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Embedding distortion analysis in wavelet-domain watermarking

DEEPAYAN BHOWMIK, University of Stirling, United Kingdom

CHARITH ABHAYARATNE, University of Sheield, United Kingdom

Imperceptibility and robustness are two complementary fundamental requirements of any watermarking algorithm. Low

strength watermarking yields high imperceptibility, but exhibits poor robustness. High strength watermarking schemes

achieve good robustness but often infuse distortions resulting in poor visual quality in host image. This paper analyses the

embedding distortion for wavelet based watermarking schemes. We derive the relationship between distortion, measured in

mean square error (MSE), and the watermark embedding modiication and propose the linear proportionality between MSE

and the sum of energy of the selected wavelet coeicients for watermark embedding modiication. The initial proposition

assumes the orthonormality of discrete wavelet transform. It is further extended for non-orthonormal wavelet kernels using a

weighting parameter, that follows the energy conservation theorems in wavelet frames. The proposed analysis is veriied by

experimental results for both non-blind and blind watermarking schemes. Such a model is useful to ind the optimum input

parameters, including, the wavelet kernel, coeicient selection and subband choices for wavelet domain image watermarking.

CCS Concepts: · Security and privacy→ Digital rights management.
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1 INTRODUCTION

As digital technologies have shown a rapid growth within the last decade, content protection now plays a major
role within content management systems where digital watermarking provides a robust and maintainable solution
to enhance media security. The visual quality of host media, i.e., imperceptibility and robustness are widely
considered as the two main properties vital for digital watermarking systems. They are complimentary to each
other and hence challenging to attain the right balance between them. This paper proposes a model for estimating
embedding distortion due to use of various wavelet kernels in watermarking algorithms. The model will be useful
in designing new wavelet based watermarking algorithms with improved imperceptibility and robustness.
Frequency domain watermarking, more precisely wavelet-based watermarking, methodologies are highly

favoured in the current research era. The wavelet domain is also compliant within many image coding, e.g.,
JPEG2000 [43] and video coding, e.g., Motion JPEG2000, Motion-Compensated Embedded Zeroblock Coding
(MC-EZBC) [16], schemes, leading to smooth adaptability within modern coding frameworks. Due to the multi-
resolution decomposition and the property to retain spatial synchronisation, which are not provided by other
transforms (e.g., the Discrete Cosine Transform (DCT)), the Discrete Wavelet Transform (DWT) provides an ideal
choice for image watermarking [2, 6±8, 10, 13±15, 17, 22, 32, 36, 38±40, 49, 50] including algorithms developed for
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color image watermarking [5, 18, 35, 42]. It is observed that the color watermarking algorithms often transform
RGB to YCbCr color space and select Y component for watermark embedding (similar to gray scale watermarking).
In wavelet-based image watermarking, diferent approaches have been used as follows:

• Choosing coeicients in a speciic subband for embedding the watermark: e.g., embedding in high frequency
subbands for better imperceptibility [9, 22, 28, 33, 42]; embedding in low frequency subband to achieve
high robustness [49, 50] or the approaximation subband with the maximum variance [6, 8] and balancing
imperceptibility and robustness with all subbands spread spectrum embedding [17, 38].

• Using diferent wavelet kernels: e.g., Haar or other Daubechies family orthogonal wavelets [5, 9, 10, 28, 33, 49]
and biorthogonal wavelets [50].

• Optimising the host coeicient selection: e.g., choosing all coeicients in a subband [8, 9, 17]; using a threshold
based on their magnitude signiicance [22]; the just noticeable diference(JND) [42, 50]; a mask based on
the Human Visual System (HVS) model [6, 7, 9, 36]; a fusion rule-based mask for reining the selection
of host coeicients [10] and blind re-quantization of a coeicient with respect to a group of coeicients
within a given window [28, 33, 38, 49].

Though many independent algorithms are available in the literature, a gap, that requires a generalized
mathematical analysis to identify the relationship between distortion performance and various wavelet-based
watermarking parameters responsible for embedding distortion, was identiied. To the best knowledge of the
authors only handful of literature [23, 24] are available that attempted to address this issue, which, however, is
limited to their own algorithms. We derive a model to establish the relationship between embedding distortion
performance, in terms of mean square error (MSE) metric, and watermarking input parameters including wavelet
kernels, subband selection and coeicient selection. Previous work [13] indicated that other objective metrics
such as Structural Similarity Measure (SSIM) [46] or weighted PSNR (wPSNR) [34] capture watermark embedding
distortion measurement similar to MSE⁄PSNR. Therefore, in this work we restrict ourselves to MSE to model the
distortion as this is less complex and provides better insight in deriving the model. Such a model is useful to
ind the optimum input parameters, including, the wavelet kernel, coeicient selection and subband choices for
wavelet domain image⁄video watermarking. The main contribution of this paper is to deriving a generalized model
for distortion performance analysis of wavelet based watermarking algorithms. This is achieved by proposing

• Proposition 1: establishing the relationship between the noise power in the transform domain and the
input signal domain.

• Proposition 2: deriving direct proportionality between the distortion performance metrics and the input
parameters of a given wavelet based watermarking scheme for orthonormal wavelet bases, e.g., Haar,
Daubechies-4, etc., which conserves energy in the signal domain as well as in the transform domain.

• Proposition 3: extending the above for non-orthonormal bases, including bi-orthogonal and non-linear
wavelet kernels, to give a universal acceptance of the model.

The generalisation of our model is evaluated by itting all major wavelet-based watermarking schemes into
a common framework presented in [13]. Initial concepts and the results were reported earlier in the form of
conference publications [11, 12] while this paper discusses the proposed scheme in detail, introduces non-linear
kernels in the analysis and provides exhaustive performance evaluation. The scope of this work is strictly limited
to embedding distortion analysis and excludes design and development of new robust watermarking algorithm
that considers the derived model.

2 WAVELETS

Wavelet transforms represent a time domain signal in joint time-frequency domain. Various wavelet kernels,
available in the literature including orthonormal Haar, Daubechies; biorthogonal 5⁄3, 9⁄7 [37] and non-linear

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2019.
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wavelets [1, 3] with varying ilter lengths and complexity, decompose the signal and represent signal singularities
in diferent ways. In this subsection we revisited the set of wavelet kernels considered in this paper.

