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Engineering Resilient Complex Systems: The

Necessary Shift Toward Complexity Science
Giuliano Punzo , Anurag Tewari, Eugene Butans, Massimiliano Vasile , Alan Purvis,

Martin Mayfield, and Liz Varga

Abstract—This position article addresses resilience in complex
engineering and engineered systems (CES). It offers a synthesis of
academic thinking with an empirical analysis of the challenge. This
article puts forward argumentations and a conceptual framework
in support of a new understanding of CES resilience as the product
of continuous learning in between disruptive events. CES are in
continuous evolution and with each generation they become more
complex as they adapt to their environment. While this evolution
takes place, new failure modes arise with the engineering of their re-
silience having to evolve in parallel to cope with them. Our position
supports the role of an overarching complexity science framework
to investigate the resilience of CES, including their temporal evolu-
tion, resilience features, the management and decision layers, and
the transparency of boundaries between interconnected systems.
The conclusion identifies the value of a complexity perspective
to address CES resilience. Extending the latest understanding of
resilience, we propose a circular framework where features of CES
are related to a resilience event and complexity science explains the
importance of interconnections with external systems, the increas-
ingly fast system evolution and the stratification of heterogeneous
layers.

Index Terms—Complex systems engineering (CES), complex
networks, complexity theory, resilience, system resilience.

I. INTRODUCTION

E
NGINEERING systems are designed to specifications. In

addition to functional requirements, a system’s reliability,

failure tolerance, or resilience form an integral part of the design

parameters. In principle, a system’s resilience should provide
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it with a capability to preserve its functionality over varying

conditions of stress or for uncertainties arising from natural or

human interventions [1].

For modern day engineering systems, designing for resilience

or testing resilience at the design phase, poses a significant

challenge. Due to the interconnectedness and embeddedness

of these systems in a nested system of systems [2]–[4], it gets

increasingly difficult to adopt the traditional approach of testing

a system in isolation for resilience. Here, isolation refers to

engaging with stress testing using a restrictive set of prede-

termined input parameters and system specific conditions [5].

The criticism of traditional, functional parameters and individ-

ual component-based failure testing approach is that it fails

to account for the continuous evolution and adaptation that a

system undergoes, in progressive generations, over its entire life

span. Modern era systems are highly complex and have deeply

coupled interdependencies that are difficult to account for in the

design phase. It is an undeniable fact that modern day systems are

more integrated, more interdependent, evolve at faster pace and,

in a word, are more complex than the systems of the previous

century [6], thus excluding the possibility of testing for resilience

in isolation. We shall refer to these new class of evolving “living”

systems as complex engineering systems (CES) and we further

argue that there is a need to look for alternative paradigms and

methodologies to approach these systems.

Supporting the argument for a need to develop alternative

methodologies to approach engineering system resilience, Ghe-

orghe and Katina [1] quote “the dwindling applicability of ‘old’

methods and tools cannot be expected to address increasing 21st

century concerns.” The underlying assumption to this assertion

is that being complex, these systems demonstrate complexity

traits such as adaptation, self-organization, and emergence; and

these system traits inherently conflict with the purpose-driven

approach of engineering system design that looks for con-

vergence of behaviors and consistency of design and perfor-

mance [7]. It is thus imperative for CES studies to resolve the

debates around complexity and its influence on resilience.

A complexity perspective prompts engineering systems’ re-

search to reason why a system behavior exceeds what is in-

tuitively the sum of its individual parts [8]. Prime examples

of these, that will be expanded later on, are transportation

infrastructure that not only connect existing places, but shape

the commuting patterns, the supply chains, the emergence of

new conurbation, and so on. Another question that may arise is

whether embeddedness or interconnectedness is actually to be

blamed for loss in resilience [9, p. 13]. Elsewhere in complex

natural system research, it has been established that in natural

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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ecosystems, which are proven to be highly nested and intercon-

nected, there exists an inherent ability to survive and bounce

back [1]. If this is the case, then how do CES differ from other

similar man made or natural systems and what would be an apt

approach to study CES resilience. Motivated by these debates,

this article sets out to position the study of CES resilience in

the wider extant literature on complexity and resilience. After

establishing the positioning of CES in the interdisciplinary de-

bates of complexity and resilience, the article aims to provide

a synthesis of selected resilience examples from other related

domains of CES. More centrally, we propose a conceptual frame-

work that, acknowledging the circular nature of CES failures,

identifies in the learning element a way to avoid failure replicas

or escalations. To do so, we argue for complexity science to

be fully embraced as a framework within which CES are to

be designed and operated, widening the breadth of engineering

understanding. Looking at CES with a complexity perspective

will allow shifting the focus from the single components to their

reciprocal interactions within the engineered system they belong

and with its surrounding environment.

