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Towards Minimal Intervention Control with Competing Constraints

Yanlong Huang, João Silvério and Darwin G. Caldwell

Abstract— As many imitation learning algorithms focus on
pure trajectory generation in either Cartesian space or joint
space, the problem of considering competing trajectory con-
straints from both spaces still presents several challenges. In
particular, when perturbations are applied to the robot, the un-
derlying controller should take into account the importance of
each space for the task execution, and compute the control effort
accordingly. However, no such controller formulation exists. In
this paper, we provide a minimal intervention control strategy
that simultaneously addresses the problems of optimal control
and competing constraints between Cartesian and joint spaces.
In light of the inconsistency between Cartesian and joint con-
straints, we exploit the robot null space from an information-
theory perspective so as to reduce the corresponding conflict. An
optimal solution to the aforementioned controller is derived and
furthermore a connection to the classical finite horizon linear
quadratic regulator (LQR) is provided. Finally, a writing task
in a simulated robot verifies the effectiveness of our approach.

I. INTRODUCTION

In the past few years, imitation learning has been studied

in a myriad of applications, such as pouring tasks [1],

striking motions [2] and obstacle avoidance [3]. While many

approaches focus on skill learning in either Cartesian space

or joint space, an important problem arises: can robots

imitate human skills in both Cartesian and joint spaces

simultaneously?

Indeed, learning in a single space has achieved remarkable

performances in many systems. However, for tasks where

the importance of Cartesian and joint trajectories varies with

time, the learning in a single space might be inappropriate.

To take a sequential bottle-shaking task as an example [4], it

requires the robot to first reach and grasp a bottle, then shake

it. During the reaching and grasping phase, the Cartesian

trajectory is more important since the robot end-effector

needs to reach the bottle precisely, and subsequently in the

shaking phase the joint trajectory plays a crucial role since

certain joints govern the shaking movement.

For the cases where Cartesian and joint trajectories are

equally important, hybrid imitation learning in both spaces

becomes highly desirable. A typical example is the striking

movement in a robot table tennis scenario. As suggested in

[5], the robot Cartesian trajectory (i.e., trajectory of the racket

that is attached to the robot end-effector) should coincide

with the ball trajectory but with an opposite direction, so

that a higher interception rate can be achieved. Besides, for

the sake of producing a natural striking movement, robot
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joint configuration (i.e., striking posture) also needs to be

determined properly.

A few approaches have been proposed for the hybrid

imitation learning, such as [4], [6], [7]. However, they only

consider the imitation of position or velocity trajectories,

becoming, in essence, a pure trajectory generation problem.

In fact, from a control perspective, it would be desired

to compute proper control commands so as to drive the

robot to imitate demonstrated skills (in terms of position

and velocity trajectories) in both Cartesian and joint spaces.

In this paper, we aim for designing a controller in robot

joint space that allows robots to mimic demonstrated skills

in both Cartesian and joint spaces. Similarly to [6], we refer

to demonstrations in both spaces as competing constraints

throughout this paper, since the robot motion is required to

follow both constraints.

Inspired by [8], [9], we propose to formulate the aforemen-

tioned issues into a minimal intervention control problem that

incorporates competing constraints. However, due to the fact

that Cartesian constraints and joint control commands are

non-linearly dependent, it is non-trivial to design the optimal

controller. A straightforward way is to transform Cartesian

constraints into joint space, and subsequently, reformulate

the competing constraints as two constraints in joint space,

rendering the minimal intervention control problem feasible.

In [4], [6], Jacobian-based inverse kinematics was used to

map Cartesian constraints into joint space. However, the

robot null space is ignored in both works, which might

yield a new joint constraint that is inconsistent with the

original joint constraint. Thus, we propose to exploit the

robot null space towards reducing the possible conflict from

both spaces.

In comparison to the aforementioned state-of-the-art ap-

proaches, our main contributions are:

(i) a minimal intervention control framework with com-

peting constraints,

(ii) an information-theory perspective introduced to guide

the optimization of the robot null space towards reduc-

ing the conflict between competing constraints,

(iii) a dual interpretation that connects the control problem

with competing constraints and the finite horizon LQR.

