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Uncertainty-Aware Imitation Learning

using Kernelized Movement Primitives

João Silvério1,2, Yanlong Huang2, Fares J. Abu-Dakka2,3, Leonel Rozo4 and Darwin G. Caldwell2

Abstract— During the past few years, probabilistic ap-
proaches to imitation learning have earned a relevant place
in the robotics literature. One of their most prominent features
is that, in addition to extracting a mean trajectory from
task demonstrations, they provide a variance estimation. The
intuitive meaning of this variance, however, changes across
different techniques, indicating either variability or uncertainty.
In this paper we leverage kernelized movement primitives
(KMP) to provide a new perspective on imitation learning
by predicting variability, correlations and uncertainty using a
single model. This rich set of information is used in combination
with the fusion of optimal controllers to learn robot actions
from data, with two main advantages: i) robots become safe
when uncertain about their actions and ii) they are able to
leverage partial demonstrations, given as elementary sub-tasks,
to optimally perform a higher level, more complex task. We
showcase our approach in a painting task, where a human user
and a KUKA robot collaborate to paint a wooden board. The
task is divided into two sub-tasks and we show that the robot
becomes compliant (hence safe) outside the training regions and
executes the two sub-tasks with optimal gains otherwise.

I. INTRODUCTION

Probabilistic approaches to imitation learning [1] have wit-

nessed a rise in popularity during the past few years. They are

often seen as complementing deterministic techniques, such

as dynamic movement primitives [2], with more complete

descriptions of demonstration data, in particular in the form

of covariance matrices that encode both the variability and

correlations in the data. Widely used approaches at this level

include Gaussian mixture models (GMM), popularized by

the works of Calinon (e.g. [3]) and more recently, proba-

bilistic movement primitives [4] and kernelized movement

primitives (KMP) [5].

In recent work [6], [7], we discussed a fundamental

difference between the type of variance encapsulated by the

predictions of classical probabilistic techniques, particularly

Gaussian mixture regression (GMR) and Gaussian process

regression (GPR) [8]. We showed that the variance pre-

dicted by these two techniques has distinct, complementary
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Fig. 1: Gaussian mixture regression (GMR) and Gaussian process regression
(GPR) provide complementary notions of variance (represented as green and
red shaded areas) as variability and absence of training datapoints (depicted
as black dots). With a unified technique, robots can learn controllers that
are modulated by both types of information.

interpretations. In particular that GMR predictions measure

the variability in the training data, while those of GPR

quantify the degree of uncertainty, increasing as one queries

a model farther away from the region where it was trained.

These properties are illustrated in Fig. 1. This finding led

us to inquire: is there a probabilistic technique that can

simultaneously predict both variability and uncertainty? Are

these two notions compatible and unifiable into a single

imitation learning framework where they both provide clear

advantages from a learning perspective? In this paper we try

to answer these questions.

The two types of variance have been individually lever-

aged by different lines of work. For instance, variability and

data correlations (encapsulated in full covariance matrices)

have been used to modulate control gains in several works

[3], [9], [10], [11]. Uncertainty, in the sense of absence of

data/information, is also a concept with tradition in robotics.

Problems in robot localization [12], control [13] and, more

recently, Bayesian optimization [14], leverage uncertainty

information to direct the robot to optimal performance. In [7]

we took advantage of uncertainty to regulate robot stiffness,

in order to make it compliant (and safer) when uncertain

about its actions. However, to the best of our knowledge,

variability and uncertainty have never been exploited simul-

taneously in imitation learning.

In this paper we introduce an approach that predicts

variability, correlations and uncertainty from KMP and

uses this information to design optimal controllers from

demonstrations. These drive the robot with high precision

when the variability in the data is low (while respecting the

observed correlations across degrees of freedom) and render

the robot compliant (and safer to interact with) when the

uncertainty is high. The uncertainty is further leveraged by

the robot to know when different controllers, responsible for

the execution of separate, elementary sub-tasks, should be

activated. In particular we:



1) demonstrate that KMP predicts full covariance matri-

ces and uncertainty (Sections III and IV-A)

2) exploit a linear quadratic regulator (LQR) formulation

that yields control gains which are a function of both

covariance and uncertainty (Section IV-B)

3) dovetail 1), 2) with the concept of fusion of controllers

[6] which allows for demonstrating one complex task

as separate sub-tasks, whose activation depends on

individual uncertainty levels (Section IV-C)

Experimentally, we expand on a previously published

robot-assisted painting scenario and validate the approach

using a KUKA LWR where different types of controllers

are used for individual sub-tasks (Section V). We provide

a discussion of the approach and the obtained results in

Section VI and concluding remarks and possible extensions

in Section VII.