While the link between abstract science and engineering has

been highlighted before [7], [10], [11], there is considerable

scope for dialogue between the various fields of system

engineering seeking to exploit complexity methods beyond the

identification of failure mechanism, into the understanding of

the system’s dynamics. In this article, we argue in support of an

application of complexity science in the design of engineering

systems that, from commissioning to removal, coevolve with

their environment to turn away from their designed shape. Our

intentionally essential analysis of the literature is leveraged

to show how complexity disciplines, such as network science,

have so far either evolved in isolation or have found collocation

as a tool repository in support of the research carried out in other

domains, linking apparently distant fields, such as ecology and

engineering. It is not our intention to deliver a comprehensive

survey of the literature in this broad area. Using examples

we show that engineering-led approaches trail behind, not

considering real experience of system evolution. We hence

argue that a step change is achievable if complexity science is

used to guide the understanding of the system, with a system

engineering approach to manage the resilience of the system in

a time frame identified by the cyclical occurrence of disruptive

events, for which we propose a new, 1-D, periodic model.

The key argument that differentiates this article from others is

that we suggest resilience investigation to recognize the temporal

element of evolutionary adaptation in CES, presented at the core

of the article in the form of a resilience wheel, and incorporate

it in their process of continuous resilience evaluation.

Understanding the impact of emergence, interdependencies

and other characterizing CES features on resilience should not

be done in the system’s specific framework (in our case engi-

neering) but in a complexity science framework that can provide

a privileged position for applying the system specific tools.

II. ESSENTIAL AND QUANTIFIED ANALYSIS

OF THE LITERATURE

Resilience has its etymological roots in engineering [12], but

a bibliometric analysis of the literature suggests that ecology

is currently leading the investigation of resilience. Avoiding

Fig. 1. Citations per year of the 503 elements found in the engineering subset
(keywords resilien*, complex*, engineering). The last 25 years are considered.

Fig. 2. Cocitation map for keywords “resilien∗” and “complex∗.” Each pair
of linked node is a pair of scientific papers cocited in one of the 8538 records
returned by the research for the keywords.

duplication with literature reviews on the topic, in this section,

we produce a bibliometric analysis showing how complexity

enters the theme of resilience under different labels, with a

lack of a holistic view. Research on CES resilience is often

restricted to specific technical aspects, with complexity science

perspectives often overlooked.

A. Bibliometric Analysis

A literature search for the last 25 years (1993–2017) with

keywords resilien*, complex*1 identifies 8538 works (data

webofknowledge.com). By adding the keyword engineering, the

search identifies 503 works in the same period. The exponential

growth that the field underwent can be measured through the

number of works published and the citations they received (see

Fig. 1). In order to classify both sets of works by their research ar-

eas, we performed a cocitation analysis, similar to the one in [13]

for the field of industrial ecology. In a cocitation network, nodes

can be authors, subject fields, or scientific publications. Nodes

are linked if present or cited together in the same publication.

A description of the cocitation method can be found in [14].

The visualization of the results (see Figs. 2–4) is obtained using

Gephi [15]. We built two networks where nodes are scientific

1The * is a wild character to include all possible keywords starting with
resilien and complex, e.g., resiliency, resilient, complexity, etc.
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Fig. 3. Cocitation map for keywords “resilien∗,” “complex∗,” and “engineer-
ing.” Each pair of linked nodes is a pair of scientific papers cocited at least
five times the 503 records returned by the research for the keywords. The total
number of nodes in this map is 22. For each node, the size indicates its degree
while the colour indicates the subject group it belongs.

Fig. 4. Cocitation map for keywords “resilien∗,” “complex∗,” and “engineer-
ing.” SC field, edge weight ≥ 5. Complexity does not appear and works in
network science (present in the network of papers) is disguised under other
labels.

works cited in the 8538 and 503 publications, where colours

identify different subject fields while labels and authors were

assigned by inspection.

The first cocitation map of the works referenced by the

8538 publications covering the topics of “complexity” and

“resilience” is shown in Fig. 2. The field is dominated by

ecology, meaning that works in complexity and resilience refer

extensively to ecology research. Other important research areas

are network science and psychology. Resilience engineering is

a relatively small set in this collection.