This paper is arranged as follows. We first explain the

estimation of probabilistic reference trajectories in Section II.

Subsequently, we propose a minimal intervention controller

which incorporates competing constraints described by refer-

ence trajectories and derive an approximated solution for this

controller in Section III. A dual interpretation is provided,

connecting our approach to the typical finite horizon LQR

in Section IV. Evaluations of our framework in a seven



degree-of-freedom (DoF) simulated robot are presented in

Section V. Finally, we conclude this paper and discuss

the shortcomings and possible extensions of our work in

Section VI.

II. PROBABILISTIC MODELING OF DEMONSTRATIONS

Inspired by previous works [8], [9] that exploit the

probabilistic properties underlying multiple demonstrations

to design optimal controllers, we here propose to model

the demonstrations from Cartesian and joint spaces prob-

abilistically. Let us denote M demonstrations in Carte-

sian space and joint space as {{tn,m,pn,m, ṗn,m}Nn=1}
M
m=1

and {{tn,m,qn,m, q̇n,m}Nn=1}
M
m=1, respectively, where each

demonstration has length N , pn,m ∈ R
3 and ṗn,m re-

spectively denote three-dimensional Cartesian position and

velocity, qn,m ∈ R
O and q̇n,m represent O-dimensional

vector of joint positions and velocities, respectively. Since the

datapoints in both spaces are high-dimensional, we employ

Gaussian mixture model (GMM) [10], [11] to model the joint

probability distribution P(t,p, ṗ) and P(t,q, q̇). Note that

GMM is also applied in [4] and [6], where the former models

positions while the latter models velocities.

In order to facilitate the explanation, we here take the

modeling of Cartesian trajectories as an example, and address

the joint space afterwards. Formally, we write ξt = [pT
t ṗT

t ]
T

and P(t, ξt) as

P(t, ξt) ∼
K∑

k=1

πkN (µk,Σk), (1)

where πk denotes the prior probability of each Gaussian

component, µk =

[
µt,k

µξ,k

]

and Σk =

[
Σtt,k Σtξ,k

Σξt,k Σξξ,k

]

repre-

sent mean and covariance of the i-th Gaussian component,

respectively. With the model (1), we use Gaussian mixture

regression (GMR) to retrieve probabilistic reference trajecto-

ries. Given a query point t, its corresponding trajectory point

ξ(t) is computed as [10]

ξ(t) ∼
K∑

k=1

hk(t)N (µk(t),Σk) (2)

with

hk(t) =
πkP(t|µt,k,Σtt,k)

∑K

i=1 πiP(t|µt,i,Σtt,i)
, (3)

µk(t) = µξ,k +Σξt,kΣ
−1
tt,k(t− µt,k), (4)

Σk = Σξξ,k −Σξt,kΣ
−1
tt,kΣtξ,k. (5)

Note that (2) can be approximated by a single Gaussian dis-

tribution N (µ̂ξ
t , Σ̂

ξ

t ) (refer to [10] for details). For the sake

of convenient discussion, we write the retrieved reference

datapoint in Cartesian space at time t as ξ̂t, which satisfies

P(ξ̂t|t) ∼ N (µ̂ξ
t , Σ̂

ξ

t ).
The modeling of demonstrations in joint space can be

carried out in a similar way. In this case, we write ζt =
[qT

t q̇T
t ]

T and the corresponding reference datapoint in joint

space at time t as ζ̂t with P(ζ̂t|t) ∼ N (µ̂ζ
t , Σ̂

ζ

t ). In the next

Fig. 1. An overview of the minimal intervention control with competing
constraints. Given demonstrated trajectories, GMM/GMR are employed to
generate the corresponding reference trajectories in Cartesian and joint
spaces, respectively. Then, the robot null space is exploited to reduce
the conflict between the transformed and demonstrated joint distributions.
Finally, the proposed control problem is solved similarly to the finite horizon
LQR.

section, we exploit the probabilistic reference trajectories in

Cartesian and joint spaces to design a controller, that takes

into account competing constraints.

