
This is a repository copy of Embedded Social Insect-Inspired Intelligence Networks for 
System-level Runtime Management.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/154549/

Version: Accepted Version

Proceedings Paper:
Rowlings, Matthew orcid.org/0000-0003-3800-2055, Tyrrell, Andy orcid.org/0000-0002-
8533-2404 and Trefzer, Martin Albrecht orcid.org/0000-0002-6196-6832 (2020) Embedded
Social Insect-Inspired Intelligence Networks for System-level Runtime Management. In: 
Design, Automation and Test in Europe Conference:DATE2020. , Grenoble, France 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Embedded Social Insect-Inspired Intelligence

Networks for System-level Runtime Management

Matthew R. P. Rowlings, Andy M. Tyrrell and Martin A. Trefzer

Department of Electronic Engineering

University of York, York, UK

matthew.rowlings,andy.tyrrell,martin.trefzer@york.ac.uk

Abstract—Large-scale distributed computing architectures
such as, e.g. systems on chip or many-core devices, offer ad-
vantages over monolithic or centralised single-core systems in
terms of speed, power/thermal performance and fault tolerance.
However, these are not implicit properties of such systems and
runtime management at software or hardware level is required
to unlock these features. Biological systems naturally present
such properties and are also adaptive and scalable. To consider
how these can be similarly achieved in hardware may be
beneficial. We present Social Insect behaviours as a suitable
model for enabling autonomous runtime management (RTM)
in many-core architectures. The emergent properties sought
to establish are self-organisation of task mapping and system-
level fault tolerance. For example, large social insect colonies
accomplish a wide range of tasks to build and maintain the
colony. Many thousands of individuals, each possessing relatively
little intelligence, contribute without any centralised control.
Hence, it would seem that social insects have evolved a scalable
approach to task allocation, load balancing and robustness that
can be applied to large many-core computing systems. Based on
this, a self-optimising and adaptive, yet fundamentally scalable,
design approach for many-core systems based on the emergent
behaviours of social-insect colonies are developed. Experiments
capture decision-making processes of each colony member to
exhibit such high-level behaviours and embed these decision
engines within the routers of the many-core system.

Index Terms—bio-inspired hardware, fault tolerance, social
insects, adaptive system, many-core, runtime management

I. INTRODUCTION

State-of-the-art electronic design allows the integration of

complex electronic systems comprising thousands of high-

level functions on a single chip. This has become possible

and feasible because of the combination of semiconductor

technology providing atomic-scale devices, allowing very large

scale of integration (VLSI) of billions of transistors, and

electronic design automation (EDA) tools that can handle

their useful application and integration by following a strictly

hierarchical design methodology breaking down a system into

blocks, sub-blocks or cells. This results in many layers of

abstraction within a system that makes it implementable and

verifiable, hence, explainable which is usually desired. How-

ever, while many layers of abstraction maximise the likelihood

of a system to function correctly (because it can be verified

and debugged) this can prevent a design from making full use

of the capabilities of a process technology.

This work was supported by an EPSRC DTA and the EPSRC Platform
grant ‘Bio-inspired Architectures and Systems’ EP/K040820/1.

Moreover this places electronic systems, in the way they

are currently designed, at opposite ends of the scale from

emergence as—by design—they can be understood from a

purely reductionist point of view. The fundamental component

of an electronic system, the transistor, is known and the design

hierarchy is constructed bottom-up. Starting at the top level,

this hierarchy can be traversed in the opposite direction and

each block can be understood and explained by looking at the

components it is made of. The whole methodology has been

developed to avoid unforeseen behaviours and therefore there

appears to be no room for emergence.

However, the ever-increasing transistor density and design

complexity makes modern systems brittle. As we start to meet

fundamental device scaling limits when touching the atomic

scale, design challenges arise including the thermal/power

constrained Dark Silicon and other deep sub-micron silicon

fabrication issues such as intrinsic variability and electrical

wear out (ageing). This gives VLSI designers a large number

of pessimistic design constraints that must be met to avoid

faults and guarantee a certain lifetime of a device. Despite

that, the yield (percentage of chips on a silicon wafer that

operate according to specification) continues to decline.

This gives rise to the idea of biologically-inspired hardware,

which is indeed capable of emergent behaviours or features.