Considering only the 503 publications of the engineering

subset, a second cocitation analysis was performed. For clarity of

representation, only publications cocited at least five times were

considered (see Fig. 3). A fundamental work by Holling [16] that

looks at ecological resilience is the center of this network and

the strongest connection to engineering is through the work by

Hollnagel [17], which sets the basis for the current understanding

of resilience engineering.

Works framing the problem of resilience very well in its

complexity, starting from engineering and moving beyond that,

are those by Dekker, Perrow, and Vaughan in [18]–[20], respec-

tively. These focus on catastrophic cascade failures and the role

that a system’s complexity plays in these. The fact that these

works are cocited less than five times, and hence, do not appear

in the network in Fig. 3, is possibly symptomatic of the field

often looking at specific system resilience issues, abstracting

them from the complexity attributes. In particular, already in

1984, Charles Perrow,2 framed very well the problem of ensuring

safe and reliable operations of systems that become hardly

predictable due to their complexity. This is in part captured by the

more recent work in [21] and some of the works in the resilience

engineering cluster [22]–[28].

Papers in network science, such as the works by Watts and

Strogatz [29], Barabasi and Albert [30], and Albert [31] are

among the most cocited (hence, influential) documents in the set

of publications. These works figure as highly influential despite

their starting point being fundamental network science, rather

than strictly engineering (examples considered come from bio-

logical and social networks, as well as the internet and the world

wide web), and despite not explicitly referring to resilience, but

rather looking at robustness instead. This, in turn, may suggest a

possible explanation to the growth in publications and citations

shown in Fig. 1 coinciding with the outbreak of network science

in the late ’90s. Moreover, it should be noted how resilience

and robustness, although conceptually different, are related and

often linked to other system’s properties such as recoverability

and reliability. The distinctions between these properties are not

uniquely marked, and often the choice of referring to one or the

other is field dependent [32].

We finally looked at the subject areas, as classified in the

webofknowledge database (SC field), and made the cooccur-

rence map in Fig. 4, again cutting the weight of the edges (the

number of times two fields are referred together to a single

publication) to five. In the map, there is no clear indication

of complexity-related disciplines, nor of network science that

emerged clearly at single-paper level. These disappear under

other labels used by the journals as interest fields, suggesting a

secondary overall level of attention. This suggests the absence

of a general framework of complexity science that is used as

literature classification and that is a reference for the resilience

of CES. Yet, through the scientific literature, the ideas of CES

and resilience do emerge, if not clearly, at least in a discernible

way. The next section will provide more details about these.

B. Link Between Complexity Science and Engineering

Engineering met complexity around the mid 20th century,

with Wayne Weaver framing the problems of organized com-

plexity as the new frontier for physics and Charles Perrow mak-

ing evident in 1984 how engineering problems are of organized

complexity nature [19], [33].

2The citation of Perrow’s work [19] refers to the 1999 edition of his work.
This was first published in 1984 through a different publisher
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Baranger, Gell-Mann, and Bar-Yam in [34]–[36], respec-

tively, are amongst those reinforcing the link and putting com-

plex systems in relation with chaotic systems and entropy. No-

ticeably, Bar-Yam identified complex systems as an approach,

as opposed to a family of systems, focussing on the relations and

interplay amongst the system’s parts and between the system as

a whole and its part [37], [38], being supported by others in his

conclusions [39], [40].

The approach prioritizing the interactions over the interact-

ing parts was formulated through complex networks as a way

of modeling complex systems, where the attribute “complex”

indicates structures which are not fully regular (i.e., lattices)

nor completely random. Starting from the seminal papers [29]

and [30], many of the world’s complex systems were modeled,

associated, characterized, and explained through complex net-

works. From these it was just a short step to move into resilience

themes, such as defining the propagation of a fault or the collapse

of a network following the removal of some nodes [41], [42].

In recognizing characteristics, such as emergence, nonlinear

interactions and, in many cases, continuous growth of the sys-

tems, engineers found themselves dealing with the problems

that [33] classified as organized complexity, entering the realm

of theoretical physics. Of the 43 metrics for complexity iden-

tified by Lloyd [43], measures used in engineering are mostly

model-based, that is, they refer to a model of the system to

capture features such as size, regularity, and interdependencies

[44]–[46].