III. MINIMAL INTERVENTION CONTROL WITH

COMPETING CONSTRAINTS

Since the probabilistic reference trajectories {ξ̂t}
N
t=1 and

{ζ̂t}
N
t=1 encapsulate the distributions of demonstrated trajec-

tories in Cartesian and joint spaces, we aim at designing a

controller which can incorporate both reference trajectories

(i.e., competing constraints) while employing control efforts

with optimal amplitude, given the task constraints in both

spaces. Formally, we formulate this issue as a minimal

intervention control problem with competing constraints

(Section III-A). Subsequently, we exploit the robot null

space to reduce the inconsistency between both reference

trajectories (Section III-B and III-C). Finally, we provide an

approximated solution to the proposed controller (Section III-

D). Our framework is illustrated in Fig. 1.

A. Problem Description

Since the robot is controlled in its joint space, we here

study the problem of finding proper joint control commands

u such that the competing constraints are fulfilled. Specifi-

cally, we formulate this problem as minimizing

J(U)=

t+h∑

τ=t

(ξτ−µ̂
ξ
τ )

TQξ
τ (ξτ−µ̂

ξ
τ )+(ζτ−µ̂

ζ
τ )

TQζ
τ (ζτ−µ̂

ζ
τ )

+

t+h−1∑

τ=t

uT
τ Rτuτ ,

(6)

where U = [uT
t uT

t+1 . . . uT
t+h−1]

T represents the sequence

of control commands and h > 0 denotes the horizon length



of prediction. The weight matrices Qξ
τ , Qζ

τ and Rτ are

positive-definite. Note that robot joint acceleration is related

closely to the trajectory smoothness and torque limit, thus we

consider the control command as u = q̈. Similarly to [8],

[9], we exploit the trajectory variations in Cartesian and joint

spaces to design a minimal intervention controller. Namely,

we set Qξ
τ = (Σ̂

ξ

τ )
−1 and Qζ

τ = (Σ̂
ζ

τ )
−1. In this setting,

the covariance of the probabilistic reference trajectory is

viewed as an importance measure for the tracking problem,

which implies that a large tracking error is allowed for the

large covariance while a small error is required when the

covariance is small.

Differing from the approaches in [4], [6] that only consider

the position or velocity constraints in Cartesian space and

joint spaces, we consider a control problem (as defined

by (6)) which not only requires to imitate positions and

velocities in both spaces, but also includes a penalty of the

control commands. In contrast to [9] that designs a minimal

intervention controller in either task space or joint space,

the proposed control problem (6) is capable of incorporating

competing constraints from both Cartesian and joint spaces

and meanwhile preferring small control efforts at the control

level.

B. Transformation of Cartesian Constraints

In comparison with the finite horizon LQR that typically

relies on a linear dynamics model, it is non-trivial to solve (6)

since a non-linear forward kinematics is involved. In order to

make the problem in (6) tractable, we transform the Cartesian

constraint into the joint space. Assuming that robot Jacobian

function J(q) is available, we have

qt = qt−1 + J†(pt − pt−1) + (I− J†J)M(θ)δt

q̇t = J†ṗt + (I− J†J)M(θ)
, (7)

where J† = JT (JJT )−1, δt > 0 denotes the time interval

and M(θ) = Φ(t)Tθ represents the null space with basis

functions Φ(t) and associated hyper-parameters θ. For sim-

plicity, we write J instead of J(qt−1). Furthermore, (7) can

be rewritten in a compact form as
[
qt

q̇t

]

︸︷︷︸

ζ̂
c

t

=

[
J† 0

0 J†

]

︸ ︷︷ ︸

J1

[
pt

ṗt

]

︸︷︷︸

ξ̂
t

+

[
I−J†J 0

0 I−J†J

]

︸ ︷︷ ︸

J2

[
M(θ)δt
M(θ)

]

︸ ︷︷ ︸

M̂(θ)

+

[

qt−1 − J†pt−1

0

]

︸ ︷︷ ︸

C

.