2.1 Ortho♪ormal

Orthonormal wavelet bases are one of most widely used and primary kernels that satisies conditions for
orthonormal basis and preserves energy between signal domain and transform domain. Traditionally a ilter
bank using convolution based approach is used to compute wavelet decomposition. This approach consists of
two ilter banks, one each for the analysis (forward transform) and the synthesis (inverse transform). During
the analysis, the input signal is passed through two separate channels, using a high pass ilter and a low pass
ilter followed by a down sampling operation by a factor of 2, in each channel. To reconstruct the signal data, the
transformed coeicients are irst interpolated by an up sampling operation with a factor of 2 and then convolved
with synthesis ilter banks. Daubechies [19] proposed a set of orthonormal bases of compactly supported wavelet
of varying ilter length and coeicients. In this paper we have chosen four representative orthonormal wavelet
kernels, i.e., Haar (HR), Daubechies length 4 (D4), 8 (D8) and 16 (D16) covering a representative range of shorter
and longer ilter length. The normalised coeicients for these ilters are available from [19].

2.2 No♪-ortho♪ormal

Non-orthonormal wavelets are those where the associated wavelet transform is invertible but not necessarily
orthonormal. This class includes bi-orthogonal and non-linear wavelets. Design of such wavelets usually allows
more degrees of freedom and has been popular in many imaging applications, e.g., bi-orthogonal 5⁄3 and 9⁄7
wavelet kernels are part of JPEG2000 image compression standard [43].

2.2.1 Bi-orthogonal. We have chosen two representative bi-orthogonal wavelet kernels 5⁄3 and 9⁄7 and imple-
mented using lifting based approach due to its lower complexity. The ilters are realised by decomposing the
signal into lifting steps by factoring its polyphase matrix using the Euclidean factoring algorithm [21]. Equations
for these popular wavelet kernels can be obtained from [4].

2.2.2 Non-linear morphological wavelets. Non-linear wavelets are obtained by replacing the linear operations,
such as weighted averaging, in lifting steps with non-linear operations. They can modify only the lifting step(s)
afecting the low pass sub band (known as update step) [27], only the lifting step(s) afecting the high pass
subbands (known as prediction step) [26] and the both types of lifting steps [3]. While orthonormal and bi-
orthogonal wavelets are well discussed in the literature, non-linear wavelets are not so. As the analysis presented
in this work calls upon understanding of vairous wavelet kernels, we briely discuss the design steps for two
morphological wavelet transforms used in this work: Morphological Haar (MH) and Median lifting on quincunx
sampling (MQ).

Morphological Haar Since non-linearities are introduced in the scaling function, we design the Morphological
Haar based on the 2D non-separable decomposition. We start with a 2D input signal a0 and its four 2D polyphase
components (a,b, c,d), mapped by an invertible splitting operator S2, i.e., (a,b, c,d) = S2(a0). The operator S2
forms a

(

2 0
0 2

)

sampling matrix and invertible mapping, called the lazy wavelet. The lazy wavelet is lifted to

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2019.
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Fig. 1. ui♪cu♪x sampli♪g: Let: E♪tries for predictio♪ & update liti♪g steps, Right: Subba♪ds ater two levels of decompositio♪.

morphological 2-D Haar using P3, P2, P1,U lifting as follows to obtain output subbands, a′, b ′, c ′ and d ′.

P3 : d ′
=

1

2
(d − (c + b − a)). (1)

P2 : c ′ = c − (a − d ′). (2)

P1 : b ′ = b − (a − d ′). (3)

U : a′ = 2[a +median(0, (b ′ − d ′), (c ′ − d ′), (b ′ + c ′))].
(4)

The inverse transform is obtained by reversing the order of operation and the operator of the lifting steps P3P2P1U .

Median lifting on quincunx samplingWe design 2D non-separable wavelet transforms by using the quincunx
sampling lattice with the corresponding sampling matrix D =

(

1 1
1 −1

)

. Its determinant is 2 and thereby results

in two polyphase components of the 2D signal each having dimensions equal to 1/
√
2 of the original signal

dimensions. We denote samples by x and y and we refer to their respective neighbours as x1,x2,x3 and y1,y2,y3
as shown in Fig. 1. The white and gray boxes represent samples from x and y polyphase components, respectively.
In this paper we are concerned with lifting steps of the form:

Prediction : y ′
= y −median(x ,x1,x2,x3), (5)

Update : x ′
= x +

1

2
median(y ′

,y ′
1,y

′
2,y

′
3). (6)

One level of decompositions results in two subimages whose dimensions are reduced by
√
2. The transform

steps are repeated on the low pass subimage (L). In order to comply with the four subband structure, the high
pass subimage (H ) in every odd numbered decomposition level is further decomposed into two subimages
whose dimensions are reduced by a factor 2 after two decompositions. Consequently, after every even numbered
decomposition every image is decomposed into four subimages with three details and one approximation image.
The right column of Fig. 1 shows the subimages after two levels of decompositions.

At this juncture, we deine wavelet related acronyms used later in describing the proposed model. The 2D
wavelet transform decomposes an image in frequency domain expressing coarse grain approximation (LL) of the
original signal and three ine grain orientated edge information at multiple resolutions. LH, HL and HH subbands
emphasise horizontal, vertical and diagonal contrasts within an image, respectively (refer Fig. 2), portraying
prominent edges in various orientations. These notations are used herein to refer respective subbands.