II. RELATED WORK

Most probabilistic regression techniques provide variance

predictions in some form. GMR, relying on a previously

trained GMM, computes full covariance matrices encoding

the correlation between output variables. However, it does

not measure uncertainty, defaulting to the covariance of the

closest Gaussian component when a query point is far from

the model. GPR, despite estimating uncertainty, assumes

constant noise therefore not taking the variability of the out-

puts into account. Heteroscedastic Gaussian Processes (HGP)

[15], [16] introduce an input-dependent noise model into the

regression problem. Nonetheless, tasks with multiple outputs

require the training of separate HGP models, thus output

correlations are not straightforward to learn in the standard

formulation. In addition, the noise is treated as a latent

function, hence each HGP depends upon the definition of two

Gaussian processes (GP) per output, scaling poorly with the

number of outputs. In [17], Choi et al. propose to use mixture

density networks (MDN) in an imitation learning context to

predict both variability and uncertainty. The main drawback

of the approach, similarly to HGP, is that outputs are assumed

to be uncorrelated. Moreover, in [17] only the uncertainty is

used in the proposed imitation learning framework, without

considering variability. As opposed to the aforementioned

works, we here show that KMP predicts both full covariance

matrices and a diagonal uncertainty matrix, parameterized by

its hyperparameters, allowing the access to all the desired

information. Table I details the differences between variance

predictions of different algorithms, highlighting that KMP

estimates all desired features in our approach.

In terms of estimating optimal controllers from demonstra-

tions, previous works have either exploited full covariance

matrices encoding variability and correlations [3], [9], [10]

or diagonal uncertainty matrices [7]. While the former are

aimed at control efficiency, by having the robot apply higher

control efforts where required (depending on variability), the

latter target safety, with the robot becoming more compliant

when uncertain about its actions. The LQR we propose in

Section IV-B is identical to the one in [3], [7], [11]. However,

by benefiting from the KMP predictions, it unifies the best

Types of prediction

Variability Uncertainty Correlations

GMM/GMR [3] X – X

GPR [8] – X –
HGP [15], [16] X X –

MDN [17] X X –
Our approach X X X

TABLE I: (Co)variance predictions of different techniques.

of the two approaches. Umlauft et al. [18] propose a related

formulation where, using Wishart processes, they build full

covariance matrices with uncertainty. However their solution

requires a very high number of parameters, whose estimation

relies heavily on optimization, and their control gains are set

heuristically.

Finally, inspired by [19], in [6] we proposed a fusion of

controllers to allow robots to smoothly switch between sub-

tasks based on the uncertainty of each sub-task’s controller.

Here we go one step further and consider optimal controllers

learned from demonstrations into the fusion, instead of

manually defining the control gains. In previous work [11],

we have studied the fusion of optimal controllers. However,

in that case we focused on time-driven trajectories whereas

here we consider multi-dimensional inputs and uncertainty.

The approach described in the next sections therefore aims

at a seamless unification of concepts exploited in previous

work, taking imitation learning one step ahead into the

learning of optimal controllers for potentially complex tasks.

III. KERNELIZED MOVEMENT PRIMITIVES

We consider datasets comprised of H demonstrations

with length T , {{ξt,h
I

, ξ
t,h
O

}Tt=1}
H
h=1

where ξI ∈ R
DI and

ξO ∈ R
DO denote inputs and outputs (I,O are initials

for ‘input’ and ‘output’), respectively, and DI , DO are their

dimensions. ξI can represent any variable of interest to drive

the movement synthesis (e.g., time, object/human poses) and

ξO encodes the desired state of the robot (e.g., an end-

effector position, a joint space configuration). KMP assumes

access to an N -dimensional probabilistic trajectory distribu-

tion {ξnI , µ̂n, Σ̂n}
N
n=1 mapping a sequence of inputs to their

corresponding means and covariances, which encompass the

important features in the demonstration data. This probabilis-

tic reference trajectory can be obtained in various ways, for

example by computing means and covariances empirically

at different points in a dataset or by using unsupervised

clustering techniques. Here we follow the latter direction, in

particular by using a GMM to cluster the data and GMR to

obtain the trajectory distribution that initializes KMP (done

once after data collection).

