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In this paper, the design spaces of the 2D and 3D shock control bumps on an infinite 

unswept natural laminar flow wing are investigated by adopting an optimization enhanced 

parametric study method. The design space spanned by the design variables are explored 

through a series of design optimization and their landscapes around the optima are revealed. 

The effects of the bump spacing, bump length and Mach number are investigated 

respectively around the optima. The maximum cross-sectional area, bump incident angle 

and aspect ratio are found to be important design parameters. The associated flow physics is 

discussed in relation to these parameters. The comparative performance of the 2D and 3D 

bumps are explained in the context of the transonic area rule. Two types of flow separation 

are identified by varying the bump aspect ratio at off-design conditions. It is concluded that 

the 2D and 3D shock control bumps can have nearly the same performances at optimal 

designs with similar cross-sectional areas. Some practical design principles and guidelines 

are suggested. 

Nomenclature 

CL = lift coefficient 

CD = drag coefficient 

Cp = pressure coefficient 

Smc = maximum cross-sectional area 

c = chord length 
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α = angle of attack 

θ = bump incident angle 

λ = bump aspect ratio 

I. Introduction 

 

ccording to the Breguet Range Equation, there are two possible ways to improve the aerodynamic efficiency of 

a civil transport aircraft. One is to maximize the lift-drag ratio and the other is to increase the flight velocity. 

However, they conflict with each other when the flight velocity of the aircraft approaches the speed of sound due to 

the appearance of shock waves. In recent years, shock control bumps had been proposed to relieve the detrimental 

effects of the shock waves and potentially this shock control technique will be applied to the next generation civil 

transport aircraft flying at high transonic speeds. 

The concept of 2D shock control bump was first introduced in the literature. The earliest shock control method 

by changing surface curvature can be traced back to Tai’s work in the late 1970s [1]. It was found that theoretically 

the drag-divergence Mach number could be increased by carefully adding a single “hump” on the upper surface of a 

supercritical airfoil. Later this finding was further confirmed by experiments [2]. In the early 1990s, Ashill and 

Fulker [3, 4] proposed to utilize local 2D bumps to reduce the strength of the normal shock waves on laminar flow 

airfoils. Since then the potential of 2D shock control bumps has been investigated by a number of computational and 

experimental studies [5-9]. Some comprehensive investigation has been carried out by two European projects, 

EUROSHOCK I [5] and EUROSHOCK II [8]. The studies have shown that local contour bumps are the most 

efficient shock control devices if drag reduction is considered as the primary design objective. The shortcomings of 

2D bumps were confirmed in their research with poor off-design performance. To improve the robustness of shock 

control bumps, Stanewsky [7] suggested that deformable bumps or adaptive bumps should be adopted, but at the 

cost of an increase of structure weight and complexity. 

To unleash the possibility of robust shock control bumps and for convenient distribution over 3D wings, 3D 

shock control bumps were proposed and investigated by Qin et al. [10] and their advantage in comparison to the 2D 

bump in design robustness was highlighted [11]. By allowing geometric variation in the span-wise direction, it is 

possible to further improve the performance of shock control bumps. Later a combined research between Qin [11-

13] and Babinsky [14, 15] has shown that 3D bumps can achieve the same level of drag reduction as 2D bumps and 
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are more robust in some cases. It is obvious that 3D bumps can be more easily integrated into the structure of the 

wing and more easily deformed actively due to their geometrical compactness, considering the potential 

development of adaptive bumps. Furthermore, 3D bumps also provide the possibility to generate streamwise 

vortices [15-17], which are beneficial for improving the off-design performances, such as buffet alleviation, 

investigated by Eastwood and Jarrett [18]. Recently, Jones et al. [19] investigated the effects of swept flows for 3D 

bumps, and a new geometric parameter, termed bump orientation, was found to be crucial to the performance under 

swept flows. Hinchliffe and Qin [20] achieved significant drag reduction by placing 3D bumps in the sensitivity 

regions on the M6 wing upper surface. Recent research on 3D shock control bumps was well summarized by Bruce 

and Colliss [21]. 

Since the beginning of the 3D bump investigation, some distinct features are identified by numerous researchers. 

For 2D bumps, a normal shock wave can be turned into a series of compression waves for a contoured bump or a λ-

structured shock wave for a ramp bump, reducing entropy increase in both cases. Ideally, the former can lead to an 

isentropic compression in place of a shock wave with total elimination of the wave drag. For a 3D bump, researchers 

have also observed similar wave structures along its center axis both in the experiments and simulations, and these 

structures will decay in the spanwise direction due to the reduction of local effective bump. One interesting finding 

reported by Ogawa et al. [15] is that this decay is actually quite slow and the 3D controlled wave structure covers a 

much larger area than the actual 3D bump geometry. Another discovery made by Qin et al. [11] is that the optimized 

3D bumps tend to be much higher than the optimized 2D bumps at the same conditions.  