3 WATERMARK EMBEDDING SCHEMES

At this point, we describe the classical non-blind and blind categories of wavelet-based watermarking schemes that
are used in Section 4 and Section 5 for embedding distortion analysis. The forward DWT (FDWT) is applied on the
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(a) DWT illustration (b) LL1 (c) LH1 (d) HL1 (e) HH1

Fig. 2. A♪ example of multiresolutio♪ wavelet decompositio♪. (a) Illustratio♪ of two level DWT. (b)-(e) O♪e level 2-D

decompositio♪ of a♪ example image. (b), (c), (d) a♪d (e) represe♪t approximatio♪ (LL1), vertical (LH1), horizo♪tal (HL1) a♪d

diago♪al (HH1) subba♪ds, respectively. Wavelet coeficie♪ts o♪ly with absolute values above the 0.9 qua♪tile (largest 10%)

are show♪ (as i♪verted image) for high freque♪cy subba♪ds ((c)-(e)) highlighti♪g directio♪al se♪sitivity.

host image before watermark data is embedded within the selected subband coeicients. Once the watermark data
was embedded, the inverse DWT (IDWT) concludes the watermarking process. Without loosing the generality,
the embedding process can be expressed as

C ′(m,n) = C(m,n) + ∆(m,n), (7)

where C ′(m,n) is the modiied wavelet coeicient at (m,n) position, C(m,n) is the original value of the host
coeicient and ∆(m,n) is the amount of modiication due to watermark embedding. The extraction operation is
performed after the FDWT. The extracted watermark is compared to the original embedded sequence before an
authentication decision veriies the watermark presence. A wide variety of potential adversary attacks, including
compression and iltering, can occur in an attempt to distort or remove any embedded watermark data.
The performance of the watermark embedding, i.e., embedding distortion is measured by comparing the

watermarked image (I ′) with the original unmarked image (I ) and is calculated by various metrics: 1) mean square
error or peak signal to noise ratio (PSNR), 2) weighted PSNR (wPSNR) [34], 3) structural similarity measure
(SSIM) [46], 4) just noticeable diference (JND) [47] and 5) subjective quality measurement [31]. Among these the
irst is widely used due to it simplicity and low computation complexity. However, experiments suggest that
for most host images, if the PSNR is greater than 35dB, other objective measures, such as wPSNR and SSIM,
are highly correlated with the PSNR ⁄ MSE values [13]. Therefore in this work, we chose MSE as the distortion
measurement metric and derived relationships proposed in Section 4 and Section 5.

3.1 No♪-bli♪d Watermarki♪g

Magnitude-based multiplicative watermarking [7±9, 15, 25, 30, 41, 48] is a popular choice when using a non-blind
watermarking system, due to its simplicity. Wavelet coeicients are modiied based on the watermark strength
parameter, α , the magnitude of the original coeicient, C(m,n) and the watermark information,W (m,n). The
watermarked coeicients, C ′(m,n), are obtained as follows:

C ′(m,n) = C(m,n) + αW (m,n)C(m,n) = C(m,n)(1 + αW (m,n)). (8)

W (m,n) is derived from a pseudo-random binary sequence, b, using weighting parameters,W1 andW2 (where
W2 >W1), which are assigned as follows:

W (m,n) =
{

W2 if b = 1
W1 if b = 0.

(9)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2019.
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Fig. 3. Bli♪d qua♪tisatio♪-based coeficie♪t embeddi♪g.

To obtain the extracted watermark,W ′(m,n), Eq. (8) is rearranged as:

W ′(m,n) = C ′(m,n) −C(m,n)
αC(m,n) . (10)

Since the non-watermarked coeicients, C(m,n), are needed for comparison, this results in non-blind extraction.

A threshold limit of Tw =
W1 +W2

2
is used to determine the extracted binary watermark b ′ as follows:

b ′ =

{

1 ifW ′(m,n) ≥ Tw
0 ifW ′(m,n) < Tw .

(11)

3.2 Bli♪d Watermarki♪g

Quantization-based watermarking [28, 29, 33, 38, 44, 49] is a blind scheme which relies on modifying various
coeicients towards a speciic quantization step. As proposed in [49], the algorithm is based on modifying
the median coeicient towards the step size, δ , by using a running non-overlapping 3×1 window. The altered
coeicient must retain the median value of the three coeicients within the window, after the modiication. The
equation calculating δ is described as follows:

δ = α
(Cmin) + (Cmax )

2
, (12)

where Cmin and Cmax are the minimum and maximum coeicients, respectively. The median coeicient, Cmed ,
is quantised towards the nearest step, depending on the binary watermark, b. Quantisation-based watermark
embedding is shown in Fig. 3. The extracted watermark, b ′, for a given window position, is extracted by

b ′ =

[

Cmax −Cmed

δ

]

%2, (13)

where % denotes the modulo operator to detect an odd or even number and Cmed is the median coeicient value
within the 3×1 window.

3.3 Authe♪ticatio♪ of extracted watermarks

Authentication is performed by comparison of the extracted watermark with the original watermark information
and computing closeness between the two in a vector space. Common authentication methods are deined by
calculating the similarity correlation or Hamming distance, H , between the original embedded and extracted
watermark as follows:

H (b,b ′) = 1

N

∑

b ⊕ b ′, (14)

where N represents the length of the watermark sequence and ⊕ is the XOR logical operation between the
respective bits.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2019.
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4 EMBEDDING DISTORTION ANALYSIS FOR ORTHONORMAL BASES

4.1 Prelimi♪aries

The embedding distortion performance is measured by MSE, which can be deined as follows:

Definition 1. The Mean Square Error (MSE) or average noise power in pixel domain between original image I

and watermarked image I ′ is deined by:

MSE =
1

N ×M

N−1
∑

m=0

M−1
∑

n=0

(I (m,n) − I ′(m,n))2, (15)

whereM and N are the image dimension andm and n indicate each pixel position.

For simplicity, during the derivation of the model often we shall refer 1D signals which is then inferred to
2D image signals in the following text. In order to formulate the model we show the transformation of noise
energy from frequency domain to the signal domain using Parseval’s equality. In Parseval's equality, the energy is
conserved between an input signal and the transform domain coeicient in the case of an orthonormal ilter bank
wavelet base [45]. Assuming the input signal x[n] with the length of n ∈ Z and the corresponding transformed
domain coeicients of y[k] where k ∈ Z, according to energy conservation theorem,

∥x ∥2 = ∥y∥2. (16)

4.2 The model

Proposition 1. Sum of the noise power in the transform domain is equal to sum of the noise power in the input

signal for orthonormal transforms. If the input signal noise is deined by ∆x[n] and the noise in transform domain is

∆y[k] then,
∑

n

|∆x[n]|2 =
∑

k

|∆y[k]|2, (17)

where n ∈ Z is the length of the input signal and k ∈ Z is the length in the transform domain, respectively.

Proof. Assuming ∆y is the noise introduced in wavelet domain and ∆x is the modiied signal after the inverse
transform, we can deine the relationship between the noise in the wavelet coeicient and the noise in the
modiied signal using the following equations.