By concatenating the trajectory distribution into

µ = [µ̂⊤

1 . . . µ̂
⊤

N ]⊤ and Σ = blockdiag(Σ̂1, . . . , Σ̂N ),
KMP predicts a new Gaussian distribution at new test points

ξ∗I according to [5]

µ∗

O = k∗(K + λ1Σ)−1µ, (1)

Σ
∗

O =
N

λ2

(

k∗∗ − k∗(K + λ2Σ)−1)k∗⊤
)

. (2)



where

K =







k(ξ1I , ξ
1

I) · · · k(ξ1I , ξ
N
I )

...
. . .

...

k(ξNI , ξ1I) · · · k(ξNI , ξNI )






(3)

is a matrix evaluating a chosen kernel function k(., .) at

the training inputs, k∗ =
[

k(ξ∗I , ξ
1

I) . . . k(ξ∗I , ξ
N
I )

]

and

k∗∗ = k(ξ∗I , ξ
∗

I). Moreover, k(ξiI , ξ
j
I
) = k(ξiI , ξ

j
I
)IDO

.

Hyperparameters λ1, λ2 are regularization terms chosen as

to constrain the magnitude of the predicted mean and co-

variance, respectively. The kernel treatment implicit in (1)-

(2) assumes the previous choice of a kernel function that

depends on the characteristics of the training data. We here

consider the squared-exponential kernel

k(ξiI , ξ
j
I
) = σ2

f exp

(

−
1

l
||ξiI − ξ

j
I
||2

)

, (4)

a common choice in the literature. We hence have that

KMP with kernel (4) requires the definition of four hy-

perparameters {λ1, λ2, l, σ
2
f}. Note the similarity between

predictions (1)-(2) and other kernel-based techniques (e.g.

GPR, HGP). The main difference is that in KMP the

noise model is learned through Σ which describes both the

variability and correlations present in the data throughout

the trajectory. This makes KMP a richer representation

when compared to GPR or HGP, which assume either

constant noise Σ̂i = σ2
ǫIDO

, ∀i = 1, . . . , N (GPR) or input-

dependent uncorrelated noise Σ̂i = σ2
ǫ (ξ

i
I)IDO

(HGP).

IV. UNCERTAINTY-AWARE IMITATION LEARNING WITH

KMP

We now demonstrate that KMP provides an estimation of

uncertainty through (2), by defaulting to a diagonal matrix

completely specified by its hyperparameters in the absence of

datapoints (Section IV-A). In addition we propose a control

framework to convert the predictions into optimal robot

actions (Section IV-B) and the fusion of optimal controllers

(Section IV-C).

A. Uncertainty predictions with KMP

In the light of the kernel treatment (2) and the exponen-

tial kernel (4), both covariance and uncertainty predictions

emerge naturally in the KMP formulation. While the for-

mer occur within the training region, the latter arise when

querying the model away from the original data.

Lemma 1: The squared exponential kernel (4) goes to zero

as ||ξnI − ξ∗I || → +∞, ∀n = 1, . . . , N .

Proof: Let us consider d = ||ξn̂I − ξ∗I ||, where

n̂ = argminn ||ξ
n
I − ξ∗I || is the index of the training point

with the minimum distance to the test point ξ∗I .

lim
d→+∞

k(ξn̂I , ξ
∗

I) = lim
d→+∞

σ2
fexp(−

1

l
d2) = 0. (5)

Lemma 1 extends to other popular exponential kernels,

including the Matérn kernel [8].