(8)

On the basis of the distribution of ξ̂t, we can estimate

the transformed joint constraint ζ̂
c

t whose expectation and

covariance are

µ̂
c
t = E(ζ̂

c

t) = J1µ̂
ξ
t + J2M̂(θ) +C

Σ̂
c

t = D(ζ̂
c

t) = J1Σ̂
ξ

tJ
T
1 .

(9)

It is noted that the new joint constraint depends on the robot

null space parameters θ. Unlike previous work in [4], [6] that

neglects the robot null space, we exploit M(θ) to enrich the

transformation from Cartesian space into joint space.

C. Optimization Criterion for Null-Space Parameters

Let us first revisit the problem formulation in (6). Since

the Cartesian constraint ξ̂t is transformed into a new joint

constraint ζ̂
c

t , we consider the following objectives

e1 =

t+h∑

τ=t

(ζτ−µ̂
c
τ )

T (Σ̂
c

τ )
−1(ζτ−µ̂

c
τ ) and

e2 =

t+h∑

τ=t

(ζτ−µ̂
ζ
τ )

T(Σ̂
ζ

τ )
−1(ζτ−µ̂

ζ
τ ).

(10)

With the definition of multivariate Gaussian distribution

[12], the minimization of e1 and e2 are equivalent to the

maximization of m1 =
∏t+h

τ=t N (ζτ |µ̂
c
τ , Σ̂

c

τ ) and m2 =
∏t+h

τ=t N (ζτ |µ̂
ζ
τ , Σ̂

ζ

τ ), respectively. However, due to the pos-

sible conflict between both maximum likelihood problems,

it is almost impossible to maximize m1 and m2 simul-

taneously. Thus, an intuitive way to do it is to minimize

the inconsistency between N (µ̂c
τ , Σ̂

c

τ ) and N (µ̂ζ
τ , Σ̂

ζ

τ ). As

a natural approach to measure the distance between two

probability distributions, the well-known Kullback-Leibler

(KL) divergence [12], [13] has been applied in many areas

such as policy search [14] and trajectory optimization [15].

Here, we minimize the KL-divergence based objective

Jkl(θ) =

N∑

τ=1

DKL

(

N (µ̂ζ
τ , Σ̂

ζ

τ )||N (µ̂c
τ , Σ̂

c

τ ;θ)
)

(11)

with

DKL

(
N (µ̂ζ

τ , Σ̂
ζ

τ )||N (µ̂c
τ , Σ̂

c

τ )
)
=

1

2

(

log
|Σ̂

c

τ |

|Σ̂
ζ

τ |
− O

+Tr
(

(Σ̂
c

τ )
−1Σ̂

ζ

τ

)

+(µ̂c
τ−µ̂

ζ
τ )

T (Σ̂
c

τ )
−1(µ̂c

τ−µ̂
ζ
τ )

) (12)

in order to reduce the conflict between the transformed and

the demonstrated joint distributions, where | · | and Tr(·)
represent the determinant and trace of matrix, respectively.

Note that (11) depends on θ, thus we can search for

the optimal θ that minimizes (11). To do so, many al-

gorithms can be employed, e.g., gradient-based [16] and

reward-weighted approaches [17]. We take the variant of

policy improvement with path integrals [18] as an example.

Assuming that we have defined an exploration distribution

θ∼N (θ(0), σ2I) with θ(0) being the initial parameters, we

can sample θl from this Gaussian distribution and measure

the corresponding cost cl = Jkl(θl) according to (11). With

L roll-outs, we can update θ by θ(1)=
∑

L

l=1
exp(−αcl)θl∑

L

l=1
exp(−αcl)

,

where α > 0 is a constant. Similarly, by iteratively updating

θ until it converges, the optimal θ∗ can be determined.