(

xe (z) + ∆xe (z)
xo(z) + ∆xo(z)

)

=

(

h′
e (z) h′

o(z)
д′e (z) д′o(z)

) (

ye (z) + ∆ye (z)
yo(z) + ∆yo(z)

)

. (18)

where h′(z) represents the low pass ilter coeicients and д′(z) is the high pass ilter coeicients and the subscripts
e and o denote even and odd indexed terms, respectively.

Using the Linearity property of the Z -transform of the ilter coeicients and signals in the polyphase matrix
one can write the polyphase matrix form of the noise in the output signal:

(

∆xe (z)
∆xo(z)

)

=

(

h′
e (z) h′

o(z)
д′e (z) д′o(z)

) (

∆ye (z)
∆yo(z)

)

. (19)

Recalling the energy conservation in Eq. (16) and as stated in Eq. (19) we can conclude that
∑

|∆xe |2 +
∑

|∆xo |2 =
∑

|∆ye |2 +
∑

|∆yo |2 ,
∑

n

|∆x[n]|2 =
∑

k

|∆y[k]|2. (20)

This proves Proposition 1 (detailed derivation of this is proof can be found in Appendix A). □

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2019.
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Using the generalized framework, the Eq. (20) can be applied to build the relationship between the modiication
energy in the coeicient domain to embed the watermark and the distortion performance metrics. In this model
we made propositions for two diferent categories of embedding schemes, discussed in Proposition 2.

Proposition 2. In a wavelet based watermarking scheme, mean square error (MSE) of the watermarked image is

directly proportional to the sum of energy of the modiication values of selected wavelet coeicients. The modiication

value itself is a function of the coeicients and therefore we propose two diferent cases based on the categorization.

Case A: Non blind model. For the magnitude alteration based embedding method (non blind algorithm), the

modiication is a function of the selected coeicient to be watermarked and the relationship between (MSE) and the

selected coeicient (Cm,n) is expressed as:

MSE ∝
∑

| f (Cm,n)|2. (21)

Case B. Blind model. For the re-quantization based method (blind algorithm), the modiication is a function of the

neighboring wavelet coeicients of the selected median coeicient to be watermarked and the relationship between

MSE and the wavelet coeicients Cmin and Cmax is expressed as:

MSE ∝
∑

| f (Cmin ,Cmax )|2. (22)

Proof. In a wavelet based watermark embedding scheme the watermark information is inserted by modifying
the wavelet coeicients. This watermark insertion can be considered as introducing noise in the transform
domain. Hence the sum of the energy of the modiication value due to watermark embedding in the wavelet
domain is equal to the sum of the noise energy in the transform domain as stated in Proposition 1. From Eq. (7)
and Eq. (17), the energy sum of the modiication value ∆k can be deined as:

∑

k

|∆k |2 =
∑

k

|∆y[k]|2. (23)

Similarly, the pixel domain distortion performance metrics which is represented by MSE is considered as the
noise error created in the signal due to the noise in wavelet domain. Therefore, the sum of the noise energy in
the input signal is equal to the sum of the noise error energy MSE in the pixel domain:

MSE =
∑

n

|∆x[n]|2. (24)

Now the relationship between the distortion performance metrics MSE of the watermarked image and the
coeicient modiication value which is normally a function of the selected wavelet coeicients can be decided
using the Proposition 1. Thus from Eq. (23) and Eq. (24) we can write:

MSE.(M × N ) =
∑

m,n

|∆m,n |2, (25)

whereM and N are the image dimensions. Hence for any watermarked image, the average noise power MSE is
proportional to the sum of the energy of the modiication values of the selected wavelet coeicients:

MSE ∝
∑

m,n

|∆m,n |2. (26)

Now with the help of the categorization in the generalized form of the popular wavelet based watermarking
schemes as discussed in Section 3, a relationship is established between the error energy of the watermarked
image and the selected wavelet coeicient energy of the host image. For a magnitude alteration based algorithm,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2019.
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which is a category of non blind watermarking algorithm, the mean square error MSE is directly proportional to
the sum of the energy of the modiication value ∆ which is a function of wavelet coeicient value as stated below:

MSE ∝
∑

| f (Cm,n)|2. (27)

Similarly for the re-quantization based method (blind watermarking) the mean square error depends on the
neighboring wavelet coeicient values. In this case the modiication energy |∆m,n |2 hold an inequality due the
modiication range −δ ≤ ∆m,n ≤ δ :

|∆m,n |2 ≤ |δ |2. (28)

Therefore the upper bound of the mean square error MSE is deined by:

MSE ∝
∑

| f (Cmin ,Cmax )|2. (29)

This proves Proposition 2. □

4.2.1 An example of non blind model. Considering a speciic case of the non blind algorithm in [30] the modiica-
tion value ∆ is a direct function of wavelet coeicient (∆m,n = αCm,nWm,n ). Hence Eq. (27) can be modiied and
the MSE can be expressed as:

MSE ∝
l

∑

k=1

|C(k)|2, (30)

where C(k) is the selected coeicients to be watermarked and l is the number of such selected coeicients.

4.2.2 An example of blind embedding model. In an blind embedding algorithm suggested in [49], the quantization
step δ is deined as:

δ = γ
Cmax +Cmin

2
, (31)

where γ is the user deined watermark weighting factor. As the modiication value ∆ depends on δ , with reference
to Eq. (29), the relationship between the maximum limit of MSE and wavelet energy is deined by the following
equation:

MSE ∝
∑

k

(C(k)max +C(k)min)2, (32)

where C(k)max and C(k)min are the neighborhood coeicients of the median value and k is the number of such
selected median value.

5 EMBEDDING DISTORTION ANALYSIS FOR NON-ORTHONORMAL WAVELET BASES

5.1 Prelimi♪aries

Recalling Parseval’s Equality, Eq. (16) is true for orthonormal transforms where energy is conserved between
transforms. On the contrary, non-orthonormal wavelets such as biorthogonal wavelets do not hold conservation
of energy. However for a stable expansion, the transform domain coeicients have to satisfy the Eq. (33) [45].