Theorem 1: Covariance predictions (2) converge to a di-

agonal matrix completely specified by the KMP hyperparam-

eters as test inputs ξ∗I move away from the training dataset,

i.e. d → +∞. Particularly,

lim
d→+∞

Σ
∗

O = σ2
f

N

λ2

IDO
. (6)

Proof: Following from Lemma 1 and know-

ing that k∗ =
[

k(ξ∗I , ξ
1

I) . . . k(ξ∗I , ξ
N
I )

]

we have

lim
d→+∞

k∗ = 0DO×NDO
. Hence

lim
d→+∞

Σ
∗

O = lim
d→+∞

N

λ2

k∗∗
. (7)

Moreover we have

k∗∗ = k (ξ∗I , ξ
∗

I) = σ2
fexp

(

−
1

l
0

)

= σ2
fIDO

,

which replaced in (7) yields (6).

Equation (6) plays a crucial role in our approach. It

provides a principled way to know when the model is being

queried in regions where data was not present during training.

We leverage this information to 1) make the robot compliant

when unsure about its actions and 2) let the robot know

when to execute control actions pertaining to different KMPs.

Moreover, through the dependence on σ2
f , N and λ2, one can

adjust the expression of uncertainty provided by the model,

through the tuning of any of those hyperparameters. For

instance, increasing the length of the initialized trajectory

distribution N has the effect of scaling the uncertainty.

GPR offers a similar property, where the variance prediction

converges to the scalar σ2
f . However this is rather limiting as

tuning this hyperparameter can have undesired effects on the

mean prediction. In KMP, N and λ2 do not affect the mean

prediction as they do not parameterize the kernel function.

Moreover, (2) is typically robust to their choice, providing

freedom for tuning while yielding proper predictions (see [5]

for details).

B. Computing optimal controllers from KMP

We now propose to use Σ∗

O to obtain variable control gains

that result in a compliant robot both when the variability and

uncertainty are high1. We follow the concept introduced in

[9] and formulate the problem as a LQR. Let us consider

linear systems ζ̇t = Aζt+But, where ζt, ζ̇t ∈ R
NS denote

the system state at time t and its first-order derivative (NS is

the dimension of the state) and ut ∈ R
NC is a control com-

mand, where NC denotes the number of controlled degrees

of freedom. Moreover, A ∈ R
NS×NS and B ∈ R

NS×NC

represent the state and input matrices. We will stick to task

space control and hence make a simplifying assumption, in

line with [3], that the end-effector can be modeled as a

unitary mass, yielding a double integrator system

A =

[

0 I

0 0

]

, B =

[

0

I

]

, (8)

1In the context of movement synthesis, new inputs occur at every new
time step thus we will replace ∗ by t from now on in the notation.



Algorithm 1 Uncertainty-aware imitation learning

Initialization
1: Identify number of sub-tasks P

2: Collect demonstrations {{{ξt,h,p
I

, ξ
t,h,p
O

}Tt=1}
H
h=1}

P
p=1

3: Generate trajectory distributions {{ξn,p
I

, µ̂n,p, Σ̂n,p}
N
n=1}

P
p=1

4: Select hyperparameters {σ2

f,p, lp, λ1,p, λ2,p}
P
p=1 and Rp

Movement synthesis
1: Input: Test point ξt

I

2: for p = 1, . . . , P do
3: Compute µ

t,p
O

,Σ
t,p
O

, per (1), (2)

4: Set ζ̂
p

t = µ
t,p
O

and Q
p
t = (Σt,p

O
)−1

5: Find optimal gains KP
t,p,K

V
t,p and compute u

p
t per (13)

6: Set Γ
p
t = (Σt,p

O
)−1

7: end for
8: Compute ût from (12)
9: Output: Control command ût

where 0 and I are zero and identity matrices of appropriate

dimension. We define the end-effector state at t as its

Cartesian position and velocity xt, ẋt, i.e. ζt = [x⊤

t ẋ⊤

t ]
⊤,

and therefore ut corresponds to acceleration commands.