C. Resilience and How It Applies to CES

In engineering, a popular understanding of resilience points

at the concept of bouncing back from disruptions, recovering

some level of performance the system had before being hit

by a shock [47], or exceeding the preshock performance after

recovering [48]. The United Nations International Strategy for

Disaster Reduction defines resilience more broadly as the sys-

tem’s ability to resist, absorb, accommodate, and recover from

the effects of a hazard [49]. This definition is also shared by

Linkov et al. [50] in their systemic approach to climate change,

centered on uncertainty quantification and risk management.

Adaptation to changing scenarios is a pronounced character-

istic of organizational resilience that applies to individuals and

communities facing adversities [51], [52].

With the breadth of engineering comprising a variety of

systems as well as a variety of approaches, resilience can be

captured generically as “enduring disruption.” Irrespectively

from how the definition applies to specific engineering domains,

a common characteristic appears to be the lack of quantifi-

able a priori metrics. If the system has not yet experienced

a performance loss, its resilience can hardly be quantified. In

particular, it is difficult to account for the through-life aspects

of resilience [53].

What makes CES resilience a complex matter on its own

is that it exceeds the system boundaries. In Charles Perrow’s

fundamental work [19], opposite to expectations, added devices

devoted to system safety, in fact, increase the level of complexity

and failure sources. “Normal accidents” are, hence, endoge-

nously generated within our society, and our engineering within

it, in a rush toward higher and higher levels of complexity. Con-

sider the example of a dam. The hydrogeological equilibrium of

the catchment, the proximity of inhabited areas and the climate

are some of the elements that make the dam something more

than a water retaining structure. It is in all respects a CES,

even in the case that the water retaining structure is the only

engineered part of it. In 2011, the Brisbane river catchment

was hit by persistent torrential rain for days before the January

catastrophic floods. The rain and the inflow from other reservoirs

filled the Wivenhoe dam, rapidly passing the levels between

which dam operators could exert some discretion in deciding

for water spillage. At the point that spilling was a necessity

to avoid structural damages, all the surrounding water ways

were already full and the spillage determined the catastrophic

flood [54]. Operational procedures were followed without flaws

by the dam operators, but the multiple, persistent shocks to

which the whole ecosystem was subjected showed the lack of

resilience in the associated CES [55]. Other relevant examples

within and beyond water engineering are the 1967 earthquakes

in Denver [56], the cases of the Kariba dam [57] and the Koyna

dam, in India [58].

The ever-changing scenario, including both the environment

surrounding the system and the system itself, is the fundamental

aspect that appears overlooked by the current approach. The

“Red Queen hypothesis” was first formulated in [59], again in

an ecological context, establishing the link between species’

resilience to extinction and their ability to quickly adapt to

changed conditions. The ability of species to adapt to new envi-

ronmental conditions faster than the rate of change of these could

explain the survival of species and complement Darwin’s natural

selection law by including elements of adaptation. This concept

translates to CES when considering the ability of systems to

adapt to ever-changing operations and operational scenarios.

The quicker CES achieve a new stable operating condition, the

more resilient it will be. System adaptability during distress

periods and before, while a system naturally evolves and new

technologies are bolted onto old substrates, is hardly captured

in traditional resilience engineering research.

D. Resilience for CES—The Example of Aerospace Systems

The design and operations of aerospace systems require high

levels of reliability (the ability to perform under specified con-

ditions and for a specified time) and robustness, because of the

difficulty in recovering from degraded states or failures. Space

systems have to operate without maintenance for several years

in harsh environments. Launch systems (both expendable and

reusable) need to achieve reliability over 90% for nonhuman-

rated flights and over 96% man-rated flights. Robustness and

reliability approaches in aerospace are described in [60]–[62].

An example of dealing with increased complexity due to

increased autonomy is the failure detection identification and

recovery (FDIR) system, which is able to detect (possibly pre-

dict) failure and can implement actions for system recovery.

Beyond reliability and robustness, resilience is addressed in

aerospace through the failure modes, effects, and criticality anal-

ysis (FMECA), an examination of the possible causes of faults

and consequences from its propagation across subsystems [63].

This attention to the robustness and reliability of the aerospace



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PUNZO et al.: ENGINEERING RESILIENT COMPLEX SYSTEMS: THE NECESSARY SHIFT TOWARD COMPLEXITY SCIENCE 5

products does not always guarantee the resilience of the larger

system these products contribute to engineer.

