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Abstract 

High recoverable energy density (10 J cm-3) multilayers have been fabricated from 
lead-free 0.61BiFeO3-0.33(Ba0.8Sr0.2)TiO3-0.06La(Mg2/3Nb1/3)O3 ceramics. High 
breakdown strength > 730 kV cm-1 was achieved through the optimisation of multilayer 
processing to produce defect-free dielectric layers 7 µm thick. Excellent temperature, 
frequency, fatigue stability and fast charge-discharge speed were observed in the 
multilayer, critical for their potential use in power electronics. 
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Introduction 

Multilayer ceramic capacitors (MLCCs) are used for pulsed power electronics due to 
their fast charging-discharging rate and high-power density.[1-5] The energy density 
(W and Wrec) and energy conversion efficiency (η) for dielectric capacitors are:  

W = ∫ EdPPmax
0 ,                          (1) 

Wrec = ∫ EdPPmax
Prem

,                       (2) 

η = Wrec/W                                 (3) 

where P, Pmax and Prem are the polarization, maximum polarization and remanent 
polarisation. Thus, high Wrec can be obtained by both optimising breakdown strength 

(EBDS) and P (Pmax-Prem). For several decades, BaTiO3 (BT)-based MLCCs have been 
used as filters and de-couplers in electronic circuits. More recently, lead-based anti-
ferroelectrics (AFEs) have been used in commercial pulsed power applications but the 
search for lead-free equivalents is on-going and becoming increasingly important with 
the rise in manufacture of electrical vehicles, where power electronics are a critical part 
of the engine and battery management systems. For lead-based [6-13] and lead-free 
ceramics, [14-45] dopants are often used to induce a phase transition from ferroelectric 
(FE) to anti-ferroelectrics (AFE) and relaxor-ferroelectrics (RFE) states with promising 
lead free ceramics reported for: BT-based [23-25]; BiFeO3-BaTiO3 (BF-BT)-based; [26-
34] Na0.5Bi0.5TiO3 (NBT)-based; [35-38] and K0.5Na0.5NbO3(KNN)-based [39-42] solid 
solutions. These compositions not only show great potential for developing lead-free 
high energy density capacitors with low dissipation factor (df) but also exhibit 
considerably lower field induced strain compared to lead-based materials, [6-11] such 
as La doped Pb(Zr, Ti)O3 (PLZT), an important factor in minimising mechanical failure. 

In this study, we report a novel lead-free MLCC with high Wrec fabricated from 
0.61BiFeO3-0.33(Ba0.8Sr0.2)TiO3-0.06La(Mg2/3Nb1/3)O3 (BF-BST-LMN) ceramics which 
from previous studies has been reported to have high Wrec ~3.38 J cm-3 and η ~ 59% 

at 230 kV cm-1.[33]  Optimised multilayers with a dielectric layer thickness of 7 µm 
revealed greatly improved Wrec (~ 10 J cm-3) and η (~ 72%), principally due to a higher 

EBDS (730 kV cm-1). 

Experimental method 

0.61BiFeO3-0.33(Ba0.8Sr0.2)TiO3-0.06La(Mg2/3Nb1/3)O3 ceramics were fabricated using 
a conventional solid-state method. After ball-milling stoichiometric starting materials, 

mixed-powder was calcined at 800 °C for 4 h with 0.1 wt% MnO2 added before 

second milling. Then the calcined powder was sieved and ball-milled with binder, 
plasticizer and solvent to form a slurry for tape casting. Multilayers were fabricated 
using an MTI MSK-AFA-II tape caster with a single doctor blade, followed by screen 
printed (DEK 247) Pt electrodes onto the tape. The electrode layers were laminated 
with the inner Pt electrode offset and hot-pressed 30 mins at 80 °C. MLCCs were 
sintered at 920 °C for 4 h with binder burnout at 300 °C, followed by application of a 
terminal Au electrode at 850 °C for 2 h.  

The crystal structure of ceramic powder was studied using Bruker D2 phase X-ray 
diffractometer (XRD). Microstructural cross sections of MLCCs were examined using 
an FEI Inspect F50 scanning electron microscope (SEM) equipped with a 
backscattered electron (BSE) and energy dispersive X-ray (EDX) spectroscopy 
detector. 



Temperature-dependent dielectric permittivity and loss were examined using an 
Agilent 4184A precision LCR meter (Agilent Technologies Inc., Pala-Alto, CA) from 
room temperature (RT) to 500 °C at 1, 10, 100 and 250 kHz, respectively. Unipolar 
polarisation-electric field (P-E) loops of MLCCs were obtained using an aixACCT 
TF2000E ferroelectric tester at temperatures ranging from RT to 120 °C and 
frequencies ranging from 0.1 to 100 Hz. Charge-discharge behaviour of multlayers was 
measured using a PolyK 1801 (USA) machine. Multilayers were first charged using 
trek amplifier then the discharge energy was measured using a load resistor (10 kΩ) 
in series. An oscillator was used to collect the voltage which increases with electric 
field across the resistor with time. [26,27]  