Of course the challenge here is to adopt and implement

these concepts while achieving a “next-generation” kind of

electronic system which is considered at least as useful and

trustworthy as its “classical” counterpart—plus additional fea-

tures. Considering this, the question may be asked whether

it is acceptable or useful to speak of emergence at all in the

context of bio-inspired hardware, given that the bio-inspired

parts also need to be designed using a VLSI methodology and

must be comprehensible.

The concept of “emergence” is usually taken to relate to

something like an unexplained or unexplainable appearance

of an entity or property which is not further reducible to

known interactions of other components (non-reductionist,

holistic) [1], [2]. For example, when observing ants by look-

ing at the behaviour of the entire colony rather than the

individuals, the colony can indeed be regarded as a singular

entity. Based on this it can now be suggested that drawing

inspiration from structure and behaviour of biological systems

can bring new, useful behaviours to electronic systems which

are explainable and verifiable at some lower level, but which



can indeed be regarded as “emergent” properties, e.g. in the

context of the entire system.

In this case, the emergent property sought to establish is

system-level fault tolerance, the inspiration from biology are

social insects (ant colonies), and the hardware system is a

many-core computing architecture where application tasks and

data need to be allocated, transferred and organised. The model

of processing elements communicating amongst each other via

a network on chip (NoC) provides a conceptual link with many

scalable biological models.

This paper introduces a self-optimising and adaptive, yet

fundamentally scalable, design approach for many-core sys-

tems based on the emergent behaviours of social-insect

colonies. Experiments aim to capture the relevant decision

processes made by each member of the colony to exhibit such

high-level behaviours and embed these decision engines within

the routers of the many-core system. Results with the bespoke

128-core Centurion platform suggest that there is potential for

the social insect model as a distributed, embedded intelligence

within a many-core system and with the relevant knobs and

monitors, such as packet routing events, timing violation

detection, router behaviour, clock frequency and temperature,

to close the loop for emergent autonomous adaptation and fault

tolerance [3], [4].

II. SOCIAL INSECT INTELLIGENCE

There are many examples of large complex systems in

Nature that exhibit both the the scalability and collective

co-ordination that are required for large many-core systems.

From the molecular interactions of gene regulatory networks

driving development of multi-cellular structures [5], [6], to the

chemical signalling between bacteria in a Protoza society [7]

and complex systematics of colonial organisms in a Hydrozoa

consisting of many sub-organisms [8]; often these natural

systems exhibit highly scalable development and maintenance

abilities for solving a particular set of actions for survival in

a number of challenging environments.

In ant colonies, individual workers have limited memory and

decision making capabilities [9] yet when working together at

a huge scale exhibit many non-centralised features that are

desirable for large distributed computing systems including

self-organisation, self-optimisation and fault tolerance. This

section introduces intelligence abilities of individuals, what

capabilities emerge at the colony level as a result, and how

these behaviours translate into desirable hardware system

capabilities.

A. Biological Model of Ant Behaviour

The decentralised yet highly-scalable and adaptive task

allocation of social insect colonies is the key dynamic that

needs to be captured for autonomous task management in

large scale many-core systems. Considering the limited cog-

nitive capabilities of an individual, task allocation capability

necessarily emerges from colony dynamics rather than some

central coordinator or highly-informed decisions by specific

individuals. In this work, we are focussing on ant colonies,

Location

Nestmates

Task	needs

Stimulus

(perceived)

Decision	to
perform	Task

Yes

No

EXTERNAL

INTERNAL

Genes

Innate	response
threshold

Behavioural

(motivational)

state

Experience

Ontogeny

5 6

1,2,6

2,6 1,2

1,2

4

4

1

3

4,7

3

1,2,6

Fig. 1. Illustration of factors influencing an individual’s choice to undertake
a particular task. Numbers on the arrows indicate effects that are included
in each type of model: 1 response thresholds; 2 information transfer; 3
self-reinforcement; 4 social inhibition; 5 foraging for work; 6 network task
allocation. Figure adapted from [11]

because their tasks are well defined and their communication

methods are relatively simple compared to other social insects,

e.g. honey bees use visual cues [10], requiring neural pathways

for image processing that would not translate well and impose

large overhead in a hardware RTM unit.