However, there are still some remaining unsolved problems regarding the understanding of the flow physics for 

shock control bumps. One of these is why an optimized 3D bump performs similarly with an optimized 2D bump. 

Bruce and Colliss [21] argued that the reason is that an array of spanwise spaced discrete 3D bumps can produce a 

quasi-2D shock structure due to the overlap of flow structures of adjacent 3D bumps. However, in the numerical 

simulations by Qin et al. [11] and König et al. [22], it is obvious that the flow fields exhibit strong three-dimensional 

structures in terms of surface pressure distributions, although the spanwise wave patterns do exhibit some similarity. 

After reviewing numerous research works focusing on the comparison of 2D and 3D bumps, Bruce and Colliss [21] 

pointed out that the relation between 2D and 3D bumps was still unclear. 

In this work, an optimization enhanced parametric study method has been developed to explore the design spaces 

for both 2D and 3D contour bumps on an infinite unswept natural laminar flow wing. It is believed that the 



interaction of the design variables can be properly investigated by this novel parametric study method so that more 

flow physics can be unraveled to help understand the aerodynamic performance of shock control bumps. The 

detailed quantitative relationship between 2D and 3D bumps will be established and the effects of key shock control 

parameters will be investigated in detail.  

The paper first describes the methods used for analyses, including the parameterization methods of shock control 

bumps and the optimization enhanced parametric study method. Then the validation of the CFD solver is presented. 

Finally, the effects of shock control parameters are examined and the flow mechanisms of both 2D and 3D bumps 

are discussed, before the paper is concluded. 

II. Methods 

A. Parameterization of 2D and 3D bumps 

In this study, the bumps are added on the top of a given wing surface and the bump function represents the 

difference between the datum wing surface and the bump surface. Following the work of Qin et al. [11], a 2D 

contour bump is designed by four parameters, as illustrated in Figure 1a, which are bump length (L), bump crest 

position ( ), relative crest position (R) and bump height (H). Two different third order polynomials are used to 

represent the shape of a 2D bump, let them be  and , respectively. Then, the equations for a 2D bump can 

be defined as 

                                                               (1a) 

                                                               (1b) 

                                                              (1c) 

                                                             (1d) 

where  is the starting point of the bump and  is the end point of the bump. 

The gradients at the starting point and end point are both set to zero to enforce a tangential condition (C1 ) at the 

intersection points between the bump geometry and the original wing.  



To be consistent with the 2D bump, a 3D bump is generated by gradually decreasing the height of a 2D bump 

along its span-wise direction, and the variation is also represented by a third order polynomial, let it be . It is 

to make sure that the streamwise cross-sectional area distribution of a 3D bump is exactly the same as that of a 2D 

bump if the following conditions are satisfied: a) the maximum cross-sectional area of this 3D bump is equal to that 

of this 2D bump; b) the bump length, bump crest position and relative crest position of them are the same. 
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a) 2D bump                            b) Half of a 3D bump 

Fig. 1 Parameterization of shock control bumps. 

Figure 1b shows a schematic of the parameters for half of a 3D bump. It can be seen that there are two additional 

spanwise parameters for a 3D bump. The first one is the total span (TS), which determines the number of 3D bumps 

per unit wing span, and the second one is the relative bump span (RS), which controls the effective bump width. The 

equations for a 3D bump in the chordwise direction are the same as that of a 2D bump as shown in equation (1), 

except that the H in equation (1c) should be replaced by , which must satisfy the following equations: 

                                                                            (2a) 

                                                                            (2b) 

                                                                              (2c) 

                                                                              (2d) 

where  is the maximum crest of the bump and . 



B. Optimization enhanced parametric study method 

If there are only a few design variables or the functional calculation is cheap, the grid sampling method is often 

used to fully understand the structure of a design space. However, because of the curse of dimensionality, it is 

difficult to apply the grid sampling method directly to explore a high-dimensional design space while the functional 

calculation is expensive, such as the case for RANS solutions. Therefore a simplified grid sampling method, also 

known as a parametric study, was favored by most of the researchers. The procedure of this parametric study can be 

briefly described as following: firstly, allow one design variable to vary while the other design variables are kept 

constant; then let the second design variable vary, and so on. However, since this simplified method only allows one 

design variable to vary at one time, the conclusions based on this may be misleading as it does not account for the 

interaction of the various design parameters.  

In this research, an optimization enhanced parametric study method is developed. The principle of this method is 

described here. Firstly, a one-dimensional grid sampling method is applied to a chosen design variable. Then, at 

each grid point, an optimization is completed with the other design variables as free ones. By allowing the other 

variables to change at each grid point, the objective function can be always at the optimum for a specified variable 

being studied.  