Finally, with the optimal θ∗ we can retrieve the transformed

joint distribution by using (9). In this case, the original



objective (6) becomes

J̃(U) =

t+h∑

τ=t

(

(ζτ − µ̂
c
τ )

T (Σ̂
c

τ )
−1(ζτ − µ̂

c
τ )

+ (ζτ− µ̂
ζ
τ )

T (Σ̂
ζ

τ )
−1(ζτ− µ̂

ζ
τ )

)

+

t+h−1∑

τ=t

uT
τ Rτuτ .

(13)

Now, the objective (13) is represented in joint space. Simi-

larly to the finite horizon LQR [9], [10], we can derive an

analytic solution to (13).

D. Minimal Intervention Control with Competing Con-

straints

Let us write the system dynamics in joint space as

ζt+1 =

[
I δtI
0 I

]

︸ ︷︷ ︸

A

ζt +

[
0

δtI

]

︸ ︷︷ ︸

B

ut. (14)

Then, given the current joint state ζt, we can predict the

joint state sequence {ζτ}
t+h
τ=t by iteratively using (14) (see

[10] for details), i.e.,










ζt

ζt+1

ζt+2
...

ζt+h










︸ ︷︷ ︸

ζ̄

=










I

A

A2

...

Ah










︸ ︷︷ ︸

Ā

ζt+










0 0 · · · 0

B 0 · · · 0

AB B · · · 0
...

...
. . . 0

Ah−1B Ah−2B · · · B










︸ ︷︷ ︸

B̄








ut

ut+1

...

ut+h−1








︸ ︷︷ ︸

U

.

(15)

Furthermore, we can rewrite (13) into a compact form

J̃(U) = (ζ̄ − µ̄c)T (Σ̄
c
)−1(ζ̄ − µ̄c)

+ (ζ̄ − µ̄ζ)T (Σ̄
ζ
)−1(ζ̄ − µ̄ζ) +UT R̄U.

(16)

with

µ̄c = [(µ̂c
t)

T (µ̂c
t+1)

T . . . (µ̂c
t+h)

T ]T

Σ̄
c
= blockdiag(Σ̂

c

t , Σ̂
c

t+1, . . . , Σ̂
c

t+h)

µ̄ζ = [(µ̂ζ
t )

T (µ̂ζ
t+1)

T . . . (µ̂ζ
t+h)

T ]T

Σ̄
ζ
= blockdiag(Σ̂

ζ

t , Σ̂
ζ

t+1, . . . , Σ̂
ζ

t+h)

R̄ = blockdiag(Rt,Rt+1, . . . ,Rt+h−1)

. (17)

By substituting (15) (i.e., ζ̄= Āζt + B̄U) into (16) and

calculating its derivative with respect to U, we can derive

the optimal U∗ as

U∗ =
(

B̄
T
(Σ̄

c
)−1B̄+ B̄

T
(Σ̄

ζ
)−1B̄+ R̄

)−1

(

B̄
T
(Σ̄

c
)−1(µ̄c− Āζt)+B̄

T
(Σ̄

ζ
)−1(µ̄ζ− Āζt)

). (18)

Note that if we only consider the joint space constraint in

(13), i.e., (Σ̂
c

τ )
−1 = 0, the optimal solution (18) is exactly

the solution to the finite horizon LQR [10]. The approach is

summarized in Algorithm 1.

Algorithm 1 Minimal intervention control with competing

constraints

1: Collect demonstrations {{tn,m, ξn,m, ζn,m}Nn=1}
M
m=1

2: Extract probabilistic reference trajectories {ξ̂t, ζ̂t}
N
t=1

3: Transform Cartesian constraint into joint space using (9)

4: Optimize null space parameters θ so as to minimize (11)

5: Set h and {Rt}
N−1
t=1

6: for t = 1 to N − 1 do

7: Determine µ̄c, Σ̄
c
, µ̄ζ , Σ̄

ζ
and R̄ using (17)

8: Compute the optimal command U∗ by using (18)