Tasks that individual ants can undertake are either pri-

marily internal to the nest or require leaving the nest for

longer periods of time. Internal tasks include brood rearing,

nest maintenance and expansion, removing dead and ill ants,

food processing, distribution, storage, tending to fungus farms

(some species) and queen care. External tasks include foraging

for food, sharing locations of food sources, patrolling the nest

and aphid farming (some species). This diverse set of tasks

requires different sets of skills and sensory inputs for many

of the tasks and so switching tasks will require cognitive

decisions by an individual and the ability to decide what

sensory inputs should be prioritised. The number of individual

ants performing each task is also important and needs to be

constantly within certain bounds to ensure the colony operates

effectively as well as efficiently. For example, if the number of

brood-rearing individuals increases, more foragers are needed

to ensure new ants will survive.

Six classes of ant behaviour models are generally used in

the literature [11], with each one differing in what informa-

tion source is used by individuals to determine which task

they should be undertaking: (1) response threshold respond-

ing to task-specific stimuli matching capability and capacity,

(2) integrated information transfer adding information ex-

change between individuals to response threshold, (3) self-

reinforcement to balance specialists vs. generalists through

experience feedback, (4) social inhibition large numbers of

experienced specialists inhibit more take up, (5) foraging for

work using a production line analogy with spatial separation

of tasks, and (6) network task allocation modelling at a higher

abstraction level using differential equations. These schemes

are represented in Figure 1 with illustration of which factors

are present in each model.

B. Hardware System Implications

For a successful translation of a bio-inspired model into

hardware, it is imperative that the underlying organisation



method used by biology maps appropriately to the targeted

hardware architecture. For instance, any chemical or molecular

based systems will require numerical computation for the

model and so will be expensive to implement in hardware

or may be lacking the desired biological properties if, e.g. the

numerical precision is too low. In the context of modelling

social insect decision making processes with a neuromorphic

hardware approach, a key consideration is how to balance

neural complexity with hardware overhead.

Looking at the biological examples from the previous

section, it is found that large colony sizes can reduce the

intellectual requirements of individuals, and that intelligence

(neural) pathways in social insects are highly optimised for

specific task performance using minimal space. This high level

of optimisation does not necessarily mean that the behavioural

abilities of an individual are limited in the context of the

large colony. This is a useful feature for distributed large-scale

hardware systems, because it means that small intelligence

units embedded on a core-by-core basis will benefit from

high node-counts found in many-core fabrics. It also means

that it should be possible to exhibit more complex (emergent)

behaviours with a relatively small number of embedded neural

pathways, provided that it can be relied on minimal learning to

create and maintain these circuits. It is envisioned that most of

the pathways of the embedded intelligence will be analogous

to the many innate behaviours of social insects with a few

pathways providing the cognitive aspects which enable, disable

or modify the innate behaviours.

The task models being related to an individual’s location

and local stimuli has a direct translation to many-core systems

as each node will have a different set of task, thermal and

NoC traffic stimuli depending on its location and current

task. Hence, embedded intelligence should be located at each

node to capture the locality aspects of the sensing and act-

ing (decision making). Sensor readings from the many-core

system should include stimuli that affect the ability of an

individual node to complete a task (fulfilling the response

threshold model), stimuli that signify work that needs to be

done (fulfilling the foraging for work model) and stimuli

that communicate what neighbouring nodes are working on

(fulfilling the network task allocation model). A physical dif-

ference between social insect colonies and hardware systems

is that individuals are mobile and carry information with them,

whereas processing cores are stationary and send information

packets through a network. Whilst the dynamics of both

systems may not be identical, they are equivalent in terms

of the information network formed.

Both the response threshold and information transfer mod-

els rely directly on a stimulus-threshold decision making

intelligence, i.e. when a stimulus exceeds a threshold then a

decision is made. However the experimental implementations

of foraging for work [12] and network task allocation [13] both

also use stimulus-threshold structures to make decisions. This

motivates the implementation of a stimulus-threshold-based

intelligence architecture for the embedded hardware model.