The motivation is that the most important part of a design space is usually the area around the optimum. Then the 

area in a design space with no importance can be skipped to make the exploration affordable. This allows the 

behavior of the chosen parameter to be properly investigated in the design space while the other design variables are 

at their optimum, allowing extraction of flow physics and design robustness from the optimized design in relation to 

the chosen parameter.  

Let m be the number of grid sampling points for a specified variable from k design parameters. Assume the 

number of functional calculations needed by optimization is n with k-1 design variables. Then the total number of 

functional calculations required is equal to n×m for the exploration of this chosen design variable.  

As can be seen, to explore the design space, the computation is much more demanding than a straightforward 

optimization problem. It requires a large number of optimizations in relation to chosen parameters in turn. However 

for a direct optimization with k variables, it is very difficult to answer the question why a design works best after the 

optimization is completed. 

 



C. Optimization algorithm 

The bump optimization problem is set up as: 

min( ( ))

. .

D

l u

C DV

s t b DV b 
                                                                               (3) 

where  is the continuous vector for the free design variables of the bumps,  and   are their lower and upper 

bounds, respectively. The drag coefficient CD is the objective function. During the following optimizations, the lift 

coefficient CL will be fixed by the CFD solver by allowing the angle of attack to change. This strategy has 

eliminated the need to set CL as a nonlinear constraint and greatly simplify the optimization problem. 

It is well known that transonic flow can be very sensitive to the shapes of airfoils or wings and it is possible that 

the design space of a 2D or 3D bump may have multiple local minima. Hence it makes more sense to search the 

design space by using an optimizer with the ability of global exploration rather than local exploitation. Furthermore, 

the numerical simulations based on the RANS equation are very expensive so that the global optimization 

algorithms assisted by some kind of surrogate models [23, 24] are preferred. Based on the experiences in the 

previous research [25], a global optimization method known as Efficient Global Optimization (EGO) [26, 27] which 

can automatically balance the local exploitation and global exploration is adopted here. The Kriging model is used 

in the EGO algorithm. The comparisons of Kriging-based optimization algorithms with others can also be found in 

Ref. [36, 37]. To enhance its local search ability, after the EGO search, a local optimizer named BOBQYA 

developed by Powell [28] is used to further improve the results. The BOBQYA optimizer belongs to the derivative-

free optimization algorithm, and it is suited for simulation-based optimization, such as the CFD-based optimization.   

III. Results and Discussion 

A. Validation of CFD solver 

The CFL3D v6.7 solver has been chosen in this study. CFL3D is a long-standing Reynolds-averaged Navier-

Stokes CFD code developed at NASA. Recently, its source code has been released publicly under the Apache 

License, Version 2.0 [35]. This code was thoroughly tested in numerous cases, and a recent validation of the 

Common Research Model created for the Fifth Drag Prediction Workshop can be found in Ref. [29]. 



A common baseline airfoil used to study the bumps is the RAE5243 airfoil [9], a natural laminar flow airfoil 

with a maximum thickness-to-chord ratio of 14%. A test case of RAE5243 airfoil with the data measured in the 

wind tunnel experiment by Fulker and Simmons [30] is present here for comparison. The flow conditions are 

M∞=0.6799, Rec=18.68×106 and the angle of attack α=0.77°. In the experiment, the flow transitions on upper and 

lower surfaces were both tripped at 5% percent chord. At first, a C-type mesh with 249×65 points shown in Figure 

2a was generated and the first cell height above the wall will be adjusted to make sure the y+ value is of O(1) in the 

viscous sub-layer. To capture the shock wave on the upper surface, the mesh around the shock wave was locally 

refined. To study the sensitivity of the number of mesh points, a coarser mesh with 125×33 points and two finer 

meshes with 497×129 and 993×257 points respectively are also generated. Both of the Spalart Allmaras one 

equation turbulence model (SA) and Menter’s SST two equation turbulence model (SST) are adopted in this case. 

The flow around the airfoil is assumed to be fully turbulent in the numerical calculations. 
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a) Mesh (249×65)                          b) Pressure coefficient distributions, CL=CL,experiment 
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c) Lift coefficients vs Mesh points                 d) Drag coefficients vs Mesh points 

Fig. 2 RAE5243 airfoil, M∞=0.6799, Rec=18.68×106 and α=0.77°. 