9: Control the robot joint using u∗
t

10: end for

IV. DUAL INTERPRETATION OF MINIMAL INTERVENTION

CONTROL

The optimal solution (18) can be interpreted from a dual

perspective. Let us denote

Σ̄
d
=

(

(Σ̄
c
)−1 + (Σ̄

ζ
)−1

)−1

and

µ̄d = Σ̄
d
(

(Σ̄
c
)−1µ̄c+(Σ̄

ζ
)−1µ̄ζ

) , (19)

then (18) can be rewritten as

U∗=
(

B̄
T
(Σ̄

d
)−1B̄+R̄

)−1(

B̄
T
(Σ̄

d
)−1(µ̄d−Āζt)

)

, (20)

which is the solution of the finite horizon LQR defined by

J̃d(U) = (ζ̄ − µ̄d)T (Σ̄
d
)−1(ζ̄ − µ̄d) +UT R̄U

=

t+h∑

τ=t

(ζτ−µ̂
d
τ )

T (Σ̂
d

τ )
−1(ζτ−µ̂

d
τ ) +

t+h−1∑

τ=t

uT
τ Rτuτ ,

(21)

where
µ̄d = [(µ̂d

t )
T (µ̂d

t+1)
T . . . (µ̂d

t+h)
T ]T

Σ̄
d
= blockdiag(Σ̂

d

t , Σ̂
d

t+1, . . . , Σ̂
d

t+h)

Σ̂
d

τ =
(

(Σ̂
c

τ )
−1 + (Σ̂

ζ

τ )
−1

)−1

µ̂
d
τ = Σ̂

d

τ

(

(Σ̂
c

τ )
−1µ̂

c
τ+(Σ̂

ζ

τ )
−1µ̂

ζ
τ

)

. (22)

Thus, for the problem defined in (13), we can first calculate

the product of the transformed joint distribution N (µ̂c
τ , Σ̂

c

τ )

and the demonstrated joint distribution N (µ̂ζ
τ , Σ̂

ζ

τ ), and sub-

sequently employ the typical finite horizon LQR to calculate

the optimal control command (joint acceleration in our case),

leading to (20).

Note that similar insights have been pointed out in [4], [6],

showing that Gaussian product can be used to mix competing

constraints. Similarly, Gaussian product is also exploited in

[10] when multiple constraints in different coordinate sys-

tems arise. However, these results are established at the pure

trajectory level. Namely, they focus on generating an optimal

trajectory that can address various trajectory constraints. In

contrast, we here focus on a control problem and prove

that (13) can be simplified by replacing different trajectory

constraints by their Gaussian product (as shown in (21)),

which offers an interesting insight when the previous work

[4], [6] are combined with the finite LQR.



Fig. 2. Illustration of the writing task in a simulated robot, where the red curve depicts the robot motion direction.
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Cartesian trajectories as well as the first, third and sixth joint trajectories
are shown. The ellipses represent Gaussian components.

V. EVALUATIONS

In this section, we consider a writing task in a simulated 7-

DoF Barrett robot, as depicted in Fig. 2. In order to verify the

effectiveness of the null space exploration, we first compare

our approach with previous work [4], [6] that ignores the

robot null space (Section V-A). Then, we evaluate the

tracking performance of both methods with/without external

disturbances (Section V-B).

A. Evaluation of the Null-space Exploration

We collected six demonstrations for the writing task, as

shown in Fig. 3 and Fig. 4, where the letter ‘D’ was written.

It can be observed from Fig. 4 that the robot Cartesian

trajectory in x1 direction has a large variation in the time

interval 8− 14s. Besides, the joint trajectories q3 at 5− 8s
and q6 at 8− 14s are also less consistent. In the context of

our framework, the trajectory segments with high variability

in Cartesian or joint space correspond to small values of Qξ
τ

or Qζ
τ due to the large covariance, which hence allows for

large tracking errors.
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Fig. 5. The error-bar curve of KL-divergence between the transformed
and original joint distributions when optimizing the null space parameters
θ, where vertical bars denote the standard deviations.
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Fig. 6. The tracking Cartesian and joint trajectories with different methods
under perturbations, where red and blue curves correspond to our approach
and previous method, respectively. Gray curves represent the reference
trajectories extracted from demonstrations.