West Port

North Port

East Port

South Port

Microblaze 
Processor

Router/
Node 
Settings

Router 
Control

Embedded 
Intelligence
(Picoblaze)

Internal 
Port

Fabric

2

1

3

4

M: Routing Event
Routed internal

Timer Tick 

K: Task out
M: Routing Event

5

Threshold Model

+-

+
-

t1
t2
t3

+
+

(Picoblaze)

t1
t2
t3

1

2

2

2

5

b)

a)

Fig. 2. a) The Centurion 5-channel NoC router. The main ports consist of the
cardinal directions and an internal port connected to the processing element.
A sixth-port, the Router Configuration Access Port (RCAP), allows the router
to be configured remotely. The embedded intelligence is implemented within
a Picoblaze connected to varies sense/actuator interfaces within the system;
the monitors and knobs. The numbers represent areas where monitors and
knobs can be found: 1 Microblaze Node interface, 2 router control, 3 router
settings, 4 FPGA fabric (ring oscillators), 5 internal to the Picoblaze b)

Typical arrangement of sense-react thresholders that are used for implementing
the intelligence models. A series of impulse based inputs are read into the
Picoblaze, when they fire a counter is either increased (excitatory) or decreased
(inhibitory). When a counter exceeds its respective threshold then the output
knob is set (either impulse or vector).

III. MANY-CORE EXPERIMENTATION PLATFORM

The Centurion many-core system has been developed as an

experimentation platform to study scalability and performance

of bio-inspired RTM algorithms in hardware. Specifically,

FPGA-based Centurion platform has been designed with scal-

ability, flexibility and usability in mind to enable experiments

exceeding the number of cores that are routinely possible

in simulation and inherently provides a real-world embedded

hardware scenario. The hardware version used in this work

is Centurion-V6 which consists of 128 processing elements

connected in a 8 × 16 grid and is implemented on a Xilinx

Virtex-6 LX760 FPGA. Each node in the many-core consists

of a Xilinx MicroBlaze Micro Controller System (MCS) [14],

a custom 5-port NoC router, and a configurable artificial intel-

ligence module (AIM) implementing the bio-inspired models.

This arrangement is shown in Figure 2.

A larger processor, the Experiment Controller, is connected

to the NoC via the North ports of four of the (otherwise

unconnected) routers in the top row. This larger AXI-based

Microblaze manages the LVDS-based data communication

link between the NoC and the PC and is used to manage



experiments and data. This allows experiment parameters to be

sent from the PC and experiment runtime data to be sent from

the NoC to the PC. The experiment controller can inject and

receive packets from the NoC through its four NoC interfaces

connected to the North channels of four routers on the top

row. The experiment controller can also access the nodes

separately to the NoC via a dedicated debug interface. This

allows experiment data to be downloaded and parameters to

be set at runtime (e.g. for fault injection) without interfering

with the NoC traffic of active experiments.

A. Router Design

The Centurion router, shown in Figure 2, is a five port

NoC router that includes a Router Configuration Access Port

(RCAP) to allow router and embedded intelligence settings to

be changed remotely via the NoC. It also includes several

performance monitoring signals and settings for modifying

the router’s behaviour, which is utilised by the embedded

social-insect intelligence model as explained in Sections II

and III-C. The router supports two packet routing modes and

is based on wormhole routing to reduce device resources spent

on packet buffers. A basic deadlock recovery mechanism is

included within the router to enable experiments to survive

deadlock conditions, however this is not as comprehensive

as other NoC deadlock avoidance schemes and so is not

guaranteed to alleviate all deadlock conditions or detect and

release deadlocked packets within any guaranteed timespan.

Up to five concurrent connections can be set-up between the

six router ports and independence between their input and

output interfaces allows full-duplex communication across the

five channels.

B. Knobs and Monitors

The embedded intelligence module has access to many

of the internal signals of the router and processor, called

“monitors” in our system. These include signals such as:

• the task IDs of packets routed through the router,

• watchdog signals from the node,

• the current node frequency,

• local temperature sensing,

• signals from intelligence modules of neighbouring nodes.

The intelligence module can also affect several aspects of the

router and processor, referred to as “knobs”, for example:

• the task the processor node should be running,

• clock Enable for the processor node,

• reset of the processor node,

• node-level frequency scaling (10MHz - 300MHz).

