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Generalized Orientation Learning in Robot Task Space

Yanlong Huang, Fares J. Abu-Dakka, João Silvério, and Darwin G. Caldwell

Abstract— In the context of imitation learning, several ap-
proaches have been developed so as to transfer human skills
to robots, with demonstrations often represented in Cartesian
or joint space. While learning Cartesian positions suffices for
many applications, the end-effector orientation is required
in many others. However, several crucial issues arising from
learning orientations have not been adequately addressed yet.
For instance, how can demonstrated orientations be adapted to
pass through arbitrary desired points that comprise orientations
and angular velocities? In this paper, we propose an approach
that is capable of learning multiple orientation trajectories
and adapting learned orientation skills to new situations (e.g.,
via-point and end-point), where both orientation and angular
velocity are addressed. Specifically, we introduce a kernelized
treatment to alleviate explicit basis functions when learning
orientations. Several examples including comparison with the
state-of-the-art dynamic movement primitives are provided to
verify the effectiveness of our method.

I. INTRODUCTION

In many complicated tasks (e.g., bi-manual manipulation

[1] and robot table tennis [2], [3]), it is typically hard to

manually define proper trajectories for robots beforehand,

hence imitation learning is suggested in order to easily trans-

fer human skills to robots [4]. The basic idea of imitation

learning is to model movement patterns that underlie human

skills and subsequently employ these patterns in new situa-

tions. Many results of imitation learning have been reported

in the past few years, such as dynamic movement primitives

(DMP) [5], probabilistic movement primitives (ProMP) [6],

task-parameterized Gaussian mixture model (TP-GMM) [7],

[8] and kernelized movement primitives (KMP) [9].

While the aforementioned skill learning approaches have

been proven effective in robot trajectory generation [10], [11]

(i.e., Cartesian and joint positions), learning of orientation

in task space still imposes great challenges. Unlike position

operations in Euclidean space, orientation is accompanied

by additional constraints, e.g., the unit norm of the quater-

nion representation or the orthogonal constraint of rotation

matrices. In many previous work, quaternion trajectories

are learned and adapted via skill learning approaches (e.g.,

TP-GMM [1] and DMP [12]) without considering the unit

norm constraint, leading to improper quaternions and hence

requiring an additional renormalization.

Instead of learning quaternions in Euclidean space, a few

approaches that comply with orientation constraints have

been proposed. One recent approach is built on DMP [13],

[14], where quaternions were used to represent orientation
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and a reformulation of DMP was developed to ensure proper

quaternions over the course of orientation adaptation. How-

ever, [13], [14] can only adapt quaternions towards a new

target with zero angular velocity due to the spring-damper

dynamics that is inherited from the original DMP. Similar

issue also arises in the contracting dynamics model [15].

Another solution of learning orientation was proposed in

[16], where GMM was employed to model the distribution

of quaternion displacements so as to avoid the quaternion

constraint. However, this approach only focuses on orienta-

tion reproduction without addressing the adaptation issue. In

contrast to [16] that learns the quaternion displacement, the

Riemannian topology of the S
3 manifold was exploited in

[17] to probabilistically encode and reproduce distributions

of quaternions. Moreover, [17] provides an extension to

task-parameterized movements, which allows for adapting

orientation tasks to different initial and final orientations.

However, adaptation to orientation via-points and angular

velocities is not provided.

If we consider the problem of adapting quaternions and

angular velocities to pass through arbitrary desired points

(e.g., via-point and end-point), no previous work in the scope

of imitation learning (e.g., [1], [12], [13], [14], [15], [16],

[17]) provides an all-encompassing solution. In addition, as

suggested in [7], [18], probability distributions of multiple

demonstrations could facilitate learning of important motion

features and the design of optimal controllers [19], [20],

[21]. However, due to the orientation constraint, it is not

straightforward to model distributions of orientations, unlike

Cartesian and joint positions. In this paper, we aim at pro-

viding a solution that is capable of learning multiple quater-

nion trajectories (Section II) while allowing for adaptations

towards arbitrary desired points that consist of quaternions

and angular velocities (Section III). For the purpose of clear

comparison, the main contributions of the state-of-the-art

approaches and our approach are summarized in Table I.

