, de-

pends on spatial dimensions. It should be noted that this recognition holds valid for the

Navier-Stokes equations for which exact linearization is not available. It may be in order
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to summarize statistical criticality, comparing to more conventional dependent variables for

the 3D Navier-Stokes equations (Table II).

variables general forms scale-invariant forms

vector potential ψ Φ[λdθ(λx), λ−2t] Φ[t
d
2θ(t1/2x)]

velocity u Φ[λd−1θ(λx), λ−2t] Φ[t
d−1
2 θ(t1/2x)]

vorticity ω Φ[λd−2θ(λx), λ−2t] Φ[t
d−2
2 θ(t1/2x)]

vorticity gradient ∇× ω Φ[λd−3θ(λx), λ−2t] Φ[t
d−3
2 θ(t1/2x)]

TABLE II: Characteristic functionals for the scaled Navier-Stokes equations. To attain criticality,

the temporal prefactor in front of θ(·) must be absent, i.e. t0 in the scale-invariant form.

Furthermore, we have seen that when we choose a dependent variable satisfying statis-

tical criticality, the variable will take a near-Gaussian form in the long time limit for the

corresponding deterministic problem. On this basis, the late-stage evolution of statistical

solutions of the Burgers and Navier-Stokes equations can be determined most conveniently

by using the source-type solutions of the deterministic problem. We have employed the

Cole-Hopf transform for the Burgers equations for illustration. The method itself, however,

can also be applied to the Navier-Stokes equations, where self-similar solutions of the 3D

Navier-Stokes equations are known to exist, but not explicitly.

In two dimensions it is the vorticity whose statistics satisfies statistical criticality. In fact,

the late evolution of the 2D Navier-Stokes solutions is dominated by a collection of Burgers

vortices (source-type solutions), e.g. [69], which are steady solutions of the two-dimensional

linear Fokker-Planck equation. The late-stage asymptotics for the Hopf functional is equiv-

alent to the Hopf-Titt solution.

In three dimensions it is the vorticity gradient whose statistics satisfies a critical condition.

We can still argue that the late-stage asymptotics for the Hopf functional is given modulo

a near-identity functional of the Gaussian function. It is of interest to determine their

functional form, at least approximately, as a 3D analogue of the Burgers vortex in two

dimensions. This is left for future study.

Finally, we note fact that criticality for the statistical equations is achieved with a dynam-

ical variable whose dissipative term is given by the linear Fokker-Planck operator, is closely

related to the self-adjoint property (duality) of the dissipative operators in the long-time
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limit.

APPENDIX A: FORMAL DERIVATION OF FORMULA FOR OPERATOR G

We give a formal derivation on the action of the operator G.

Φ[θ(x), t] = exp (νtD) Φ0[θ]−
i

2

∫ t

0

exp (ν(t− s)D)

∫

θ(x)
∂

∂x

δ2Φ

δθ(x)2
[θ(x), s]dxds.

where

D ≡
∫

dxθ(x)
∂2

∂x2
δ

δθ(x)
.

Proof

Consider the Liouville equation (also known as the Hopf-Foias equation)

d

dt

∫

ei(θ,u(t))dµ(u0) = i

∫

(θ,△u(t))ei(θ,u(t))dµ(u0)−
i

2

∫

(

θ, ∂xu(t)
2
)

ei(θ,u(t))dµ(u0),

where

(θ, u(t)) =

∫ ∞

−∞
θ(x)u(x, t)dx.

Setting θ(t) = e(T−t)△θ0, we write

d

dt

∫

ei(θ(t),u(t))dµ(u0) = i

∫

[(θ̇(t), u(t)) + (θ(t), u̇(t))]ei(θ(t),u(t))dµ(u0)

= − i

2

∫

ei(θ(t),u(t))
(

θ, ∂xu(t)
2
)

dµ(u0).

Integrating with respect to time in 0 ≤ t ≤ T , we get
∫

ei(θ(T ),u(T ))dµ(u0) =

∫

ei(θ(0),u(0))dµ(u0)−
i

2

∫ T

0

ds

∫

ei(θ(s),u(s))
(

θ(s), ∂xu(s)
2
)

dµ(u0),

that is,
∫

ei(θ0,u(T ))dµ(u0) =

∫

ei(e
T△θ0,u(0))dµ(u0)−

i

2

∫ T

0

ds

∫

ei(e
(T−s)△θ0,u(s))

(

e(T−s)△θ0, ∂xu(s)
2
)

dµ(u0),

Replacing T → t and θ0 → θ, we find
∫

ei(θ,u(t))dµ(u0) =

∫

ei(e
t△θ,u(0))dµ(u0)−

i

2

∫ t

0

ds

∫

ei(e
(t−s)△θ,u(s))

(

e(t−s)△θ, ∂xu(s)
2
)

dµ(u0),

Now, the left-hand side is Φ[θ, t], the first term on the right-hand side is Φ(et△θ). Noting

that in the second term on the right-hand side

∂xu(s)
2Φ = −∂x

δ2Φ

δθ2
,

we obtain the desired result by noting that the first term on the right-hand side equals
∫

ei(θ,e
t△u(0))dµ(u0) by self-adjointness of the heat semigroup. �
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APPENDIX B: LEADING ORDER APPROXIMATION