C. Embedded Artificial Intelligence Module

The Artificial Intelligence Module (AIM) implementation

used in this work is based on the Xilinx Picoblaze micro-

controller [15] for maximum flexibility and simplicity with a

small hardware footprint when translating and developing the

bio-inspired social insect-intelligence model in hardware as

illustrated in Figure 2. The program code is uploaded by the

Experiment Controller to allow rapid prototyping of embedded

T3

T2 T2

T1

T2
Fig. 3. The fork-join task graph. This
has out-tree and an in-tree phase and
requires Task 1 nodes to start the shape
of the emerged topology. The ratio
experimented with is 1:3:1

intelligence models. The AIM has access to the internal signals

of the router and processor via the monitors, and can also affect

several settings and behaviours of the router and processor

through the knobs. To facilitate the implementation of the

response threshold models, the Picoblaze software platform

provides functions for: interfacing to convert between impulse

sequences (spike trains) and binary number representation,

logical comparators that generate impulses when vector in-

puts match, and threshold circuits that act as final decision

makers. The intelligence models can then be implemented by

tying these functions together to produce a response-threshold

decision pathway from the monitors through to the knobs.

IV. EMERGENT RUNTIME MANAGEMENT BEHAVIOUR

For this paper two embedded intelligence schemes based

on the Network Interaction and Foraging for Work models

discussed earlier have been implemented on the AIM. We

expect that these models should be capable of: a) adapting

the distribution of tasks around the network from a random

task-mapping to a more efficient one and b) coping with faults

injected into the system by adapting the node task topology

such that complete, efficient mapping of the task graphs are

restored.

A. Task Allocation

For the experiments a fork-join task graph, shown in Fig-

ure 3, was assigned to Centurion with the aim of having as

many instances of this task graph as possible (i.e. maximising

total many-core throughput of task 3 nodes) [16]. The embed-

ded intelligence was implemented in the following way:

1) Network Interaction: A single monitor (task of packet

routed) is sufficient for the Network Interaction (NI) model

and a dedicated thresholder for each task number in the

system. Each time a packet is routed an impulse generated

by the monitor increases the count for its destination task.

Once a task count exceeds its threshold, the node is switched

to performing that task and the task counters are reset.

2) Foraging for Work: Foraging for Work (FFW) has a

temporal aspect to the model and requires three monitors:

task of packet routed, packet routed to internal node, and time

since sent. A threshold circuit is used to detecting when a

packet deadline comes too close or has lapsed and setting

up an appropriate timeout counter. Once this timer expires,

the local node switches to the task of the next packet in the

routing queue in order to sink and process it locally. Every

time a packet is routed internally (i.e. accepted for processing

by the node), that impulse is used to reset the task switch



20
25
30
35
40

Application Throughput, 5 Faults
 No intelligence

20
25
30
35
40

No
de

s A
ct

iv
e Network interaction model

0 200 400 600 800 1000
Time (ms)

20
25
30
35
40

Foraging for Work model

25
50
75

Task Distribution, 5 Faults
 No intelligence

25
50
75

Ta
sk

 sw
itc

he
s Network interaction model

0 200 400 600 800 1000
Time (ms)

25
50
75

Foraging for Work model

20
30

Application Throughput, 42 Faults
 No intelligence

20
30

No
de

s A
ct

iv
e Network interaction model

0 200 400 600 800 1000
Time (ms)

20
30

Foraging for Work model

25
50
75

Task Distribution, 42 Faults
 No intelligence

25
50
75

Ta
sk

 sw
itc

he
s Network interaction model

0 200 400 600 800 1000
Time (ms)

25
50
75

Foraging for Work model

Fig. 4. Results of fault injection experiments for five faults and 42 faults (1/3 of Centurion). In both experiments the systems were started and then left to
self-optimise (the shaded area shows the settling period as the task topology adapts). After 500ms the faults are injected and the system resettles into a new
task topology. This recovers some of the performance compared to the pre-fault state by reorganising the task topology to reflect the task graph (Figure 3).

timeout. Therefore, as long as a node’s current task is well

suited to the overall routing and processing requirements, the

stream of packets routed internally suppress task switching.

For these experiments the task switch timeout is set to 20ms

and task 1 (the source task) produces 1 packet every 4ms. This

ensures that even the least busy nodes receive several packets

to route internally within the 20ms window.

3) Experimental Performance: The first 500ms of the

graphs in Figure 4 show the adaptivity of both bio-inspired

approaches, Network Interaction and Foraging for Work in

comparison with an implementation using a heuristic fixed

routing approach (minimised Manhattan distance). As can be

seen from Figure 4, both approaches exhibit a settling phase

as the network adapts to the initially random task topology.