II. LEARNING PROBABILISTIC ORIENTATION

TRAJECTORIES

As an effective way to represent orientation in task

space, quaternions have been studied extensively, e.g., [1],

[13], [14], [15], [16], [17]. However, due to the unit norm

constraint, the direct probabilistic modeling of quaternion

trajectories becomes intractable. Inspired by [13], [16], [17],

we propose to transform quaternions into Euclidean space,

which hence allows for the probabilistic modeling of trans-

formed trajectories (Section II-A). Subsequently, we exploit

the distribution of transformed trajectories using a kernelized



TABLE I

COMPARISON AMONG THE STATE-OF-THE-ART AND OUR APPROACH

Probabilistic Unit-norm Via-quaternion Via-angular velocity End-quaternion End-angular velocity

Silvério et al. [1] X - - - X -

Pastor et al. [12] - - - - X -∗

Ude et al. [13], Abu-dakka et al. [14] - X - - X -∗

Ravichandar et al. [15] X X - - X -∗

Kim et al. [16] X X - - - -

Zeestraten et al. [17] X X - - X -

Our approach X X X X X X

* In these works, primitives end with zero angular velocity, i.e., one can not set a desired non-zero velocity.

approach based on KMP [9], whose predictions allow for the

retrieval of proper quaternions (Section II-B).

A. Probabilistic Modeling of Quaternion Trajectories

A straightforward way of modeling quaternions is to trans-

form them into Euclidean space, as done in [13], [16], [17].

For the sake of clarity, let us define quaternions q1 = v1+u1

and q2 = v2 + u2, where qi ∈ S
3, vi ∈ R and ui ∈ R

3,

i ∈ {1, 2}. Besides, we write q̄2 = v2−u2 as the conjugation

of q2 and, q = q1 ∗ q̄2 = v + u as the quaternion product1

of q1 and q̄2. The function log(·) : S3 7→ R
3 that can be

used to determine the difference vector between q1 and q2

is defined as [13]

log(q1 ∗ q̄2) = log(q) =







arccos(v)
u

||u||
,u 6= 0

[0 0 0]⊤, otherwise.

(1)

With this function, demonstrated quaternions can be pro-

jected into Euclidean space.

Assuming that we can access a set of demonstrations

Dq = {{tn,m,qn,m}Nn=1}
M
m=1 with N being the time length

and M the number of demonstrations, where qn,m denotes

a quaternion at the n-th time-step from the m-th demonstra-

tion. Note that two quaternions are needed in (1) so as to

carry out the difference operation, we introduce an auxiliary

quaternion qa, which is subsequently used for transforming

demonstrated quaternions into Euclidean space, yielding new

trajectories as Dζ = {{tn,m, ζn,m, ζ̇n,m}Nn=1}
M
m=1 with

ζn,m = log(qn,m ∗ q̄a) (2)

and ζ̇n,m ∈ R
3 being the derivative of ζn,m ∈ R

3. Please

note that the new trajectories Dζ can be used to recover

quaternion trajectories Dq , as explained in Section II-B.

For the purpose of simplicity, we denote η = [ζ⊤ ζ̇
⊤

]⊤ and

accordingly Dζ becomes Dη = {{tn,m,ηn,m}Nn=1}
M
m=1.