At every time step t of a task, a KMP is queried with an

input test point ξtI , predicting a mean µt
O

and a covariance

matrix Σ
t
O. We define ζ̂t = µt

O
, i.e. the desired state for the

end-effector is given by the mean prediction of KMP. For

time-driven tasks, where ξtI = t, a sequence of reference

states ζ̂t=1,...,T can be easily computed and an optimal

control command ut can be found, minimizing

c(t) =

T
∑

t=1

(ζ̂t − ζt)
⊤Qt(ζ̂t − ζt) + u⊤

tRtut, (9)

where Qt is a NS × NS positive semi-definite matrix that

determines how much the optimization penalizes deviations

from ζ̂t and Rt is an NC ×NC positive-definite matrix that

penalizes the magnitude of the control commands. Equation

(9) is the cost function of the finite horizon LQR and its

solution is obtained through backward integration of the

Riccati equations (see [3]). In non-time-driven tasks, e.g.

when ξtI is the state of a human that collaborates with

the robot, it is not straightforward to predict a sequence of

desired states. In these cases, we resort to the infinite horizon

formulation

c(t) =

∞
∑

n=t

(ζ̂t − ζn)
⊤Qt(ζ̂t − ζn) + u⊤

nRtun. (10)

which is solved iteratively using the algebraic Riccati equa-

tion. In both cases (9), (10), the solution is given by a linear

state feedback control law

ut = [KP

t KV

t ](ζ̂t − ζt) (11)

where KP

t ,K
V

t are stiffness and damping gain matrices that

drive the system to the desired state.

Finally, we set Qt = (Σt
O)

−1. Unlike in previous works

where a similar choice is made [3], [7], [9], in our approach

the unique properties of KMP endow the robot with the

ability to modulate its behavior in the face of two different

conditions as a consequence of this setting. First, when the

Fig. 2: Comparison between KMP, GMR and GPR. Datapoints are plotted
in black, solid lines represent the mean and shaded areas correspond to two
standard deviations (computed from respective variance estimations).

KMP is queried within the training region, full covariance

matrices encoding variability and correlations in the demon-

strations are estimated, resulting in control gains that reflect

the structure in the data. The robot is hence more precise

where variability is low (higher gains) and responds to

perturbations according to the observed correlations. Second,

as the test input deviates from the training data, the robot

becomes increasingly more compliant, as a consequence of

(6). Intuitively, this makes sense as the robot should be safe

when the uncertainty about is actions increases, which is

achieved in our formulation by an automatic decrease of the

control gains. Our approach is hence the first to permit the

robot to be optimal in the region where demonstrations were

provided, and safe where data is absent.

C. Fusing optimal controllers

It is often convenient to split the demonstration of complex

tasks into smaller, less complex sub-tasks (e.g. grasping a

tool and avoiding obstacles). Here we adapt the previously

introduced notion of fusion of controllers [6] to account

for optimal controllers, such as those described in Section

IV-B. Let us consider p = 1, . . . , P candidate controllers

generating commands u
p
t that may act on the robot at every

time step t (we omit the subscript t in the remainder of this

section). In a fusion of controllers, an optimal command is

computed as

û = argmin
u

P
∑

p=1

(u− up)
⊤

Γ
p(u− up) , (12)

where Γ
p are weight matrices that regulate the contribution

of each individual controller. Examples of Γ
p found in

the literature include scalar terms that maximize external

rewards [20] and precision matrices, either computed from

covariance [6], [19] or uncertainty [7]. Equation (12) has

an analytical solution given by û = Σ̂u

∑P

p=1
Γ
pup, where

Σ̂u =
(

∑P

p=1
Γ
p
)−1

. When up and Γ
p are viewed as the

mean and precision matrix of a Gaussian distribution, this

solution corresponds to a Gaussian product [6].

We here propose to use

up = [KP

t,p KV

t,p](ζ̂
p

t − ζ
p
t ), (13)



(a) Examples of handover starting positions. (b) Handover end position.

Fig. 3: Handover demonstrations. The robot, starting from different initial positions, is moved kinesthetically towards a handover location, where the human
hands it a paint roller.

where [KP

t,p KV

t,p] are optimal gains estimated using LQR,

given the KMP of controller p, and

Γ
p = (Σp

O
)
−1

. (14)

As a consequence of (14), controllers with high uncertainty

will have negligible influence in the resulting command

computed from (12). This permits the demonstration of a task

into sub-tasks, whose activation during reproduction depends

on their individual uncertainties. Algorithm 1 summarizes the

complete approach.