Airplanes and spacecrafts are self-contained aerospace

products and complex engineered systems. An important layer

of complexity is added when these objects are coupled with

other systems, where not everything is known and there is not

necessarily a design envelope through which it is possible to

define normal operations. As an example, the failure, and suc-

cessive recovery of the Telsat Anik E-2 and Anik E-2 satellites,

in January 1994, caused an interruption of cable TV, telephone,

newswire, and data transfer services through Canada [64]. More

recently, the eruption of the volcano Eyjafjallajokull paralyzed

air traffic over the Atlantic and in most of Europe due to the

unknown risk associated with it [65].

E. Common Resilience Problem Across Engineering Domains

Across all engineering systems, resilience suffers from the

unpredictability of disruptions originating both outside the de-

sign domain but often within the wider system, considered as

the engineered part and the environment in which it operates.

The resilience of a system has and should be put in connection

with its complexity, as pointed out for example in [66], yet

when looking at the system complexity, one should look beyond

the system boundaries. The environment can be a source of

systemic threat, such as in aerospace systems with the presence

of particles in suspension in the atmosphere. This overlooking of

the wider system emerges from our bibliometric analysis, with

resilience and complexity often restricted within more specific

research fields. CES suffer from stratification and changing de-

mand patterns that accelerate obsolescence making single nodes,

designed in isolation, harmful to systemic resilience. The need

to achieve multiple objectives (safety, affordability, etc.) as well

as resilience is a defining characteristic. These considerations

call for reconsidering resilience as a continuous process aimed

at understanding the system in its complexity. This is the point

of our next section.

III. HOLISTIC APPROACH TO THE RESILIENCE OF CES

The literature offers numerous definitions for resilience and

it is not our intention to impose a new one to win them all.

However, it is our scope to explain our position about the

problem of designing and managing CES. To be able to proceed,

acknowledging the always increasing complexity of contempo-

rary engineering systems, we provide a definition for resilience

of CES.

Resilience of CES is the system ability to prepare by building

system awareness, identify premonitory signs by monitoring key

nodes and knowing their weaknesses, being robust at node level

(component or subsystem) to avoid collapse during speculated

adverse events, revise the system objectives by reconfiguring

and/or exploiting redundancy through the complex interplay of

its parts, and recover full service by reinstalling operations to

meet reviewed system objectives.

In light of this definition, resilience becomes a defining feature

of CES. It is a measure of how the different system parts

subsidize each other and work together in reinforcing each

other. Resilience intertwines with other characteristics such as

the distributed and heterogeneous nature of complex systems,

the need to gather meaningful information from a wide variety

of sources and adaptation in respect of the system goals. This

intersection between resilience and CES elicits the emergence

of natural research questions related to the applications of re-

search methods. How the rapid succession of multiple shocks is

responsible for cascade failure and sudden collapse is probably

the most evident of these. Also, how does the structure of the

CES influence its resilience? What design mechanism is needed

for CES systemic resilience? What are the resilience-critical

nodes and the edges to consider for different types of shock?

And so on. This list of questions is of course not exhaustive,

but provides an idea of the breadth of the field that opens up

at the intersection of resilience and CES. Even more than that,

the questions highlight the role played toward system resilience

by a thoughtful understanding of the complex structural and

dynamical interactions within and across systems.

A. All-Round Resilience Concept

The engineering systems’ literature recognizes the existence

of strong coupling among engineering system components,

natural surroundings, infrastructure availability, and interacting

social systems, and argues that these complex interdependencies

necessitate the study of engineering resilience from a complexity

perspective. A complex system perspective provides the neces-

sary theoretical foundation and analytical framework to study

the dynamic and emergent nature of system resilience. It is

often argued that system resilience can only be observed when

a system is exposed to unfavourable events, perturbations or

signals and inputs beyond normal operating or design condi-

tions. Thus, a longitudinal study of the system and events over

time provides the best opportunity to observe, measure, and

comment on the resilience performance of the system design.

Based upon this premise and on similar arguments from the

literature (e.g., [19], [67], [68], etc.), we converge to a simple

framework or concept of complex engineering system resilience.

This is one dimensional and temporal. The framework arises

from juxtaposing and consolidating existing literature, and has

validity from a deductive perspective. It presents the building

up of system resilience as a continuous learning process based

on the analysis of the system, its weaknesses and occurred

failures to prevent these from happening again. We shall call

such framework the resilience wheel.