From now on, we can apply various probabilistic modeling

approaches to new trajectories Dη . To take GMM as an

example [7], the joint probability distribution P(t,η) can

be estimated through expectation-maximization algorithm,

leading to

P(t,η) ∼
C
∑

c=1

πcN (µc,Σc), (3)

1Quaternion product is defined as: (v1 + u1) ∗ (v2 + u2) = (v1v2 −
u⊤

1u2) + (v1u2 + v2u1 + u1 × u2).

where πc denotes prior probability of the c-th Gaussian

component whose mean and covariance are, respectively,

µc =

[

µt,c

µη,c

]

and Σc =

[

Σtt,c Σtη,c

Σηt,c Σηη,c

]

2. Furthermore,

Gaussian mixture regression (GMR) [7], [22] can be utilized

to retrieve the conditional probability distribution

P(η|t) =
C
∑

c=1

hc(t)N (µ̄c(t), Σ̄c) (4)

with hc(t) =
πcN (t|µt,c,Σtt,c)

∑
C
i=1

πiN (t|µt,i,Σtt,i)
, µ̄c(t) = µη,c +

Σηt,cΣ
−1
tt,c(t − µt,c) and Σ̄c = Σηη,c − Σηt,cΣ

−1
tt,cΣtη,c.

Note that the result in (4) can be approximated by a single

Gaussian, i.e.,

P(η|t) = N (µ̂t, Σ̂t) (5)

with µ̂t = hc(t)µ̄c(t) and Σ̂t = hc(t)
(

µ̄c(t)µ̄
⊤

c(t) + Σ̄c

)

−
µ̂tµ̂

⊤

t , Please refer to [7], [9], [22] for more details. There-

fore, for a given time sequence {tn}
N
n=1, a probabilistic

reference trajectory Dr = {tn, µ̂n, Σ̂n}
N
n=1 can be obtained.

Note that Dr can be viewed as representative of Dη since

it encapsulates the distribution of trajectories in Dη in terms

of mean and covariance, and hence we exploit Dr instead

in the next subsection.

B. Learning Quaternions Using A Kernelized Approach

As done in KMP [9], [23], we first write η in a parame-

terized way3, i.e.,

η(t)=

[

ζ(t)

ζ̇(t)

]

=Θ⊤(t)w=



















φ⊤(t) 0 0

0 φ⊤(t) 0

0 0 φ⊤(t)

φ̇
⊤

(t) 0 0

0 φ̇
⊤

(t) 0

0 0 φ̇
⊤

(t)



















w (6)

with φ(t) ∈ R
B being a B-dimensional basis function

vector. Note that the parameter vector w ∈ R
3B is unknown.

In order to learn the probabilistic reference trajectories

2For the sake of notation consistency, we still use vector notations ut,c

and Σtt,c to represent scalars.
3Similar parametric strategies were used in DMP [5] and ProMP [6].



Fig. 1. Overview of quaternion reproduction and adaptation. Top row: given demonstrated quaternion trajectories, we first transform them into Euclidean
space and model these obtained trajectories using GMM. Subsequently, we can extract a probabilistic reference trajectory by using GMR. Finally, we
learn the reference trajectory using a kernelized learning approach and retrieve a trajectory (in Euclidean space) that is later used to recover a quaternion
trajectory. Bottom row: Given desired quaternion states, we transform them into Euclidean space and, subsequently, concatenate new desired points with
the reference trajectory (extracted from original demonstrations). Similarly to the reproduction case, we can generate the adapted trajectory in Euclidean
space and recover its corresponding quaternion trajectory.

Dr, we consider the problem of maximizing the posterior

probability4

J(w) =

N
∏

n=1

P(Θ⊤(tn)w|µ̂n, Σ̂n). (7)

It can be proved that the optimal solution w∗ to (7) can be

computed as

w∗=argmin
w

N
∑

n=1

(Θ⊤(tn)w−µ̂n)
⊤

(Σ̂n)
−1(Θ⊤(tn)w−µ̂n) ,

(8)

where the objective to be minimized can be viewed as the

sum of covariance-weighted squared errors.