The zero-th order functional is

Φ̃[θ] = Φ0[exp (νt△) θ]

= exp

(

−1

2

∫∫

dx′dx′′Q(x′, x′′)
1√
4πνt

∫

e−
(x′−y′)2

4νt θ(y′)dy′
1√
4πνt

∫

e−
(x′′−y′′)2

4νt θ(y′′)dy′′
)

= exp

(

− 1

8πνt

∫∫

dx′dx′′Q(x′, x′′)

∫

e−
(x′−y′)2

4νt θ(y′)dy′
∫

e−
(x′′−y′′)2

4νt θ(y′′)dy′′
)

. (B1)

It is straightforward to compute

δΦ̃

δθ(x)
= − 1

4πνt

∫∫

dx′dx′′Q(x′, x′′)e−
(x′−x)2

4νt

∫

e−
(x′′−y′′)2

4νt θ(y′′)dy′′ × Φ̃, (B2)

δ2Φ̃

δθ(x)2
= − 1

4πνt

∫∫

dx′dx′′Q(x′, x′′)e−
(x′−x)2

4νt
− (x′′−x)2

4νt × Φ̃

+

(

1

4πνt

∫∫

dx′dx′′Q(x′, x′′)e−
(x′−x)2

4νt

∫

e−
(x′′−y′′)2

4νt θ(y′′)dy′′
)2

× Φ̃, (B3)

∂

∂x

δ2Φ̃

δθ(x)2
= − 1

4πνt

∫∫

dx′dx′′Q(x′, x′′)
x′ + x′′ − 2x

2νt
e−

(x′−x)2

4νt
− (x′′−x)2

4νt × Φ̃

+ 2

(

1

4πνt

∫∫

dx′dx′′Q(x′, x′′)e−
(x′−x)2

4νt

∫

e−
(x′′−y′′)2

4νt θ(y′′)dy′′
)

×
(

1

4πνt

∫∫

dx′dx′′Q(x′, x′′)
x′ − x

2νt
e−

(x′−x)2

4νt

∫

e−
(x′′−y′′)2

4νt θ(y′′)dy′′
)

× Φ̃(B4)

Hence we find

∫

dxθ(x)
∂

∂x

δ2Φ̃

δθ(x)2
(t) =

−1

4πνt

∫∫∫

dxdx′dx′′θ(x)Q(x′, x′′)
x′ + x′′ − 2x

2νt
e−

(x′−x)2

4νt
− (x′′−x)2

4νt × Φ̃

+
2

(4πνt)2

∫

dx θ(x)

∫∫

dx′dx′′Q(x′, x′′)e−
(x′−x)2

4νt

∫

e−
(x′′−y′′)2

4νt θ(y′′)dy′′

×
∫∫

dx′dx′′Q(x′, x′′)
x′ − x

2νt
e−

(x′−x)2

4νt

∫

e−
(x′′−y′′)2

4νt θ(y′′)dy′′ × Φ̃

=
−1

4πνt

∫∫∫

dxdx′dx′′θ(x)Q(x′, x′′)
x′ + x′′ − 2x

2νt
e−

(x′−x)2

4νt
− (x′′−x)2

4νt × Φ0[e
νt△θ]

+
1

2πνt

∫

dxθ(x)

∫∫

dx′dx′′Q(x′, x′′)e−
(x′−x)2

4νt eνt△θ(x′′)

×
∫∫

dx′dx′′Q(x′, x′′)
x′ − x

2νt
e−

(x′−x)2

4νt eνt△θ(x′′)× Φ0[e
νt△θ],

which for convenience we may write in a compact form

= −Φ0[e
νt△θ]

∫

dxθ(x)
∂

∂x

{

eνt(△
′+△′′)Q(x′, x′′)−

(∫

dx′′eνt△
′

Q(x′, x′′) eνt△θ(x′′)

)2
}

.
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Here eνt(△
′+△′′)Q(x′, x′′) and eνt△

′

Q(x′, x′′) denote functions of x in the relevant arguments,

that is,

eνt(△
′+△′′)Q(x′, x′′) =

1

4πνt

∫∫

exp

(

−(y − x)2 + (z − x)2

4νt

)

Q(y, z)dydz,

eνt△
′

Q(x′, x′′) =
1√
4πνt

∫

exp

(

−(y − x)2

4νt

)

Q(y, x′′)dy.

Thus we find

GΦ̃ =
i

2

∫ t

0

dseν(t−s)D

∫

dxθ(x)
∂

∂x

δ2Φ̃

δθ(x)2
(s)

= − i

2
Φ0[e

νt△θ]

∫ t

0

ds

∫

dxeν(t−s)△θ(x)

× ∂

∂x

{

eνs(△
′+△′′)Q(x′, x′′)−

(∫

dx′′eνs△
′

Q(x′, x′′) eνt△θ(x′′)

)2
}

.

Spelling out more explicitly, we obtain (9).