Figure 2 shows the comparison of the numerical results and experiment data. Initially the angle of attack in the 

computation was fixed to be the same as that in the experiment, and it was found that the lift and drag coefficients 

by the computation are both slightly higher than that of the experiment. Considering the potential wall interference 

for transonic wind tunnel tests, the strategy of matching the lift coefficient by the experiment was adopted, resulting 

in a better agreement in drag with the experiment if the lift is matched. As shown in Figure 2, it is clear that the 

Menter’s SST model can give better results. Furthermore, it is also less sensitive to the number of mesh points. 

Figure 2b shows the comparison of surface pressure coefficient distributions between the experiment and 

computation. The computational results show a good agreement with the experimental data and the number of mesh 

points and turbulence model both have little effects on the surface pressure coefficient distribution. 
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Fig. 3 Mesh sensitivity study for the optimized 3D bump. 

B. Bump optimization 

The flow conditions chosen here are the same as the validation case, as shown in the previous section. In order to 

generate a stronger shock wave to be studied, a high-loading case with CL=0.82 is considered. The location of the 

shock wave on the upper surface is around 55% chord. An infinite unswept wing with the section of RAE5243 

airfoil is used to accommodate the 2D and 3D bumps. Only half of a 3D bump will be simulated due to the 

symmetry of the flow field. The total span of the 3D bump is set to be free depending on the bump width.  

According to the previous study, the Menter’s SST model is adopted here. One study conducted by Mclntosh and 

Qin [31] shows that the transition location has little effects on the performances of shock control bumps. Therefore 

the flow around the wing section is assumed to be fully turbulent. The C-type mesh with 497×129 points is adopted 

for the wing section, and the number of span-wise grid points for a half bump is initially set to be 65. Thus the total 

number of mesh points is 497×129×65. The machine used to run the simulations is a Dell workstation with 2 Intel 

Xeon(R) E5-2640 v4 CPUs. The mesh has been divided into 8 blocks for parallel computations. It took about an 

hour to finished one calculation with converged results. 

Since the deformation caused by the bumps is usually small, an algebraic grid deformation technique [25] was 

employed to update the volume mesh. This simple mesh update method is not only fast but also maintains the 

original mesh quality, which is very important for optimization to ensure consistency of the results for different 

designs. 

Here the 2D bump optimization with 

four free design variables and 3D bump 

optimization with six free design variables 

were carried out at first. After the 

optimization, a mesh sensitivity study was 

also carried out to check the feasibility of the 

current mesh. The results are presented in 

Figure 3. It appears that the current mesh 

with 497×129×65 points is sufficient to meet 

the requirement of numerical accuracy. 



Table 1 shows the drag coefficients of the optimized bumps. It can be seen that the drag coefficients of the 2D 

bump is slightly lower than that of the 3D bump. The difference of the drag reductions is about 0.54%, which is 

insignificant in comparison to almost one-fifth of the drag savings.  

Table 1 Drag coefficients of the 2D and 3D bump optimizations 

 RAE5243 2D bump 3D bump 

CD 0.01496 0.01197 0.01205 

Drag reduction - 19.99% 19.45% 

 

Table 2 Optimized parameters of the 2D and 3D bumps 

 
Bump length Bump crest Relative crest Bump height Relative bump span Total span Smc 

Bounds 0.0 - 0.3 0.5 - 0.8 0.3 - 0.9 0 - 0.06 0.0 - 1.0 0.0 - 0.2 - 

2D 0.300 0.635 0.615 0.00634 - - 0.0063 

3D 0.300 0.623 0.553 0.01149 1.000 0.104 0.0057 

 

The final optimized parameters are given in Table 2. Note that, in addition to two non-dimensional design 

variables, relative crest position and relative bump span, the other bump parameters are also non-dimensionalized by 

the chord length of the wing. Here define the maximum cross-sectional area per unit wing span as 

 
1

0
( , )

z c

mc x crestz
S y x z dz




 

 
 (4) 

where c represents the chord length.  

In Table 2, it can be seen that the optimizers tend to drive the bump length and relative bump span to their upper 

bounds, indicating that longer and wider bump gives better performance in this case. In fact, the surface area per unit 

wing span covered by bumps only depends on these two parameters. It suggests that in this case more control 

surface area can bring more benefits for drag reduction. Also it can be derived that Smc of the 3D bump is very close 

to that of the 2D bump. Since the other parameters except the bump height also have minor differences, as 

mentioned in Sec. II.A, it can be seen that the cross-sectional area distribution of the 3D bump is approximately 

equal to that of the 2D bump.  



x

-C
p

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

0

0.5

1

1.5

RAE5243

z=0%

z=50%

z=100%

2D bump

x

-C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5

 

Fig. 4 Comparison of pressure coefficient distributions, 

“z” represents the relative bump span and z=0% 

corresponds to the maximum crest of this 3D bump. 