V. EXPERIMENTAL RESULTS

In this section we validate our approach from Section IV

using a toy example with synthetic data (Section V-A) and a

robot-assisted painting task (Sections V-B and V-C). While

we have exploited the latter scenario in previous work [6],

here we expand it by considering optimal controllers. The

complete task is divided into two sub-tasks: a handover of

a paint roller and the application of painting strokes by the

robot on a wooden board. In both sub-tasks, the robot motion

is driven by the position of the human hand. A supple-

mentary video showing the obtained results is available at

http://joaosilverio.weebly.com/uncert.html

A. 1-D regression example with synthetic data

We first consider the regression of a scalar function.

Using an artificially generated dataset we trained a KMP

with K = 4 (number of Gaussian components used in the

initialization GMM), σ2
f = 1.0 , l = 1 × 10−2, λ1 = 5

and λ2 = 750. We sampled a trajectory distribution to

initialize the KMP with N = 750 datapoints. Figure 2

shows the original dataset and the approximated function

using KMP, GMR2 and GPR3. While the three techniques

accurately predict the mean trend in the function, the variance

prediction given by KMP unifies the predictions from GMR

and GPR, approximating the variability of the former and

the uncertainty of the latter in the appropriate regions of the

input space.

B. Robot Handover

We now show that the proposed approach makes the robot

track its reference trajectory using optimal gains near the

demonstrations while rendering it compliant when the human

2computed from the GMM that initialized the KMP
3with hyperparameters l = 1× 10

−2, σ2
ǫ = 10

−2

Fig. 4: Training data, KMP initialization model and test data. Top left:

Demonstrated human hand (blue) and robot end-effector (gray) positions.
Red ellipsoids show the 3-component GMM used to initialize KMP. Top

right and bottom: Test human hand (orange), KMP generated (green)
and robot measured trajectories (black). ‘×’ and ‘◦’ mark start and end
of trajectory.

is far from the training data. The handover of the paint roller

is achieved by demonstrating to the robot the location of its

end-effector as a function of the human hand position. Note

that object handovers are an extensively studied problem in

human-robot collaboration and here we simplify the problem

to better focus on showcasing our approach. The human

hand and robot end-effector positions are here denoted as

xH ∈ R
3 and xR ∈ R

3 respectively and we wish to learn

the mapping xH → xR, hence we set ξI = xH , ξO = xR.

We use a KMP with K = 3, σ2
f = 1.0, l = 0.1, λ1 = 0.1 and

λ2 = 1. Moreover, the KMP is initialized with a trajectory

distribution of N = 500 points, obtained using GMR at

inputs sampled from the GMM. The cost function of the

LQR problem is parameterized with R = 10−2I3×3 and

we follow the infinite horizon formulation minimizing (10),

since the input is the human hand position (i.e. not a time-

driven motion).

Figure 4 shows the training dataset obtained from 7

demonstrations and the resulting GMM used to initialize the

KMP (top-left). Moreover it shows the robot end-effector

motion computed for a new human hand trajectory used



Fig. 5: Stiffness and damping gains during one handover. The gains increase
towards the end of the task since the end-effector variability decreases as
the robot approaches the handover location.

Fig. 6: Stiffness gains (blue) and variance (light brown), plotted for the first
task space dimension, as a function of the distance to demonstrations d and
different l. Control gains decrease as the distance increases, making the
robot gradually more compliant, hence safer, when it does not know what
to do.

as a test set. As demonstrated, the robot starts at a given

position in its task space and moves smoothly towards the

handover position, with the learned optimal gains. Figure 5

shows the stiffness and damping gains during one execution,

plotted as a function of time. The control gains gradually

increase as the human hand approaches the robot, ensuring

an accurate tracking of the handover position. This goes in

opposite direction to the data covariance that starts large and

gradually decreases (Fig. 4 top-left).

Figure 6 shows the estimated gains (left axis) as one moves

away from the region where demonstrations were provided.

We manually selected one point in the test set and queried

the model at several points up to 1m away from it along the

+x1 direction. In order to facilitate the visualization, we plot

one single output dimension and omit the damping gains.