APPENDIX C: DERIVATION OF THE ERROR ESTIMATE

We shall estimate

I ≡
∥

∥

∥

∥

∥

∫ t

0

ds

∫

eν(t−s)△ ∂θ

∂x

{

eνs(△
′+△′′)Q(x′, x′′)−

(∫

dx′′eνs△
′

Q(x′, x′′) eνt△θ(x′′)

)2
}

dx

∥

∥

∥

∥

∥

.

We first divide it in two parts to consider

I1 =

∫

eν(t−s)△ ∂θ

∂x
· eνs(△′+△′′)Q(x′, x′′)dx,

I2 =

∫

eν(t−s)△ ∂θ

∂x
·
(∫

eνs△
′

Q(x′, x′′) eνt△θ(x′′)dx′′
)2

dx.

By Hölder inequality

∫

|f(x)g(x)|dx ≤ ‖f‖Lp‖g‖Lq , for
1

p
+

1

q
= 1,

and an estimate for the heat-kernel, e.g. [72],

‖eνt△θ‖Lp ≤ 1

(4πνt)
1
2(

1
q
− 1

p)
‖θ‖Lq ,
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we bound I1 as

I1 ≤
C1

{ν(t− s)} 1
2(

1
q
− 1

p)(νs)
1
2(

1
u
− 1

q )

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥

Lq

‖‖Q(x, y)‖Lr(dx)‖Lu(dy),

where 1 ≤ q ≤ p ≤ ∞, 1 ≤ r ≤ q ≤ ∞, 1 ≤ u ≤ r ≤ ∞, 1
p
+ 1

q
= 1 and C1 is a non-

dimensional constant. Taking p = ∞, q = 1, r = u = 1 and noting
∫ t

0
ds√
s(t−s)

= π(<∞), we

find

I1 ≤
C

ν

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥

L1

‖Q(x, y)‖L1(R2),

where C(= πC1) is another constant. Similarly, we bound I2 as

I2 ≤
C2

{ν(t− s)} 1
2(

1
q
− 1

p)

1

(νs)
1
2(

1
r
− 1

2q )

1

(νt)
1
2(

1
w
− 1

v )

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥

Lq

‖‖Q(x, y)‖2Lr(dx)‖Lu(dy)‖θ‖2Lw ,

where 1 ≤ q ≤ p ≤ ∞, 1 ≤ r ≤ 2q ≤ ∞, 1 ≤ w ≤ v ≤ ∞, 1
p
+ 1

q
= 1, 1

u
+ 1

v
= 1 and C2 is a

constant. Choosing, for example r = u = 1, p = ∞, q = 1, v = ∞, w = ∞, we find

I2 ≤
C ′

ν

∥

∥

∥

∥

∂θ

∂x

∥

∥

∥

∥

L1

‖Q(x, y)‖2L1(R2)‖θ‖2L∞ ,

with C ′(= πC2). Combining those two results and writing C = max(C,C ′), we obtain (10).

It is readily checked that those bounds are non-dimensional noting the physical dimension

of θ is the same as that of ν for the 1D Burgers equation.

APPENDIX D: SELF-SIMILAR DECAY

In the case of forward self-similarity, we take the length scale as λ(t) =
√

2a(t+ t∗) to

write the Leray equation of the form

U
∂U

∂ξ
= ν

∂2U

∂ξ2
+ a

(

ξ
∂U

∂ξ
+ U

)

.

This can be exactly solved as follows.

Upon integration we find, after taking a constant to be zero,

dU

dξ
=

1

2ν
U(U − 2aξ).

By V = 1/U in this Bernoulli equation, we have

dV

dξ
= − 1

2ν
(1− 2aξV ),
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which is a linear inhomogeneous equation. Solving it we find

V (ξ) = eaξ
2/(2ν)

(

V (0)− 1

2ν

∫ ξ

0

e−aη2/(2ν)dη

)

or

U(ξ) =
e−aξ2/(2ν)

U(0)−1 − 1
2ν

∫ ξ

0
e−aη2/(2ν)dη

.

Note that by making U(0) small enough such that U(0) <
√

8aν
π
, we can make the denom-

inator to be non-zero for all ξ. This means that the particular self-similar solution is valid

for small initial data.

In passing we comment on backward self-similar solutions. By reversing the sign of a,

a possibility of blowup can be studied using backward self-similarity with the length-scale
√

2a(t∗ − t). (Of course, it is known there is no blowup.). In this case, the steady equation

is

U
∂U

∂ξ
+ a

(

ξ
∂U

∂ξ
+ U

)

= ν
∂2U

∂ξ2
,

whose smooth solution is U ≡ 0 only. The solution is nonetheless obtained as

U(ξ) =
eaξ

2/(2ν)

U(0)−1 − 1
2ν

∫ ξ

0
eaη2/(2ν)dη

.

Note that U(ξ) → 1
|ξ| as ξ → ±∞. More importantly, this has a singular point (a pole)

somewhere, say at ξ = ξ∗, at which

U(0)−1 −
∫ ξ∗

0

eaη
2/(2ν)dη = 0.

Hence, U(ξ) ∝ 1/(ξ − ξ∗) near there and is non-integrable U /∈ L1.
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