Figure 4 shows the comparison of pressure 

coefficient distributions and Figure 5 the 

comparison of Mach contours. In these figures, a 

3D wave structure can be observed in the flow 

field of a 3D bump. At the z=50% plane, where 

the height is nearly equal to the height of the 2D 

bump, the pressure coefficient distribution of the 

3D bump is almost the same as that of the 2D 

bump. At the z=0% plane, where the maximum 

crest is located, in comparison with the 2D bump, 

the pressure before the crest increases and the 

pressure after the crest decreases due to higher 

geometric curvature.  
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a) RAE5243, Mpeak=1.309         b) 2D bump, Mpeak=1.217       c) 3D bump z=0%, Mpeak=1.227 
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Fig. 5 Comparison of Mach number contours, “z” represents the relative bump span and z=0% 

corresponds to the maximum crest of this 3D bump, and “Mpeak” represents the peak Mach number. 



However, the deviation at the z=0% plane are compensated by the deviation at the z=100% plane, where the height 

of this 3D bump is equal to zero. Thus the average pressure coefficient distribution of the 3D bump is approximately 

equal to that of the 2D bump. Figure 6 shows the comparison of surface skin friction lines. A tiny shock-induced 

separation bubble can be observed in Figure 6a. After controlling the shock wave, the separation bubble disappears 

due to the reduction of the shock wave strength. The S-shaped skin friction lines on the surface of the 3D bump can 

be clearly seen in Figure 6c, indicating the cross flow caused by the spanwise pressure gradient.  
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a) RAE5243                               b) 2D bump                                    c) 3D bump 

Fig. 6 Comparison of skin friction lines on the different wings. 

C. Comparison of 2D and 3D bumps and the transonic area rule 

For aircraft flying at the transonic region, one of the basic design guidelines is the well-known “transonic area 

rule” first discovered by Whitcomb [32]. The transonic area rule says that near the speed of sound the wave drag of 

a low-aspect-ratio thin-wing and body combination is primarily dependent on the axial development of the cross-

sectional areas normal to the airstream. This is later generalized as a design requirement for a smooth streamwise 

variation of total cross-sectional area for an aircraft configuration to avoid substantial compressibility effect and 

wave drag. In other words, configurations with the same streamwise cross-sectional area variation should have 

similar compressibility effects. A more detailed description of the transonic area rule can be found in Ref. [33]. 

In classic aerodynamics, the transonic area rule can be applied in a slender wind-body aerodynamic shape at 

Mach number around 1 when the viscous effects are insignificant. In this study, it is observed that the principle of 

the transonic area rule also works quite well on the shock control bumps beneath normal shock waves. Therefore, 

the transonic area rule helps us to explain the similarity of the behavior of the 2D and 3D bumps.  Its validity will be 

further confirmed by the following studies. 

As mentioned before, Qin et al. [11] observed from their bump optimization study that the heights of the 

optimized 3D bumps are approximately two times of that of the optimized 2D bumps. Thus they suggest a “cross-



sectional area hypothesis” [34] that says if the maximum cross-sectional area of the 3D bump is the same as that of 

the 2D bump, the performances of them will be approximately the same. This hypothesis can actually be related to 

the transonic area rule. By adopting the view of the area rule, some of the characteristics of 3D bumps can be 

explained. Although the flow structures of 2D and 3D bumps are not quite the same, their aerodynamic 

performances can reach a similar level through optimal designs because the wave drag primarily depends on the 

streamwise cross-sectional area distribution according to the transonic area rule. Unlike 2D bumps, the flow 

structures around 3D bumps can be affected by their cross-flow components as shown in Fig. 6c. 

As shown in Table 2, the 3D bump has a lower Smc at the optimum and this may be explained by the fact that the 

3D bump has a much higher crest (almost two times of that of the 2D bump) and strong spanwise surface variation, 

resulting in a thicker boundary layer and more viscous drag. Therefore the optimizers have led to a smaller area Smc 

for the 3D bump for optimum. 

D. Optimization enhanced parametric study 

D-1. Total span 

The number of 3D bumps per unit wing span depends on the total span relative to the wing chord, and in this 

section its effects will be investigated in detail. Since the sensitivities of these design parameters are widely 

distributed, it is very difficult to find a general principle. Thus the choice of grid sampling points can only rely on 

experiences based on previous works. The grid sampling points chosen for the total span are 0.0125, 0.025, 0.050, 

0.075, 0.100, 0.125, 0.150, 0.175 and 0.200 of the chord length, which correspond to 40, 20, 10,  , 5, 4, ,  

and  bumps per unit wing span, respectively. The other five parameters are set to be free for optimization. The 

upper and lower bounds are the same as that in Table 2. After the optimizations, it is found that the bump length and 

relative bump span are both driven to their upper bounds by the optimizers, confirming the findings in the previous 

section. The other optimized parameters can be found in Figure 7b. It can be seen that the bump crest does not 

change much since it depends mostly on the location of the shock wave on the upper surface. As the total span 

increases, the bump height increases slightly and the relative crest moves slightly downstream.  
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a) Drag coefficients                                      b) Optimized parameters 

Fig. 7 Optimized results of 3D bumps with different total spans. 