Following Algorithm 1, we use GMM to model the

distributions of demonstrated trajectories in Cartesian and

joint spaces, respectively. Subsequently, we employ GMR

to extract probabilistic reference trajectory in each space.

As can be seen in Fig. 4, the modeling result from GMM

coincides with our observation of demonstration data, i.e.,

trajectory segments with small/large variations are associated

with small/large covariances.

In order to show the effectiveness of the null space

exploration, we transform the Cartesian constraints into joint

space using our approach (where the normalized Gaussian

functions are used as basis functions Φ(t)) and the previous

method [4], [6], respectively. Specifically, we show the pro-

cess of learning θ in terms of the cost (11) in Fig. 5, where

the converged cost is around 300. In contrast, the cost of

previous methods [4], [6] is 614.55. Thus, the optimization of

the robot null space effectively reduces the conflict between

Cartesian and joint constraints.



TABLE I

EVALUATION OF DIFFERENT METHODS

Without perturbation With perturbation
Our approach Previous method [4], [6] Our approach Previous method [4], [6]

ce 3.18× 10
3

1.44× 10
4

5.83× 10
3

2.07× 10
4

cu 9.99 9.53 84.31 83.93

B. Evaluations of Tracking Competing Trajectories

Now, we apply our method and the previous method [4],

[6] to the tracking problem (6), where we consider the cases

with and without external perturbations. The perturbations

are added to the acceleration of seven joints directly during

the time interval 2.8 − 5.6s and 8.4 − 11.2s with a fixed

magnitude 0.2 rad/s2. In order to compare both methods

properly, we use the following two cost functions

ce=

N∑

τ=1

(ξτ−µ̂
ξ
τ )

T(Σ̂
ξ

τ )
−1(ξτ−µ̂

ξ
τ )+(ζτ−µ̂

ζ
τ )

T(Σ̂
ζ

τ )
−1(ζτ−µ̂

ζ
τ )

cu =

N∑

τ=1

uT
τ uτ

,

(23)

where ce and cu correspond to the tracking cost and control

effort. The comparison result is summarized in Table I, show-

ing that with similar control efforts our approach achieves

significantly smaller tracking errors. The simulated robot

trajectories under perturbations are provided in Fig. 6. Both

approaches are capable of generating trajectories that are

near to the ones extracted from demonstrations. However,

our method has smaller tracking errors in x1, q3 and q6.

Thus, we can conclude that by exploiting the robot null space

towards reducing the conflict between competing constraints,

the robot performance in term of (23) is indeed improved.

VI. CONCLUSIONS AND FUTURE WORK

We have studied the minimal intervention control as-

sociated with competing constraints and proved that the

conflict between competing constraints can be reduced by

minimizing a KL-divergence based objective. Moreover, we

showed that the solution of the formulated control problem

can be viewed as a classical finite horizon LQR. As shown

in evaluations, by exploiting the robot null space we can

achieve smaller tracking errors with similar control efforts.

Note that this paper only considers competing constraints

that are extracted from demonstrations, which might prevent

its application to the cases where significantly different

trajectories from demonstrated examples are required. One

extension could be the combination of trajectory adaptation

approaches (e.g., various movement primitives [19], [20],

[21] and hybrid imitation learning [7]) and the presented

work. Also, we set the weight matrix R in (6) empirically,

which is undesired for complicated systems. Thus, a further

extension could be the learning of R (e.g., the energy-

inspired estimation of R [22]). In addition, as done in

previous works (e.g., [23]), the additional constraint can be

viewed as a secondary objective in the robot null space,

offering an alternative solution for combining Cartesian and

joint trajectory constraints, and hence further investigation is

still needed.
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