FFW then enters a steady state (settled) phase that is similar

to the performance of the heuristic approach. The NI model

also settles into a steady state, but does not achieve the same

performance as FFW. Quantitative results for 100 independent

runs of each model are summarised in Table I.

B. Fault Tolerance

Both bio-inspired task allocation models support a degree of

inherent fault tolerance against node faults. This is an emergent

property of this kind of dynamical decision-making system and

requires no additional processes or knobs and monitors. In this

work our fault model considers multiple node failures, which

will change the balance of packets being routed around the

network and so requires the task allocation to automatically

adapt. Table II shows quantitative results for different numbers

of faults injected. The recovery time after fault injection and

the performance achieved after recovery are compared with the

pre-fault case. Typical examples are shown in Figure 4 where

at 500ms a proportion of the nodes develop faults and fail. In

the first experiment 5 faults are injected, representing a series

of local application faults, whilst in the second experiment 42

faults (1/3 of of the 128 Centurion nodes) fail, e.g. representing

a failure of a global clock buffer, other critical global circuitry,

or a thermal issue.

The recovery phase can be seen in Figure 4, starting

immediately after faults occur as the intelligence adapts to



TABLE I
PERFORMANCE REACHED—RELATIVE TO HIGHLIGHTED CASE—AFTER

SETTLING TIME WITHOUT FAULT INJECTION. SHOWN ARE MEDIAN (Q2)
AND 25TH/75TH PERCENTILES (Q1/Q3) FOR 100 INDEPENDENT,

RANDOMLY INITIALISED RUNS OF EACH EXPERIMENT.

Settling

Time

Relative

Performance

Q1 Q2 Q3 Q1 Q2 Q3

No Intelligence 6 6 7 96% 100% 103%

Network Interaction 12 56 58 93% 102% 108%

Foraging For Work 10 86 170 105% 114% 124%

the new task landscape and starts to route around the failed

nodes. Once the recovery period has settled, the system settles

into a steady state where it has recovered to an overall

lower performance than before due to the loss of a number

of nodes. However, within the limits of reduced resources

performance has recovered and a task structure required for

data to effectively reach task 3 nodes has been restored. Again,

FFW outperforms the network-interaction model in terms of

performance recovery.

V. DISCUSSION AND CONCLUSION

The results from the dynamic task allocation experiments

have shown that both bio-inspired runtime management mod-

els exhibit emergent adaptive properties that are useful in large

fault cases, hence, indicate a degree of inherent scalability.

Whilst such global failure cases may be mitigated through

circuit hardening or additional redundancy, this fault case is

also relevant for high-processing power devices that require the

parallel throughput of a many-core system but are deployed in

remote application scenarios with requirements of autonomous

operation and long lifetime. As faults develop in the field over

the lifetime of a device the emergent task allocation can adapt

the task topology to achieve a graceful degradation of system

performance that may allow a device to operate for longer in

its deployed environment.

Several further improvements to the embedded intelligence

are conceivable that would go beyond the models presented

here. For example, adaptive and multi-cast routing would allow

greater throughput as it exploits the inherent parallelism of a

task graph. Whilst there is not a direct mapping of a social

insect model for this kind of adaptive routing, the derived

bio-inspired stimulus-response threshold model could be used

to allow the embedded intelligence to make decisions on the

destination output port of incoming packets. Many of the

models shown in Figure 1 feature mechanisms for adaptive

thresholds, which are not yet considered in this paper.

Indeed a next step is to embed these threshold pathways in

a form that is specifically hardware efficient, i.e. with a small

footprint and ultra-low power consumption. The impulse/count

nature of these pathways maps well to digital hardware fabrics

such as FPGAs—but also to dedicated analogue implementa-

tions with potentially ultra-low hardware overhead in terms of

area or power—and can be used to implement the bio-inspired

social insect intelligence models presented in this paper in

low-level hardware. This will provide a pathway for creating

TABLE II
PERFORMANCE REACHED—RELATIVE TO HIGHLIGHTED CASE—AFTER

RECOVERY TIME FOLLOWING FAULT INJECTION AT 500MS. SHOWN ARE

MEDIAN (Q2) AND 25TH/75TH PERCENTILES (Q1/Q3) FOR 100
INDEPENDENT, RANDOMLY INITIALISED RUNS OF EACH EXPERIMENT.