Like kernel ridge regression [24], [25], [26], the optimal

solution w∗ of (8) can be computed. Thus, for an inquiry

point t∗, its corresponding output η(t∗) can be predicted as

(see [9] for details)

η(t∗) = Θ(t∗)⊤w∗ = Θ(t∗)⊤Φ(Φ⊤Φ+ λΣ)−1µ (9)

where λ > 0 is a small constant and

Φ = [Θ(t1)Θ(t2) · · · Θ(tN )],

Σ = blockdiag(Σ̂1, Σ̂2, . . . , Σ̂N ),

µ = [µ̂⊤

1 µ̂
⊤

2 · · · µ̂⊤

N ]⊤.

(10)

Furthermore, (9) can be kernelized as

η(t∗) = k
∗(K+ λΣ)−1µ (11)

with k
∗
[i] = k(t∗, ti) and K[i,j] = k(ti, tj), i ∈

{1, 2, . . . , N}, j ∈ {1, 2, . . . , N}, where k∗
[i] ∈ R

6×6 denotes

the block-component at the i-th column of k
∗ ∈ R

6×6N ,

4In contrast to KMP [9] that estimates the distribution of w from an
information-theory perspective, we here follow the treatment in [23] where
w is considered as an unknown but deterministic parameter vector.

K[i,j] ∈ R
6×6 denotes the block-component at the i-th row

and the j-th column of K ∈ R
6N×6N , k(·, ·) is defined by

k(ti, tj)=Θ(ti)
⊤Θ(tj)=

[

kt,t(ti, tj)I3 kt,d(ti, tj)I3
kd,t(ti, tj)I3 kd,d(ti, tj)I3

]

(12)

with5

kt,t(ti, tj)=k(ti, tj),

kt,d(ti, tj)=
k(ti, tj + δ)− k(ti, tj)

δ
,

kd,t(ti, tj)=
k(ti + δ, tj)− k(ti, tj)

δ
,

kd,d(ti, tj)=
k(ti+δ, tj+δ)−k(ti+δ, tj)−k(ti, tj+δ)+k(ti, tj)

δ2
,

where δ > 0 is a very small constant and k(ti, tj) =
φ(ti)

⊤φ(tj) represents the kernel function.

Let us recall that quaternion trajectories have been trans-

formed into Euclidean space by using (1) (as explained in

Section II-A). Thus, once we have determined η(t∗) at a

query point t∗ via (11), we can use its position component

ζ(t∗) to recover the corresponding quaternion q(t∗). Specif-

ically, q(t∗) is determined by

q(t∗) = exp(ζ(t∗)) ∗ qa, (13)

where the function exp(·) : R3 7→ S
3 is [13]

exp(ζ) =







cos(||ζ||) + sin(||ζ||)
ζ

||ζ||
, ζ 6= 0

1 + [0 0 0]⊤, otherwise.

(14)

An overview of learning quaternions is depicted in the top

row of Fig. 1. So far, the developed approach is limited for

orientation reproduction, we will show orientation adaptation

in the next section, where quaternion and angular-velocity

5Note that φ̇(t) is approximated by φ̇(t) ≈
φ(t+δ)−φ(t)

δ
in order to

facilitate the following kernelized treatment.



Algorithm 1 Quaternion adaptations towards desired points

1: Learn from demonstrations

- Define qa and collect demonstrated quaternions

Dq = {{tn,m,qn,m}Nn=1}
M
m=1

- Transform Dq into Euclidean space via (2), yielding

Dη = {{tn,m,ηn,m}}Nn=1}
M
m=1

- Model the joint distribution P(t,η) fromDη using (3)

- Extract the probabilistic reference trajectory Dr =
{tn, µ̂n, Σ̂n}

N
n=1 via (5)

2: Update reference trajectory

- Set desired quaternion states D̃q = {t̃h, q̃h, ω̃h}
H
h=1

- Set covariances {Σ̃h}
H
h=1 for adaptation precisions

- Transform D̃q via (15) and (19), yielding an additional

reference trajectory D̃r={t̃h, η̃h, Σ̃h}
H
h=1

- Update Dr by concatenating Dr and D̃r

3: Predict adapted quaternions

- Define λ and k(·, ·)
Input: the query point t∗

- Compute k
∗, K, Σ and µ using (10) and (12)

- Predict η(t∗) through (11)

- Predict q(t∗) using ζ(t∗) through (13)

Output: q(t∗)

profiles can be modulated so as to pass through any desired

points (e.g., via-/end- points).