Figure 7a shows the drag coefficients by the optimized bumps with different total span. It can be observed that 

the landscape of the design space actually has a flat part, which is approximately between 0.075c and 0.15c. The 

drag coefficients gradually rise as the total span moves away from this flat region. The skin friction lines shown in 

Figure 8 suggest that the increase of drag is mainly due to flow separation for either a very narrow or very wide 3D 

bump. To study the effects of the turbulence models, the numerical results based on the SA turbulence model are 

also presented in Figure 7a and Figure 9. In comparison with the SST turbulence model, these figures show that the 

SA turbulence model has given slightly higher drag coefficients and larger separation bubbles. However, as shown 

in Figure 7a, the drag reductions predicted by these two turbulence model are almost the same.  



X

Y

Z

Total span = 0.0125

Separation bubble

X

Y

Z

Total span = 0.050 X

Y

Z

Total span = 0.100

 

a) TS =0.0125                              b) TS =0.050                           c) TS =0.100 

X

Y

Z

Total span = 0.150 X

Y

Z

Total span = 0.200
Separation bubble

 

d) TS =0.150                           e) TS =0.200 

Fig. 8 Skin friction lines on the surfaces of 3D bumps with different total spans. The wing sections have been 

scaled in the z-axis direction properly for display purpose. The SA turbulence model has been used.  
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Fig. 9 Comparison of skin friction lines using two different turbulence models. The wing sections have been 

scaled in the z-axis direction properly for display purpose. 

Figure 10a compares the maximum cross sectional area of 3D bumps with different total spans. Apparently, if 

one increases the number of 3D bumps, the local spanwise curvature also increases. When the cross flows on the 

rear part of 3D bumps encounter the wall surfaces with very high local curvature, the flow separation occurs 

eventually. If the local curvature is reduced by using wider bumps, the flows become attached as shown in Figure 8. 

However, if the total span is too large, about half its own length in this case, a relatively wider crest will increase the 



streamwise pressure gradient on the rear part of the bump as shown in Figure 10b, causing a flow separation bubble 

behind the crest. 
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      a) Maximum cross sections                   b) Pressure coefficient distributions at the z=0% 

Fig. 10 Comparison of 3D bumps with different total spans. 

If the viscous effects are neglected, from the transonic area rule mentioned earlier, the performances of 3D 

bumps with different total span should be the same, since the cross-sectional area distribution is the same. Simply 

changing the total span does not change the cross-sectional area distribution in the streamwise direction. However, 

due to the viscous effects, very small or large span causes flow separation as shown earlier. The optimizer tends to 

reduce the bump height to mitigate the viscous effects. Figure 7 shows that the variations of the drag coefficient and 

bump height have opposite trends. This complicated nonlinear behavior can only be identified by studying one 

specified parameter while the other parameters are kept to be optimal. Hence the benefit of using the optimization 

enhanced parametric study method is clearly demonstrated. 

D-2. Relative bump span 

In this section the effects of the relative bump span will be studied. The grid sampling points chosen for the 

relative bump span are 25%, 50%, 75% and 100%. Here the total span will be fixed as 10%c according to the 

research above. The other four parameters are set to be free for optimization. The upper and lower bounds are the 

same as that in Table 2. All of the bump lengths reach the upper bounds, which are 0.30c.  
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a) Drag coefficients                                            b) Optimized parameters 

Fig. 11 Optimized results of 3D bumps with different relative bump spans. 

The optimized results are given in Figure 11. Unlike the total span case, the bump performance steadily 

improves as the relative bump span increases, indicating larger bump area provide more drag reduction. When the 

relative bump span is equal to 100%, the drag reduction of this 3D bump reaches to its maximum, which is very 

close to that of the 2D bump. Figure 12 shows the 

maximum cross sectional area in the y-z plane. Apparently, 

the maximum cross-sectional area still plays a key role on 

the bump performance. However, the area rule does not 

strictly hold true here, although the bump height does 

increase as the relative bump span shrinks. The reason lies 

in the fact that a higher bump causes more viscous drag, 

moderating the total drag reduction. Figure 13 shows the 

skin friction lines on the surfaces of these 3D bumps. It is 

obvious that the flow separation takes place as the bump 

becomes too high and the high local curvature is 

responsible for it.  
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Fig. 12 Maximum cross sections of 3D bumps 
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     Fig. 13 Skin friction lines on the surfaces of 3D bumps with different relative bump spans 

In fact, two different flow mechanisms which drive the optimizers to different directions can be easily identified. 