A
∑

k

|y[k]|2 ≤ ∥x ∥2 ≤ B
∑

k

|y[k]|2, (33)

where A and B are the orthonormality correction factor. A detailed derivation of this is available from [20].
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5.2 The model

Based on the discussed propositions and the deinitions we shall build the extended model and make the new
propositions. As suggested in Eq. (33), for a non-orthonormal wavelet base an orthonormality correction factor is
required and we shall call this as a weighting parameterWt which is deined as follows:

Wt =
∥x ∥2

∑

k |y[k]|2
, (34)

where x and y is the input signal and the transform domain coeicients, respectively.
Therefore at this point we can extend Proposition 1 to a more generalized form. In a polyphase decomposition

we use diferent low pass and high pass ilter banks. Hence at each of the diferent transform points, we
receive diferent weighting parametersW

д
t andW h

t , corresponding to high or low pass ilters, respectively. Now
the Proposition 1 can be extended as follows, accommodating the weighting parameter for non-orthonormal
transforms:

∑

(|∆xe |2 + |∆xo |2) =W д
t

∑

(|∆ye |2 + |∆yo |2) +W h
t

∑

(|∆ye |2 + |∆yo |2),
∑

n

|∆x[n]|2 =W д
t

∑

(|∆ye |2 + |∆yo |2) +W h
t

∑

(|∆ye |2 + |∆yo |2). (35)

Now using the generalized framework, Eq. (35) can be applied to build the relationship between the modiication
energy in the coeicient domain to embed the watermark and the distortion performance metrics for orthonormal
as well as non-orthonormal wavelet bases.

Proposition 3. In a wavelet based watermarking scheme, the mean square error (MSE) of the watermarked

image is directly proportional to the weighted sum of the energy of the modiication values of the selected wavelet

coeicients.

MSE ∝W Θϒ

t

∑

|∆m,n |)|2, (36)

whereWt is the weighting parameter at each subband and Θ represents the subband number at ϒ decomposition level.

Proof. In order to prove this proposition, we recall Eq. (23) and Eq. (24) to combine them with Eq. (35) and
the combined form can be written as:

MSE(N ×M) =
∑

n

|∆x[n]|2,

=W
д
t

∑

n

|∆y[n]|2 +W h
t

∑

n

|∆y[n]|2,

=W
д
t

∑

m,n

|∆m,n |2 +W h
t

∑

m,n

|∆m,n |2. (37)

Hence for any watermarked image, the average noise power MSE is proportional to the sum of the weighted
energy of the modiication values of the selected wavelet coeicients:

MSE ∝W
д
t

∑

m,n

|∆m,n |2 +W h
t

∑

m,n

|∆m,n |2. (38)

Now in the case of 2-D wavelet decompositions, the wavelet kernel transfer function, for each subband at
each decomposition level are diferent and so that the weighting parameters are. Hence the ∆ in Eq. (38) are
associated with a corresponding weighting parameter for each subband at each decomposition level. We deine
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the weighting parameter asW Θϒ
t at each subband and Θ represents the subband number at ϒ decomposition level

and therefore Eq. (38) can be re-written as:

MSE ∝W Θϒ

t

∑

|∆m,n |)|2. (39)

This proves Proposition 3. □

Therefore, using Eq. (39), the Eq. (21) and Eq. (22) can be extended for non blind and blind model to Eq. (40)
and Eq. (41), respectively, as follows:

MSE ∝
∑

W Θϒ

t | f (Cm,n)|2. (40)

MSE ∝
∑

W Θϒ

t | f (Cmin ,Cmax )|2. (41)

Hence the above equation can universally used for various wavelet kernels, where for orthonormal wavelet
kernels the value of the weighting parameters are equal to unity. For non-orthonormal wavelet kernel, diferent
weighting parameter values are suggested in next section for diferent subbands at each decomposition level.

5.3 Calculatio♪ of the weighti♪g parameters

The weighting parameters are calculated for each subband at each decomposition level for various wavelet
kernels. We have done a three level decomposition and calculated the weighting parameter value for each of
the ten subbands. A set of diferent non-orthonormal wavelet kernels including bi-orthogonal 5⁄3 and 9⁄7, are
chosen for the experimental simulations. Although the propositions made here assumed Linearity property of
wavelet kernels, we have experimentally simulated and observe the similar proposition on non-linear wavelets,
such as, Morphological Haar and Quincunx domain Morphological wavelets (described in Section 2.2.2). While
calculating the weighting parameters, we have considered the energy ratio for each subband one at a time while
keeping other subband values to zero in Eq. (42).

W Θϒ

t =

∥x ∥2
∑ |yΘϒ |2 , (42)

whereW Θϒ
t is the weighting parameter at Θ subband at ϒ decomposition level, yΘϒ is the coeicient value at

Θ subband at ϒ decomposition level and x is the output pixel values after the inverse wavelet transform. The
weighting parameters are calculated for the experimental image set and generalized by averaging them. It is
observed that these parameters are image independent. The corresponding weighting parameters for diferent
subbands at each decomposition levels are calculated and shown TABLE 1 along with the error. The errors
presented here display accuracy up to the 95% conidence interval.

6 EXPERIMENTAL RESULTS AND DISCUSSION

This section describes the extensive experimental results and analysis in support of proposed distortion analysis
models. Firstly we provided details of experimental setup and parameters followed by results and discussions
for orthonormal and non-orthonormal cases, respectively. It is to be noted that the scope of this work is strictly
limited to embedding distortion analysis. Design, development of new watermarking algorithms that consider
the derived model and associated robustness results are outside the scope of this paper and are planned as future
work. Additionally, to our best knowledge of the authors embedding distortion analysis proposed in this work is
unique and due to lack of any other comparable study, it is not possible to compare our experimental outcome
with other works. Existing works generally measure the distortion to evaluate the performance of their methods.
In that context we consider the results without the proposed model as the base line and show improvements
when the model was applied.
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9⁄7 5⁄3 MH MQ

LL3 1.00 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 0.98 ± 0.01
LH3 1.37 ± 0.08 0.57 ± 0.03 1.00 ± 0.00 0.15 ± 0.01
HL3 1.13 ± 0.02 0.57 ± 0.03 1.00 ± 0.00 0.17 ± 0.00
HH3 1.31 ± 0.06 0.53 ± 0.02 1.00 ± 0.00 0.12 ± 0.00

LL2 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.98 ± 0.00
LH2 1.22 ± 0.06 0.69 ± 0.03 1.00 ± 0.00 0.31 ± 0.01
HL2 1.07 ± 0.03 0.74 ± 0.04 1.00 ± 0.00 0.52 ± 0.00
HH2 1.17 ± 0.05 0.81 ± 0.03 1.01 ± 0.00 0.41 ± 0.01

LL1 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
LH1 1.22 ± 0.04 1.31 ± 0.03 1.00 ± 0.00 0.94 ± 0.02
HL1 1.09 ± 0.02 1.31 ± 0.03 1.00 ± 0.00 1.97 ± 0.03
HH1 1.34 ± 0.04 2.43 ± 0.08 1.02 ± 0.00 1.64 ± 0.05

Table 1. Weighti♪g parameter values of each subba♪d at each decompositio♪ level for various ♪o♪-ortho♪ormal wavelets.