III. ADAPTATION OF ORIENTATION TRAJECTORIES

Similarly to trajectory adaptation in terms of Cartesian

and joint positions (and/or velocities) [5], [6], [7], [8], [9],

the capability of adapting orientation in Cartesian space is

also important for robots in many cases (e.g. bi-manual

operations and pouring tasks). To take a pouring task as

an example, the orientation of the bottle should be adapted

according to the height of the cup. In this section, we

consider the problem of adapting orientation trajectory in

terms of desired quaternions and angular velocities. To

do so, we propose to transform desired orientation states

into Euclidean space (Section III-A), and subsequently we

reformulate the kernelized learning approach to incorporate

the transformed desired points (Section III-B). Finally, the

adapted trajectory in Euclidean space can be used to retrieve

its corresponding adapted quaternion trajectory. An overview

of adapting quaternions is depicted in the bottom row of

Fig. 1.

A. Transform Desired Quaternion States

Let us denote H desired quaternion states as D̃q =
{t̃h, q̃h, ω̃h}

H
h=1, where q̃h and ω̃h represent desired quater-

nion and angular velocity at time t̃h, respectively. Since both

the modeling operation (3)−(5) and the prediction operation

(11) are carried out in Euclidean space, we need to transform

desired quaternion states D̃q into Euclidean space in order

to facilitate adaptations of quaternion trajectories. Similarly

to (2), the desired quaternion q̃h can be transformed as

ζ̃h = log(q̃h ∗ q̄a). (15)

However, in order to incorporate the desired angular velocity

ω̃h, we resort to the relationship between derivatives of

quaternions and angular velocities, i.e., [13]

q̇ =
1

2
ω ∗ q ⇒ q(t+ δt) = exp(

ω

2
δt) ∗ q(t), (16)

where δt > 0 denotes a small constant. By using (16), we

can compute the desired quaternion at time t̃h + δt as

q̃(t̃h + δt) = exp(
ω̃h

2
δt) ∗ q̃h, (17)

which is subsequently transformed into Euclidean space via

(2), resulting in

ζ̃(t̃h + δt) = log(q̃(t̃h + δt) ∗ q̄a)

= log

(

(

exp(
ω̃h

2
δt) ∗ q̃h

)

∗ q̄a

)

.
(18)

Thus, we can approximate the derivative of ζ̃h as

˙̃
ζh ≈

ζ̃(t̃h + δt)− ζ̃h

δt

=
log

((

exp( ω̃h

2 δt) ∗ q̃h

)

∗ q̄a

)

−log(q̃h ∗ q̄a)

δt
.

(19)

Now, the desired quaternion states D̃q can be transformed

into D̃ζ = {t̃h, ζ̃h,
˙̃
ζh}

H
h=1 via (15) and (19), which can be

further rewritten as D̃η = {t̃h, η̃h}
H
h=1 with η̃h = [ζ̃

⊤

h
˙̃
ζ⊤h]

⊤.

In addition, we can design a covariance Σ̃h for each desired

point η̃h to address the precision of adaptations. Namely, a

high or low precision can be enforced by a small or large

covariance, respectively. Thus, we can obtain an additional

probabilistic reference trajectory D̃r = {t̃h, η̃h, Σ̃h}
H
h=1 to

indicate the transformed desired quaternion states.