The first one is the inviscid flow mechanism which can be explained by the area rule, the maximum cross-sectional 

area tends to be close to that of the 2D bump and therefore the bump tends to be higher to reduce the wave drag as it 

becomes narrower. But if the bumps become too high, flow separation occurs, leading to more viscous drag. The 

optimizer attempts then to lower the bump height to mitigate the detrimental effects. Finally, a compromise is found 

by the optimizer. This is the reason why the maximum cross-sectional areas of the optimized 3D bumps are slightly 

smaller than that of the optimized 2D bump. 

Eastwood and Jarrett [18] made a comparison of the performances of 2D and 3D bumps by using the parametric 

study method, leading to the conclusion that the on-design performance of the 3D bump is worse than that of the 2D 

bump. However, since the heights of both 2D and 3D bumps were fixed to the same value in their study, the 

potential of the 3D bump was underestimated. They also introduced a design parameter called the isolation ratio to 

describe the size of clean wing area. They found that as the isolation ratio decreased while the height was kept to be 

the same value, the lift-to-drag ratio increased. When the isolation ratio was equal to zero, the 3D bump became a 

2D bump (assuming there were no shoulder sections for simplicity). Thus in their study the 2D bump was the 

limiting case of 3D bumps. The 3D bump in their study can be simply seen as a finite 2D bump plus two shoulder 

sections and therefore decreasing the isolation ratio is roughly equivalent to increasing the span size of this finite 2D 

bump. Note that as the isolation ratio decreases, their 3D bump cross-sectional area increases, affecting the 

performance due to the transonic area rule. Unlike their study, when the height is treated as a design variable, as 

shown in Figure 12, a pure 3D bump is always maintained in the current research. The reason why the 3D bump can 

compete with the 2D bump is because of the almost identical cross-section area distribution, and is not because the 

geometry of the 3D bump becomes more like a 2D bump. 



 

D-3. Bump length 

The previous sections have shown that longer bumps have better performance. The effects of the bump length 

will be studied here in more detail. The grid sampling points chosen for the bump length are 0.1, 0.2, 0.3, 0.4 and 0.5 

of the chord length. The other parameters are set to be free for optimization. The upper and lower bounds are the 

same as that in Table 2. The drag coefficients of the optimized bumps are shown in Figure 14a. It is obvious that 

longer bumps provide more drag savings and the performances of the 2D and 3D bumps are nearly the same.  

Figure 14b shows the final optimized design variables. It can be seen that two streamwise parameters, bump 

crest and relative crest, of the 2D and 3D bumps are very close to each other. The heights of the 3D bumps are 

almost two times that of the 2D bumps, which means that their maximum cross-sectional areas are almost the same 

based on the way that the 3D bump is defined. This suggests that the transonic area rule still holds true for bumps 

with different length. As shown in Figure 15, as the bump length increases, the maximum cross-sectional area also 

increases. 
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a) Drag coefficients                                          b) Optimized parameters 

Fig. 14 Optimized results of 2D and 3D bumps with different lengths 

A key parameter derived from the relative crest and the bump average height is the bump incident angle, which 

is defined as 

 arctan
avg

relatvie

h

len c


 
   

 (5) 



where len is the bump length, crelative is the relative crest, and havg is the average bump height. For a 2D bump, havg is 

equal to its maximum height, and for a 3D bump, havg is equal to Smc divided by the unit wing span. 

The bump incident angle is one of the major 

factors influencing the compression waves or the 

front leg of the λ shock. Figure 15 shows the bump 

incident angles of the 2D and 3D bumps. It is 

interesting to note that both the bump incident 

angles of the 2D and 3D bumps vary slightly 

tending from 3° to 2° as the bump lengths increases, 

indicating the importance of this parameter in the 

physical process of weakening the shock wave. 

Figure 14b also shows that as the bump length 

increases, the bump width increases, suggesting that 

the length and width of the 3D bumps should be related to each other. As shown in Figure 15, the best 3D bump 

aspect ratio is around 0.67 or 2/3. As discussed earlier, wider or narrower 3D bump can cause flow separation, 

bringing in drag penalty. 

D-4. Mach number 

It is well known that the optimized bump parameters are highly sensitive to the strength and location of the 

shock wave, so it is worthwhile to check the effects of the free-stream Mach numbers on the optimized bump 

performance. Since RAE5243 airfoil has a 14% maximum thickness and its design Mach number is around 0.7, the 

grid sampling points chosen for free stream Mach number are 0.70, 0.71, 0.72, 0.73 and 0.74. The value of CL has 

been set to 0.45 for a cruise case. According to the study above, the bump length and relative bump span are fixed as 

0.3c and 100%, respectively. Thus, for the 2D and 3D bumps, the number of free design variables has been reduced 

to be 3 and 4, respectively. The upper and lower bounds for the free parameters are the same as that in Table 2. 