6.1 Experime♪tal setup

In order to obtain consistent results, a set of 20 images including standard test images and images from the
Kodak image test set1 along with a 64 × 64 binary logo were used in all experiments. Our previous experiments
suggest that type of logo has negligible impact on the watermarking distortion [13] and therefore choice of a
logo has no impact in the proposed work. The sum of the energy of the selected wavelet coeicients and the
MSE of the watermarked image have been calculated for the test images with a combination of diferent input
parameters. As the wavelet coeicients varies greatly in diferent subbands we have considered the performances
of all subbands separately after a 3-level wavelet decomposition. After three level of wavelet decompositions, ten
subbands are created, such as, LL3, HL3, LH3 and HH3 at 3rd decomposition level, HL2, LH2 and HH2 at 2nd
decomposition level and HL1, LH1 and HH1 at 1st decomposition level. Also a set of diferent wavelet kernels
having various ilter lengths are selected to perform the simulations. In order to verify our proposed model,
we have simulated and studied the performance of diferent wavelet kernels such as Haar (HR), Daubechies-4
(D4), Daubechies-8 (D8) and Daubechies-16 (D16) for orthonormal and bi-orthogonal 9⁄7, 5⁄3 and non-linear
Morphological Haar (MH) and Quincunx domain Morphological wavelets (MQ) for non-orthonomal models,
respectively. Two diferent sets of results are obtained for each non blind and blind model, and displayed to verify
the efects of diferent input parameters which are responsible for embedding distortion performance. These two
sets of experimental arrangements and resulting plots are discussed separately in the subsections below.

6.2 Ortho♪ormal cases

The simulations of the proposed embedding distortion model for orthonormal wavelet kernels are performed
using the experimental set up above. We have used the test image set, with three level wavelet decomposition. We
have simulated and studied the performance of four diferent wavelet kernels such as Haar (HR), Daubechies-4
(D4), Daubechies-8 (D8) and Daubechies-16 (D16). Details of non blind and blind models are described below.

6.2.1 Non blind model. In experiment Set 1, we have considered the non blind type watermark embedding model
as described in Section 4.2.1. The sum of energy of the selected wavelet coeicients to be modiied and MSE of

1http:⁄⁄r0k.us⁄graphics⁄kodak⁄
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Non blind model Blind model

HR D4 D8 D16 HR D4 D8 D16

LL3 0.81 0.81 0.81 0.81 0.66 0.68 0.68 0.73
LH3 0.93 0.94 0.96 0.97 0.78 0.68 0.61 0.58
HL3 0.98 0.99 0.99 0.99 0.78 0.92 0.94 0.97
HH3 0.96 0.97 0.98 0.98 0.82 0.81 0.73 0.72

LH2 0.98 0.98 0.99 0.99 0.80 0.82 0.75 0.81
HL2 0.99 0.99 0.99 0.99 0.92 0.92 0.94 0.97
HH2 0.99 0.99 0.99 0.99 0.83 0.80 0.85 0.89

LH1 0.99 0.99 0.99 0.99 0.89 0.90 0.89 0.90
HL1 0.99 0.99 0.99 0.99 0.84 0.90 0.96 0.94
HH1 0.99 0.99 0.99 0.99 0.90 0.91 0.93 0.96

Table 2. Correlatio♪ coeficie♪t values betwee♪ sum of e♪ergy a♪d the MSE for difere♪t wavelet ker♪el i♪ various subba♪ds.

the watermarked image have been calculated using α = 0.5 and the binary watermark logo for each selected
method. The logo was repeatedly embedded on all coeicients in a selected subband making sure we measure the
embedding noise uniformly. We have used various wavelet kernels and observed the results for each selected
subbands. The correlation coeicients are also calculated and presented in TABLE 2.

In another representation a set of graphs are plotted in Fig. 4(a) to present the average values of the MSE and
the sum of energy for the test image set for four diferent wavelet kernels. The error bars denote the accuracy up
to the 95% conidence interval. For display purposes the sum of energy values were scaled, so that they can be
shown on the same plot for comparing the trend.
In the experiment Set 2, the performance for ten diferent subbands are plotted for each wavelet kernel in a

similar fashion as mentioned in experiment Set 1 in order to observe the trend. The results are shown in Fig. 5(a).
As earlier, a 95% conidence interval is considered which is denoted by the error bars and the LL3 values are
scaled suitably in all cases to observe the trends.

6.2.2 Blind model. We have conducted experimental simulations for the blind model as described in Section 4.2.2.
A similar set of experimental set up is followed as in non blind model with γ = 0.04 and 0.2 for LL3 subband and
other high frequency subbands, respectively. The correlation coeicients, average pattern graphs for various
wavelet kernels and ten diferent subbands are presented in TABLE 2, Fig. 4(a) and Fig. 5(b), respectively.

The simulation results show a strong correlation between MSE of the watermarked image and the energy sum
of the selected wavelet coeicients to be modiied. It is observed that for the non blind model, the correlation
coeicient value is more than 0.80 and more than 0.66 in the case of blind model, for diferent wavelet kernels and
various selected subbands. On the other hand, a similar graph patterns are observed in Fig. 4 and Fig. 5, which
show the proportionality trend between MSE and the energy sum as proposed in the model. Lower correlation
coeicients are observed for blind model due to the reason that the proportionality relationship only deines the
upper bound in Eq. (29) and Eq. (32).