Recovery

Time

Relative

Performance

Faults Q1 Q2 Q3 Q1 Q2 Q3

0 – – – 96% 100% 103%
2 3 3 19 95% 98% 102%
4 3 3 17 94% 96% 100%
8 3 3 5 88% 93% 98%
16 3 3 3 79% 84% 89%

N
o

In
te

ll
ig

en
ce

32 3 3 3 63% 69% 75%

0 – – – 98% 108% 117%
2 3 30 160 94% 104% 113%
4 3 30 153 92% 102% 109%
8 3 19 141 85% 97% 105%
16 3 3 76 76% 85% 92%N

et
w

o
rk

In
te

ra
ct

io
n

32 3 3 3 52% 64% 74%

0 – – – 117% 129% 141%
2 3 29 136 115% 125% 140%
4 3 36 177 112% 124% 136%
8 3 53 175 109% 118% 129%
16 3 81 276 100% 107% 122%F

o
ra

g
in

g
F

o
r

W
o

rk

32 3 3 272 81% 89% 101%

a design methodology for a generic social insect-inspired RTM

subsystem.

REFERENCES

[1] C. Emmeche, S. Køppe, and F. Stjernfelt, “Explaining emergence:
Towards an ontology of levels,” Journal for General Philosophy of

Science, vol. 28, no. 1, pp. 83–117, Jan 1997.
[2] S. R. Brown, “Emergence in the central nervous system,” Cognitive

neurodynamics, vol. 7, no. 3, pp. 173–195, 2012.
[3] M. Rowlings, A. M. Tyrrell, and M. A. Trefzer, “Social-insect-inspired

networking for autonomous fault tolerance,” in IEEE Symp. Series on

Comp. Intel. (SSCI), December 2015.
[4] ——, “Social-insect-inspired adaptive task allocation for many-core

systems,” in IEEE World Cong. on Comp. Intel. (WCCI), July 2016.
[5] E. H. Davidson, “Emerging properties of animal gene regulatory net-

works.” Nature, vol. 468, no. 7326, pp. 911–20, dec 2010.
[6] T. Kuyucu, M. A. Trefzer, J. F. Miller, and A. M. Tyrrell, “An investiga-

tion of the importance of mechanisms and parameters in a multicellular
developmental systems,” IEEE Trans. on Evo. Comp., vol. 15, no. 3, pp.
313–345, Jun. 2011.

[7] M. K. Gould and H. P. de Koning, “Cyclic-nucleotide signalling in
protozoa,” FEMS Microbiol. Rev., vol. 35, no. 3, pp. 515–541, may
2011.

[8] J. B. Jackson, “A functional biology of clonal animals,” Trends Ecol.

Evol., vol. 5, no. 12, pp. 425–426, dec 1990.
[9] D. Gordon, Ant Encounters: Interaction Networks and Colony Behavior.

Princeton University Press, 2010.
[10] N. R. Franks, S. C. Pratt, E. B. Mallon, N. F. Britton, and D. J. T.

Sumpter, “Information flow, opinion polling and collective intelligence
in house-hunting social insects.” Philos. Trans. R. Soc. Lond. B. Biol.

Sci., vol. 357, no. 1427, pp. 1567–83, nov 2002.
[11] S. Beshers and J. Fewell, “Models of division of labor in social insects,”

Annu. Rev. Entomol., 2001.
[12] C. Tofts, “Algorithms for task allocation in ants. (A study of temporal

polyethism: Theory),” Bull. Math. Biol., vol. 55, no. 5, pp. 891–918, sep
1993.

[13] D. Gordon, B. Goodwin, and L. Trainor, “A parallel distributed model
of the behaviour of ant colonies,” J. Theor. Biol., 1992.

[14] Xilinx Inc, “MicroBlaze Micro Controller System v1.4 (PG048),” 2013.
[15] ——, “PicoBlaze 8-bit Embedded Microcontroller User Guide

(UG129),” 2013.
[16] Y. K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An

effective technique for allocating task graphs to multiprocessors,” IEEE

Trans. Parallel Distrib. Syst., 1996.