B. Adaptation of Quaternion Trajectories

Following the adaptation scheme in KMP [9], we refor-

mulate the objective in (8) so that the additional reference

trajectory D̂r is incorporated, leading to a new objective

w∗ = argmin
w

N
∑

n=1

(Θ⊤(tn)w−µ̂n)
⊤

(Σ̂n)
−1(Θ⊤(tn)w−µ̂n)

+

H
∑

h=1

(

Θ⊤(t̃h)w−η̃h

)

⊤

(Σ̃h)
−1
(

Θ⊤(t̃h)w−η̃h

)

,

(20)

which can be further rewritten in a compact way

w∗=argmin
w

N+H
∑

l=1

(Θ⊤(t̄l)w−η̄l)
⊤

(Σ̄l)
−1(Θ⊤(t̄l)w−η̄l)

(21)

with {t̄l = tl, η̄l = µ̂l, Σ̄l = Σ̂l}, l ∈ {1, 2, . . . , N} and

{t̄l = t̃l−N , η̄l = η̃l−N , Σ̄l = Σ̃l−N}, l ∈ {N + 1, N +
2, . . . , N + H}. It can be observed that the new objective

(21) shares the same form with (8), except that the reference

trajectory in (21) is longer than that in (8), thus the solution

of (21) can be determined in a similar way. Finally, η(t) =

[ζ⊤(t) ζ̇
⊤

(t)]⊤ can be computed via (11) and, subsequently,

q(t) is recovered from (13) by using ζ(t). In this case, q(t)



Fig. 2. Evaluations of our approach on simulated examples. (a) shows simulated quaternion trajectories and their corresponding angular velocities. (b)
displays adapted quaternion trajectories towards new target (i.e., end-point) and the corresponding angular velocities by using our approach (b1) and
orientation-DMP [13], [14] (b2). Note that for both approaches the desired movement duration is 10s, the shaded area denotes extra time required for
DMP. The circles with bright colors denote desired quaternions and angular velocities, while the gray circles in (b2) correspond to the delayed desired
points. (c) depicts adapted quaternion and angular velocity profiles with various constraints of desired points.

TABLE II

PLANNED ERRORS OF OUR APPROACH AND ORIENTATION–DMP

Quaternion distance error∗ Angular-velocity error
t = 10s∗∗ t = 15s t = 10s t = 15s

Our approach 0 - 0.0017 -

Orientation–DMP 0.0285 0.0046 0.0513 0.0034

*Quaternion distance is calculated by [13]:

d(q1,q2) =

{

2π, q1 ∗ q̄2 = −1 + [0 0 0]⊤

2|| log(q1 ∗ q̄2)||, otherwise.

**Note that the desired movement duration is 10s.

is capable of passing through the desired quaternions q̃h with

desired angular velocities ω̃h at time t̃h. The entire approach

of quaternion adaptations is summarized in Algorithm 1.

IV. EVALUATIONS

In this section, we report several examples to illustrate

the performance of our approach: (i) orientation adapta-

tion towards a desired target point (Section IV-A), where

orientation-DMP [13], [14] is also employed as a com-

parison; (ii) orientation adaptation towards arbitrary desired

points in terms of quaternions and angular velocities (Sec-

tion IV-A); (iii) Concurrent adaptations of Cartesian position

and orientation (Section IV-B), where a painting task on a

real Barrett WAM robot is carried out.

A. Evaluations on Simulated Quaternion Trajectories

We collected five simulated quaternion trajectories with

time-length 10s as depicted in Fig. 2(a), where minimal

jerk polynomial and renormalization are used to generate

smooth and proper quaternion trajectories. In order to show

the performance of our approach, we first compare it with

orientation–DMP [13], [14]. Since orientation-DMP can only

address target adaptation (while having zero velocity at the

ending point), we consider an example that merely requires

orientation adaptation towards a new target (i.e., quaternion)

with zero angular velocity. The desired point is defined as

t̃1 = 10s, q̃1 = [0.7172 0.3586 0.5123 0.3074], ω̃1 =
[0 0 0]. The auxiliary quaternion qa is set as the initial

value of simulated quaternion trajectories. The Gaussian

kernel k(ti, tj) = exp(−ℓ(ti − tj)
2) with ℓ = 0.01 and the

regularized factor λ = 1 are used in our approach.