6.3 No♪-ortho♪omral cases

The simulations of the proposed embedding distortion model for non-orthonormal wavelet kernels are performed
using a similar set up as used in Section 6.2 for orthonormal wavelets. We have used the same test image set,
with three level wavelet decomposition. Four diferent non-orthonormal wavelet kernels, namely, bi-orthogonal
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Fig. 4. Watermark embeddi♪g performa♪ce graph for difere♪t subba♪ds. Four difere♪t wavelet ker♪els are compared: 1. HR,

2. D4, 3. D8 a♪d 4. D16. Both ♪o♪-bli♪d a♪d bli♪d methods are show♪ i♪ first four a♪d i♪ last four figures, respectively.

9⁄7 and 5⁄3 and non-linear Morphological Haar (MH) and Quincunx domain Morphological wavelets (MQ), are
simulated and studied here. For each simulations, irst, results are shown without considering the weighting
parameters (W Θϒ

t ) and then the corresponding results using weighting parameters from TABLE 1.

6.3.1 Non blind model. The experimental simulations for non blind model as described in Eq. (40) is performed
and the correlation coeicients are calculated and represented in TABLE 3. The average values of the MSE and
the sum of energy are shown in Fig. 6. Row 1 and row 2 represent the results without and with considering the
weighting parameter, while calculating the energy sum, respectively. The error bars denote the accuracy up to
the 95% conidence interval. For display purposes the sum of energy value was scaled, so that they can be shown
on the same plot for comparing the trend.

In the other experiment set the subbands are compared and the results are shown in Fig. 7. Here row 1, row 2

and row 3 represent the MSE, energy sum without and with weighting parameters, respectively. As earlier the
LL3 values are scaled suitably in all cases to observe the trends.
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Fig. 5. Watermark embeddi♪g performa♪ce graph for various wavelets i♪ difere♪t subba♪d. Both ♪o♪-bli♪d a♪d bli♪d

methods are show♪ i♪ first four a♪d i♪ last four figures, respectively.

6.3.2 Blind model. A similar experimental set, as in non blind model, is used for the blind model for non-
orthonormal wavelet kernels as described in Eq. (41). The correlation coeicients, average pattern graphs for
various wavelet kernels and ten diferent subbands are presented in TABLE 3, Fig. 8 and Fig. 9, respectively,
without and with consideration of the weighting parameters. While most of the kernels show good correlations,
there are occasional outliers including value of 5⁄3 kernel for LH3 subband in the blind model. This is due to the
non-linear nature of the blind embedding algorithm (refer Section 3.2) when the model is partially efective.

It is observed that bi-orthogonal wavelets strongly support the propositions, whereas an occasional deviation
is noticed for MH and MQ wavelet kernels due its non-linear activity within the transform. However, the general
behavioural pattern is maintained in all four non-orthonormal wavelets, ensures the propositions' realization in
embedding distortion performance of the generalized watermarking schemes.
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Non blind model Blind model

9⁄7 5⁄3 MH MQ 9⁄7 5⁄3 MH MQ

LL3 0.80 0.81 0.81 0.81 0.77 0.82 0.43 0.78
LH3 0.95 0.90 0.93 0.97 0.78 0.51 0.73 0.86
HL3 0.99 0.97 0.98 0.95 0.96 0.94 0.73 0.92
HH3 0.95 0.94 0.95 0.96 0.80 0.84 0.69 0.83

LH2 0.97 0.97 0.98 0.99 0.81 0.81 0.70 0.94
HL2 0.99 0.99 0.99 0.99 0.96 0.97 0.90 0.86
HH2 0.99 0.99 0.99 0.98 0.89 0.88 0.84 0.93

LH1 0.99 0.99 0.99 0.97 0.88 0.87 0.90 0.89
HL1 0.97 0.97 0.98 0.99 0.75 0.91 0.91 0.95
HH1 0.99 0.99 0.99 0.99 0.95 0.89 0.88 0.94

Table 3. Correlatio♪ coeficie♪t values betwee♪ sum of e♪ergy a♪d the MSE for difere♪t wavelet ker♪el i♪ various subba♪ds.

6.4 Discussio♪s

Our experiments shows that the proposed hypothesis of a universal embedding distortion model for wavelet
based watermarking algorithms has strong correlations between sum of energy and MSE for orthonormal and
non-orthonormal wavelet kernels. During the experiments we also noted our observations on the inluence of
the chosen logo as well as performance variation in case of non blind and blind algorithms as discussed below.
In all experiments a 64 × 64 binary logo were used. In case of non blind algorithms the logo was repeatedly

embedded on all coeicients in a selected subband for consistent and uniform measurement of the embedding
noise. This is also true for the blind watermarking scheme where number of coeicients to be embedded are
ixed (one in every 3 × 3 window) to size of the host image not the logo. For this reason we note that the size of
the watermark or logo does not have an impact on the result obtained. Additionally, our previous experiments
suggest that type of logo has negligible impact on the watermarking distortion [13] and therefore choice of a
logo has ininitesimal or no impact in this work.
We also observed diferences in distortion performance model for non blind model which has stronger

correlation compared to the blind model, i.e., non-blind watermarking schemes follow the model more accurately
compared to the blind algorithms. This is largely due to the fact non-blind embedding methods are linear while the
blind algorithms rely on a non-linear median operation in choosing the embedding coeicients (refer Section 3.2).
Our propositions considered this fact and appropriately described the proportionality in Eq. (27) for non-blind
algorithms but proposed upper bounds for blind scheme as referred in Eq. (28) and Eq. (29). Therefore the blind
models only provide an upper limit to MSE.
The authors believe that the proposed model will be useful in designing new wavelet based watermarking

algorithms with improved imperceptibility and robustness. This work will help the algorithmic designer to
understand the impact of various input parameters, including, wavelet kernels, coeicient selection, subband
choices or embedding methodology on embedding distortion. Tuning of these parameter can help in improving
algorithmic robustness. For example, bi-orthogonal 5⁄3 and non-linear quincunx kernel has lower weighting
parameters (refer TABLE 1) which is an indication that for the same watermarking strength the distortion
will be lower if one chooses these kernels compared to other wavelets, e.g., orthonormal. In other words for
similar MSE⁄PSNR, choice of these wavelet kernel will improve the robustness. Similarly, one can optimise
other parameters based on the inal application. This manuscript concentrates only on proposing the embedding
distortion models and considers designing robust watermarking algorithm that uses this model as future work.
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7 CONCLUSIONS