Figure 16 shows the optimized results at different Mach numbers. It can be seen in Figure 16a that both 2D and 

3D bumps can lower the drag coefficient hugely if their control parameters are at their optima. The drag coefficients 

of 3D bumps are slightly higher than that of 2D bumps, and the difference gradually increases as the Mach number 

increases. This is believed to be due to the viscous effect becoming more serious as the height of the 3D bump 
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Fig. 15 Optimized parameters of 2D and 3D bumps 

with different lengths 



increases as shown in Figure 16b. However, the differences are trivial in comparison to the huge drag savings at the 

high speeds. It is also noted that the optimal bump height increases linearly with the Mach number for both 2D and 

3D bumps, and the height of the 3D bump is about double that of the 2D one.   
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a) Drag coefficients                                         b) Optimized parameters 

Fig. 16 Optimized results at different Mach numbers. 

Figure 17 shows the optimized parameters. It can 

be seen that the maximum cross-sectional area and 

incident angle of 2D and 3D bumps increases linearly 

with the Mach number when it is below 0.73. It is 

interesting to note that the best aspect ratio of 3D 

bumps remains around 0.67 or 2/3 for the whole Mach 

number range studied. These may provide useful 

design guide for the adaptive bumps needed to operate 

at different flight speeds.  

Figure 18 shows the comparison of Mach number 

contours. Unlike a supercritical wing, a natural laminar 

flow wing has a more convex upper surface which tends to fix the shock position. Hence the location of the shock 

wave does not change much as Mach number increases, nor does the bump crest as shown in Figure 16b. As the 

Mach number increases, the wave patterns controlled by the bumps gradually change from a knee-shaped shock 

waves to a λ-structured shock wave. The knee-shaped shock wave structure was first reported in Ref. [11] from their 
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Fig. 17 Optimized parameters of 2D and 3D 

bumps at different Mach numbers. 



optimized bumps, which are clearly shown for the lower Mach cases here. This structure is related to turning the 

original shock to compression waves ahead of the bump crest. For high Mach numbers, the λ-structured shock 

waves becomes unavoidable, indicating that it is harder to replace a stronger shock wave with compression waves. 

The same trends can be clearly observed from both the optimized 2D and 3D bumps. 
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Fig. 18 Comparison of Mach number contours. The columns from left to right correspond to RAE5243 

airfoil, optimized 2D bump, and optimized 3D bump at z=0%, 50% and 100% span, respectively. The rows 

from top to bottom correspond to Mach=0.70, 0.71, 0.72, 0.73 and 0.74, respectively. 

 

IV. Conclusion 

A parametric study method assisted by optimizations has been developed to explore the design spaces of the 2D 

and 3D shock control bumps. This study shows that this parametric study method could provide much more useful 

information about the problem to be studied in exploring the design space. As it has been demonstrated in this paper, 



that there is strong interaction among design parameters for 2D and 3D bumps. By studying one specific parameter 

while the other parameters are at their optima, the interactive effects have been properly investigated, and some of 

the distinct flow features induced by shock control bumps have been revealed. 

From the present study, it has been found that the 2D and 3D shock control bumps have nearly the same 

performance through optimal designs, although the flow physics of 2D and 3D bumps are rather different. This can 

be partially explained by the transonic area rule since the optimized 2D and 3D bumps have almost identical 

streamwise cross-sectional area distribution.  

A key design parameter for the 2D and 3D bumps is the maximum cross-sectional area. To match the 

performance of a 2D bump, a 3D bump should match the 2D maximum cross-sectional area. Therefore the height 

and width of 3D bumps should be treated as a whole to be designed. However, caution needs to be exercised before 

applying this principle directly, since it can be affected by stronger viscous effects for the 3D bump. 

It has been found that the incident angle of an optimized bump does not change significantly with varying bump 

design length at the same Mach number and furthermore it has an approximate linear relation with the Mach 

number. 

For 3D bumps, the bump aspect ratio has been found to be an important parameter. From the present study, the 

best aspect ratio is around 0.67 or 2/3, no matter what the bump length or the shock strength is. A too narrow 3D 

bump causes flow separation on the sides of the bump between two bumps, and a too wide 3D bump induces a 

separation bubble behind the bump crest. Both types of separation degrade the bump performance. Thus, after the 

bump length is decided, the bump width has to be chosen carefully to avoid these detrimental effects. 
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