Results and discussion 

The crystal structure of the BF-BST-LMN ceramic powder was examined using x-ray 
diffraction, Figure 1(a), which revealed a single perovskite phase without secondary 
peaks. A core-shell microstructure is observed under SEM in BSE mode, as illustrated 
in the inset of Figure 1(a), consistent with other reported BF-BT-based materials. [26, 

27, 32, 43-45] The temperature-dependent dielectric permittivity (r) and loss (tanδ) of 
BF-BST-LMN MLCCs at 1, 10, 100 and 250 kHz are presented in Figure 1(b). Similar 
to other reported BF-BT-based materials, including BF-BT-Bi(Zn2/3Nb1/3)O3, BF-BT-

Nd(Zr1/2Zn1/2)O3 and BF-BT-Nd(Mg2/3Nb1/3)O3,[27, 32] several anomalies in r were 
observed as a function of temperature, consistent with a core-shell microstructure due 
to chemical micro-segregation on slow-cooling. [26,27,32] BSE image, coupled with 
EDX line scan, of polished cross section of the MLCC are presented in Figure 1(c, d). 
The dielectric layer and electrode thickness was measured at 7 and 5 µm, respectively, 
with no evidence within the images of an interaction layer between ceramic and Pt. 

 

Figure 1. (a) XRD pattern of BF-BST-LMN ceramic powder; SEM microstructure of BF-BST-
LMN ceramics as inset. (b) Temperature dependent permittivity and loss for BF-BST-LMN 
MLCCs. (c) BSE image and (d) EDX element line scan of polished cross section of BF-BST-
LMN MLCCs. 

RT unipolar P-E loops of BF-BST-LMN MLCCs are shown in Figure 2(a). The EBDS for 
multilayers increased to 730 kV cm-1 compared with 230 kV cm-1 for bulk samples due 



to the fabrication of thinner and defect-free dielectric layers (7 µm).[7, 12] At the highest 
applied electric field, Pmax was  53 μC cm-2 and Prem ~ 7 μC, yielding a Wrec ~ 10 J cm-

3 with η ~ 72% at 730 kV cm-1 (Figure 2b). In situ temperature-dependent unipolar P-E 
loops of MLCCs were also obtained at 300 kV cm-1, as shown in Figure 2c. The energy 
storage properties (Wrec and η) as a function of temperature (20-120°C) are displayed 
in Figure 2d, revealing good temperature stability (<15%).  

 

Figure 2. (a) Unipolar P-E loops and (b) Calculated energy storage properties for BF-BST-LMN 
MLCCs at RT; (c) Temperature dependent unipolar P-E loops and (d) calculated energy storage 
properties for BF-BST-LMN MLCCs as function of temperature. 

Under application of the same electric field (300 kV cm-1), the frequency-dependent 
and cycle-dependent unipolar (Figure 3) P-E loops of MLCCs were evaluated in the 
frequency range of 0.5 Hz to 100 Hz and up to 104 cycles, respectively. Frequency 
independence (<10%) and fatigue-resistance (<5%) were evident.  

 

Figure 3. (a) Frequency-dependent unipolar P-E loops and (b) Calculated energy storage 
properties for BF-BST-LMN MLCCs as function of frequency. (c) AC cycling of unipolar P-E 
loops and (d) Calculated energy storage properties for BF-BST-LMN MLCCs as function of 
cycle number.  

The charge-discharge behavior of the multilayers was investigated under different 
electric fields, as presented in Figure 4. The discharge processes for all applied electric 
fields (up to 400 kV cm-1) complete within 10 μs, as shown in Figure 4a. The discharge 
time (τ0.9) is found to be 1.53 μs (Figure 4b), which is the time to discharge 90% of the 



total energy density (Figure 4b). The discharging energy density of multilayers as a 
function of electric field are displayed in Figure 4c, exhibiting a good linear relationship 
between the discharge energy density and the applied electric field, which is useful to 
the practical control application. The discharging power density of multilayers is 
calculated to be 2.2 MW cm-3 at 400 kV cm-1.  

 

Figure 4. (a) The discharge voltage curves of MLCCs as a function of time. (b) The discharge 
energy density curves of MLCCs as a function of time. (c) The discharge energy density of 
MLCCs as a function of electric field and (d) the discharge power density of MLCCs as a 
function of time. 

Compared with other reported lead-based/lead-free compounds (Figure 5), BF-BST-
LMN multilayers deliver one of the highest known Wrec (~ 10 J cm-3) with a fast τ0.9 

(~1.53 μs). [23, 24, 27, 32, 35, 46-48] 

 

Figure 5. A comparison of Wrec and maximum electric field values among the recently reported 
lead/lead-free MLCCs at room temperature. 



Conclusion 

Lead-free BF-BST-LMN multilayers were fabricated with dielectric and inner Pt 
electrode thicknesses of 7 μm and 5 μm, respectively. The multilayers exhibited one 
of the highest reported values of Wrec ~ 10 J cm-1 with η ~ 72 % at 730 kV cm-1. 

Furthermore, the MLCCs displayed good frequency stability from 0.5 Hz-100 Hz (<10%) 
and temperature stability from 20-120°C (<15%), fatigue-resistance up to 104 cycles 
(<5%) as well as a fast charge-discharge speed (τ0.9 ~1.53 μs) which are essential for 

practical applications.  
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