The adapted quaternion and angular-velocity profiles by

using our approach and orientation–DMP are provided in

Fig. 2(b1)-(b2). It can be seen from Fig. 2(b1) that our

approach is capable of generalizing learned quaternion trajec-

tories to the new target point q̃1 while having zero angular

velocity at the ending time t̃1. However, orientation–DMP

needs extra time (i.e., depicted by shaded area) to converge

to the desired point. The planned errors of both methods in

comparison with the desired point is summarized in Table II,

showing that our approach achieves much higher precision.

Now, we consider a more challenging adaptation task that

needs various desired points (i.e., via-/end- points) in terms

of quaternion and angular velocity. Note that orientation–

DMP is not applicable in this case. As shown in Fig. 2(c),

our approach indeed modulates quaternions and angular

velocities to pass through various desired points. Specifically,

the overall profiles of quaternion and angular velocity in

demonstrations are maintained in the adaptation situation,

which is a desirable feature of imitation learning.

B. Evaluations on Real Robot

We here consider a painting task that requires the real

Barrett WAM robot to paint different areas with proper

orientations. This task can be accomplished by concurrent

adaptations of translational and rotational motions in Carte-

sian space, where the new painting area and its associated

orientation can be guaranteed by new desired Cartesian

positions and quaternions, in the form of via-point and end-

point.

Through kinesthetic teaching (first row in Fig. 3), six



Fig. 3. Painting task on the real Barrett WAM robot. The First row shows the kinesthetic teaching of the painting task. The Second row and third row

correspond to two adaptation evaluations, where new painting areas and orientations are unseen in demonstrations.

Fig. 4. Evaluations of our approach through a painting task on the real robot. (a) shows demonstrated Cartesian positions and quaternions in the painting
task. (b)-(c) correspond to adapted Cartesian trajectories with various desired points, where solid curves represent planned trajectories by using our approach
and dashed curves denote real measured trajectories. Circles depict desired Cartesian positions and quaternions.

demonstrations comprising time, Cartesian position and

quaternion are recorded, as shown in Fig. 4(a). By following

Algorithm 1, we can modulate demonstrated Cartesian tra-

jectories towards various desired points6. We here consider

two groups of evaluations and in each group two desired

points (i.e., via-point and end-point) are defined. Note that

all desired points in the evaluations are unseen in demon-

strations. Besides, we set the initial Cartesian position and

quaternion as an additional desired point so as to ensure

smooth Cartesian trajectory at the very beginning of move-

ment. The auxiliary quaternion qa is set as the initial value

of demonstrations. Other relevant parameters are ℓ = 0.001
and λ = 1. The adapted Cartesian trajectories are shown in

Fig. 4(b)-(c), where the planned trajectories (solid curves)

and real measured trajectories (dashed curves) are provided.

It can be seen that the planned trajectories are capable

of meeting various constraints, i.e., Cartesian position and

6For the case of adapting translational movement, we can treat Dζ and

D̃ζ as demonstrated and desired Cartesian positions/velocities, respectively.

quaternion constraints. Snapshots of the painting task in new

situations are shown in Fig. 3(second and third rows).

V. CONCLUSIONS

In this paper, we have proposed an approach for adapting

quaternion and angular velocity towards arbitrary desired

points, whose performance has been verified through several

examples including simulated and real experiments. In com-

parison with previous works that mostly focus on orientation

adaptation towards target points, our work allows for broader

applications, particularly when both quaternion and angular

velocity need to be modulated. Note that our method uses the

kernel treatment instead of explicit basis functions (as used

in [13], [14]), hence, it has potential in learning orientation

profiles associated with high-dimensional inputs. We will

focus on this topic in our future work.
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