Notice the increase in the predicted variance (right axis)

as one moves away from the demonstrations, which leads

to decreasing control gains. This proves experimentally our

proposition in Section IV-A. Moreover, notice the influence

of the kernel length scale on how quickly control gains

approach 0. Increasing l has the effect of decreasing the

distance between points, hence higher values result in a

slower increase of uncertainty as one moves away from the

data. The squared-exponential nature of the kernel therefore

permits regulating the rate at which the robot becomes

compliant through the tunning of l. The enclosed video

further elucidates the compliance aspect of our approach.

C. Fusion of task space controllers

In addition to the handover of the paint roller, we also

teach the robot how to paint. The goal of this experiment is

to show that accessing uncertainty, in addition to covariance,

permits the fusion of control commands in a way that

different sub-tasks are activated, depending on the state of

the human (here defined by its right hand position). In this

case, the complete painting task was demonstrated partially

into two sub-tasks, whose activation will be inferred from

Fig. 7: Human operators teach the robot how to apply painting strokes.

Fig. 8: Painting demonstration dataset and reproduction. Training human
data (blue), robot data (gray), test human data (orange) and robot desired
and observed trajectories (green and black, respectively).

the corresponding models.

We provided 5 demonstrations of painting strokes to the

robot as shown in Fig. 7. During these demonstrations, the

robot learns to map the wooden board motion (as defined

by the human hand) to the movements it should perform

with the end-effector. We used the same KMP and LQR

parameters as in Section V-B. Figure 8 shows the data

used to train the model, together with one reproduction

for a human hand trajectory in the neighborhood of the

demonstrations. Note that in this case, the differences in

covariance in different parts of the end-effector trajectory

are not as accentuated as in the handover task. Nonetheless,

optimal gains are computed at every moment according to

the observed variability and correlations.

Using two KMPs, each one responsible for a sub-task, we

reproduced the complete task where the control commands

generated by the two candidate controllers were fused as

described in IV-C. The complete task took about 2 minutes,

Fig. 9: Rows 1-3: Forces generated by each KMP (blue and green) and force
used by the robot (black) at three different time intervals of the complete
painting task. Bottom row: First entry of the covariance matrix (2) predicted
by each KMP.



(a) Paint roller handover. (b) Compliant robot. (c) Painting strokes.

Fig. 10: Fusion of optimal controllers: snapshots of the complete painting task. The end-effector stiffness is depicted as an ellipsoid at different moments
of the task (larger ellipsoids correspond to higher stiffnesses). The position of the human hand (pink) is used to query two KMPs, whose predictions
generated both a reference end-effector position and a covariance matrix from which optimal stiffnesses were computed.

but here we report about 45s (the reader is referred to the

supplementary video for the full experiment). The first three

rows in Fig. 9 show the forces generated by each candidate

controller and the force used by the robot. Due to the unit

mass assumption in Section IV-B, the acceleration commands

are equivalent to desired task space forces F ∈ R
NC which

are converted into joint space torques through τ = J⊤F [21]

(τ is a vector of torques and J is the end-effector Jacobian).

The bottom row shows the first element of the covariance

matrix estimated from (2) (the remainder diagonal elements

exhibit similar temporal profiles, hence were omitted). The

first column (≈ 14s− 18s) corresponds to the beginning of

the task, where the paint roller is handed over. The force

used by the robot closely matches the one generated by the

handover KMP, as its predicted variance is significantly lower

during the whole task (bottom plot). Notice the increased

value of σ2
1 around 14s – it reflects the high variability in the

handover demonstrations at the beginning of the task. This

value is consistently below the one generated by the painting

KMP. If this were not the case, N could be increased. In the

second column of Fig. 9 (≈ 26s−30s) we can see that both

KMP generate high variance. This corresponds to a region

in between the two sub-tasks hence none of the two should

be activated. The fact that the blue line does not reach 500
is due to the human moving slightly closer to the region

where the handover was demonstrated. Note however that

the observed values are consistently higher than those when

tasks are activated. Moreover, notice the low forces during

this interval – high covariances yielded minimal control gains

resulting in low forces and a compliant robot. Finally in the

third column (≈ 41s − 44s) we see the task space forces

generated during one painting stroke. Notice how, this time,

the result from the controller fusion matches the force given

by the painting KMP, since the variance for this sub-task is

consistently very low (see bottom plot).