A universal embedding distortion performance model is presented in this paper for wavelet based watermark-
ing schemes. First we have proposed models for orthonormal wavelet bases, which is then extended to non-
orthonormal wavelet kernels such as biorthogonal and non-linear wavelets. The current model suggests that the
MSE of the watermarked image is directly proportional to the weighted sum of energy of the modiication values
of the selected wavelet coeicients and this proposition is valid for orthonormal as well as non-orthonormal
wavelet kernels. In the case of the non-orthonormal wavelet bases a weighting parameter is introduced and
it is computed emperically for diferent non-orthonormal wavelet bases whereas in the case of orthonormal
wavelets, these weighting parameters are set to unity. This universal model is veriied by extensive experimental
simulations with a wide range of wavelet kernels. Such a model is useful to optimize the input parameters, i.e.,
wavelet kernel or subband selection or the host coeicient selection in wavelet based watermarking schemes.
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A APPENDIX: PROOF OF PROPOSITION 1

Proof. Discrete wavelet transforms can be realized with a ilter bank or lifting scheme based factoring. In
both the cases the wavelet decomposition and the reconstruction can be represented by a polyphase matrix [21].
The inverse DWT can be deined by a synthesis ilter bank using the polyphase matrix

M ′(z) =
(

h′
e (z) h′

o(z)
д′e (z) д′o(z)

)

, (43)

where h′(z) represents the low pass ilter coeicients and д′(z) is the high pass ilter coeicients and the subscripts
e and o denote even and odd indexed terms, respectively. Now the transform domain coeicienty can be re-mapped
into input signal x as bellow:

(

xe (z)
xo(z)

)

=

(

h′
e (z) h′

o(z)
д′e (z) д′o(z)

) (

ye (z)
yo(z)

)

. (44)

Assuming ∆y is the noise introduced in wavelet domain and ∆x is the modiied signal after the inverse
transform, we can deine the relationship between the noise in the wavelet coeicient and the noise in the
modiied signal using the following equations. From Eq. (44) we can write

(

xe (z) + ∆xe (z)
xo(z) + ∆xo(z)

)

=

(

h′
e (z) h′

o(z)
д′e (z) д′o(z)

) (

ye (z) + ∆ye (z)
yo(z) + ∆yo(z)

)

. (45)

From Eq. (44) and Eq. (45) using the Linearity property of the Z -transform of the ilter coeicients and signals
in the polyphase matrix we can get,

xe (z) + ∆xe (z) = h′
e (z)(ye (z) + ∆ye (z)) + h′

o(z)(yo(z) + ∆yo(z)),
h′
e (z)ye (z) + h′

o(z)yo(z) + ∆xe (z) = h′
e (z)ye (z) + h′

e (z)∆ye (z) + h′
o(z)yo(z) + h′

o(z)∆yo(z),
∆xe (z) = h′

e (z)∆ye (z) + h′
o(z)∆yo(z). (46)

Similarly ∆xo(z) can be obtained and written as

∆xo(z) = д′e (z)∆ye (z) + д′o(z)∆yo(z). (47)

Combining Eq. (46) and Eq. (47), inally we can write the polyphase matrix form of the noise in the output signal:
(

∆xe (z)
∆xo(z)

)

=

(

h′
e (z) h′

o(z)
д′e (z) д′o(z)

) (

∆ye (z)
∆yo(z)

)

. (48)

Recalling the energy conservation as stated in Eq. (48) we can conclude that
∑

|∆xe |2 +
∑

|∆xo |2 =
∑

|∆ye |2 +
∑

|∆yo |2 ,
∑

n

|∆x[n]|2 =
∑

k

|∆y[k]|2. (49)

This proves Proposition 1. □
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Fig. 6. Watermark embeddi♪g (♪o♪ bli♪d) performa♪ce graph for difere♪t subba♪ds. Four difere♪t wavelet ker♪els used

here: 1. 9⁄7, 2. 5⁄3, 3. MH a♪d 4. MQ. Subba♪ds are show♪ top to botom for LL3, HL3, LH3, HH3, respectively. Column 1 a♪d

column 2 represe♪t the results without a♪d with co♪sideri♪g the weighti♪g parameter, while calculati♪g the e♪ergy sum,

respectively.
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Fig. 7. Watermark embeddi♪g (♪o♪ bli♪d) performa♪ce graph for various wavelets i♪ difere♪t subba♪d. Wavelet ker♪els are

show♪ top to botom as 1. 9⁄7, 2. 5⁄3, 3. MH a♪d 4. MQ, respectively. Column 1, column 2 a♪d column 3 represe♪t the MSE,

e♪ergy sum without a♪d with weighti♪g parameters, respectively.
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Fig. 8. Watermark embeddi♪g (bli♪d) performa♪ce graph for difere♪t subba♪ds. Four difere♪t wavelet ker♪els used here: 1.

9⁄7, 2. 5⁄3, 3. MH a♪d 4. MQ. Subba♪ds are show♪ top to botom as LL3, HL3, LH3 a♪d HH3, respectively. Column 1 a♪d

column 2 represe♪t the results without a♪d with co♪sideri♪g the weighti♪g parameter, while calculati♪g the e♪ergy sum,

respectively.
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Fig. 9. Watermark embeddi♪g (bli♪d) performa♪ce graph for various wavelets i♪ difere♪t subba♪d. Wavelet ker♪els are

show♪ top to botom as 1. 9⁄7, 2. 5⁄3, 3. MH a♪d 4. MQ, respectively. Coulmn 1, column 2 a♪d column 3 represe♪t the MSE,

e♪ergy sum without a♪d with weighti♪g parameters, respectively.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2019.


	Abstract
	1 Introduction
	2 Wavelets
	2.1 Orthonormal
	2.2 Non-orthonormal

	3 Watermark embedding schemes
	3.1 Non-blind Watermarking
	3.2 Blind Watermarking
	3.3 Authentication of extracted watermarks

	4 Embedding distortion analysis for orthonormal bases
	4.1 Preliminaries
	4.2 The model

	5 Embedding distortion analysis for non-orthonormal wavelet bases
	5.1 Preliminaries
	5.2 The model
	5.3 Calculation of the weighting parameters

	6 Experimental results and discussion
	6.1 Experimental setup
	6.2 Orthonormal cases
	6.3 Non-orthonomral cases
	6.4 Discussions

	7 Conclusions
	Acknowledgments
	References
	A Appendix: Proof of Proposition 1