Finally, Fig. 10 shows snapshots of different moments

of the reproduction. We draw ellipsoids representing full

stiffness matrices at the end-effector in the different task

moments. These matrices were estimated from the covariance

predictions (2) using LQR (Section IV-B). Figure 10(a)

shows the two distinct moments of the handover: the begin-

ning, where the end-effector stiffness is low and the user can

move the robot around easily, and the end, where the stiffness

is high, allowing for the insertion of the paint roller. For an

easier visualization we only plotted the stiffness generated

by the handover KMP (hence the blue color) since the one

from the painting KMP was negligible in this part of the task

(as we saw in Fig. 9). Figure 10(b) shows a part of the task

where none of the two sub-tasks is active. This results in an

extremely low stiffness matrix and a fully compliant robot

that is safe for the human to interact with and move around

in the workspace. In Fig. 10(c) the robot performs a painting

stroke on the board, driven by the human hand position, with

high stiffness since the demonstrations were consistent in

this region. The drawn stiffness ellipsoid resulted from the

painting KMP, since the one from the handover KMP was

negligible in the vicinity of this sub-task.

VI. DISCUSSION

In the previous section we showed how KMP can be used

to estimate full covariance matrices and uncertainty in order

to learn optimal and safe controllers, as well as tasks which

are comprised of more than one sub-task. One relevant point

of discussion is the fact that, unlike [17], our approach does

not explicitly separate between covariance and uncertainty

predictions – they are both the result of (2). However, we

know a priori the form of the uncertainty predictions, as it is

defined by the KMP hyperparameters. If desired, one could

potentially assign confidence to a prediction as to whether it

corresponds to a covariance matrix or an uncertainty matrix.

One way to achieve this could be by resorting to heuristics

(e.g. the determinant of the prediction, the Frobenius norm

of the distance between matrices) to disambiguate between

the two possibilities. Alternatively, one could also exploit the

freedom given by the hyperparameters in (6) to accentuate

the difference between the two types of prediction. For

instance, by setting very low values for λ2 (unconstraining

covariances), one can increase the uncertainty by several

orders of magnitude. The same effect would be achieved by

sampling more points into the KMP reference trajectory, thus

increasing N . This is helped by the fact that, in practice, there

are physical limits to how big variability in the data can be

(e.g. joint limits, robot workspace size), hence the uncertainty

matrix can often be designed so that it is significantly greater

than these.

Finally, in the considered setup the two tasks were per-

formed in different parts of the workspace. This was a design

choice, as the 3D human hand position was being used to



drive the KMP of each sub-task. However, in practice, our

approach can extend to more complicated scenarios. For

example, if one was to augment the input vector ξI to

include other features (e.g. human upper-body configuration,

eye gaze), several tasks could potentially overlap in the robot

workspace, since there would be more features accounted for

by the inputs. This would also lead to a decreased possibility

of simultaneously activating undesired sub-tasks.

VII. CONCLUSIONS AND FUTURE WORK

We proposed an imitation learning approach that takes into

account the robot uncertainty about its actions, in addition

to the variability and correlations in the data, to estimate

optimal controllers from demonstrations. The approach was

shown to allow for increased safety, as the robot is compliant

when uncertain, and efficiency, with the robot using optimal

control gains where demonstrations were given. We also

showed that demonstrated tasks can be split into sub-tasks

that are activated based on their individual uncertainty levels.

In future work we will study how different kernels can be

exploited in our framework. Periodic and composite kernels

may allow, respectively, for learning tasks that require rhyth-

mic motions or for the usage of different kernels in different

parts of a task. Moreover, we plan to exploit the compliance

of the robot when uncertain to provide new demonstrations

(of the same or new sub-tasks), in an online learning setting.

Finally, it should be noted that the prediction capabilities

of KMP are independent of the optimal control framework.

Predicting full covariance matrices and uncertainty (as shown

here), handling start-/via-/end-points [5], multi-dimensional

inputs and orientations [22] are distinguishable features of

KMP that we aim to leverage in other robotics applications.
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