The resilience wheel frames resilience around the changing

state of the system around a disruptive event, when passing from

the normal operations to a series of contingency and recovery

states. To each system state, the framework associates resilience

objectives that the system has to achieve, functions to absolve,

and event features to show resilient behavior. This way, the

resilience wheel merges the phases and pillars for resilience

introduced by Madni and Jackson [69] with the increasingly

popular understanding of resilience as continuous application

of risk management practices [70], which we argue to be the

way resilience should be understood for CES. As we can see,

the system sequentially passes through five distinct phases in

response to a threat. Each phase provides a separate viewpoint

to explore the phenomenon of resilience. The idea of a contin-

uous cycle of improvement was recognized by Hollnagel [71]

stating that a resilient system needs to know what happened
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Fig. 5. Resilience wheel is a 1-D temporal resilience framework.

and learn from it. The proposed concept follows this approach

by identifying learning that is achievable through a complexity

perspective.

Referring to Fig. 5, the five phases are termed as long before,

before, during, after, and long after. The phases are usually

different in length, with the during phase being the shortest,

and long before and long after phases being much longer than

the rest.

In order to characterize the system, we are going to describe

its resilience objectives and the way the system achieves them,

i.e., system functions. In addition, the event features for each

state are defined—predisposition, precursors, effects, impacts,

and outcomes corresponding to the system states normal, alert,

emergency, restoration, and recovery, respectively.

1) Long Before: The long before phase refers to the period

where there are no active or impending threats to the system

and the system is operating under normal design conditions.

However, despite being at a performance optima, a resilient

system will have processes constantly monitoring the system for

anomalies and threats and would also maintain system resources

and parameters to be sufficiently available in case of any even-

tuality or crisis situation. The system could be argued to have

a degree of self-awareness and standby preparedness achieved

through the observation of the system outputs and variable, only

possible through the knowledge of what are the outputs and

variables to observe.

2) Before: Engineering systems are designed for diagnosis

and prognosis of threats and vulnerabilities originating within

the components of the system. However, as CES are nested in

other systems with several complex interdependencies extend-

ing far beyond their direct control or influence, it is far more

important to monitor the vulnerability and threats originating in

the extended network of systems. Often there is a lag between

an event and its impact being felt on a connected system. The

resilience wheel refers to this time period, from the time of

detection of a vulnerability or threat to the time when this adverse

event actually impacts the performance of the system, as the

“before phase.” A more resilient system would be capable of

recognizing a threat earlier and would also be able to quantify

the severity of the impact. Early detection, informed by prior

system knowledge and training, can considerably reduce the

response time and help restrict the severity of impact.

3) During: In this phase, the system is directly subjected

to the negative effects of an unfolding threat and may lose its

normal state functionality in part or in full. Adaptation plays

a fundamental role in system resilience while disruptions are

unfolding. This may include changes to system structure and

operational procedures. An often overlooked aspect of adapta-

tion is a change in system goals. Considering that the goals of the

system have a significant impact on its functioning, they can be

one of the most effective ways to adapt to changing conditions.

The functional focus of a system in an emergency state is to

withstand the negative effects of adverse events by mitigating

them and preventing propagation of effects and cascading fail-

ures through the system and beyond the system’s boundary, a

process known as containment. While doing that, the system

needs to document the extent of damages as well as mitigation

and containment actions to the best of its ability to be used

later in the recovery and learning phase. To ensure an effective

response, the system makes use of resources that were planned

and allocated during the long before phase. Yet the system

benefits from the processing of outputs observable during the

distress phase. An understanding of what these outputs are is

achievable only if the system knowledge is developed to the point

of modeling the effect of a disruption ahead of this happening.

4) After: The after phase is concerned with recovery from

disruptions caused by adverse events and exiting the alert and

emergency states. As the recovery progresses, core goals are

being supplemented and replaced by an extended goal set per-

taining to normal functioning of the system. This extended set

may be the same as the original set of goals in the long before

phase, as the system “bounces back” to its original state [72],

or “forward” to an adapted state, resulting in delivery of a new

extended set of goals [73], [74]. To achieve the transition from

core to an extended set of goals, the system can reconfigure,

repair, or replace itself or one of its subsystems. After suffering

an adverse event, there may be multiple equilibrium points

requiring a coordinated recovery effort from interconnected

subsystems [75]. Uncoordinated restorative actions may cause

deadlocks in interconnected systems [76] and create cascading

failures. Only an overall, systemic consideration of the system

can deliver a coordinated action.

5) Long After: In the long after phase, the system operates

in conditions that will be regarded as normal. However, in

this phase, a resilient system would be simultaneously engaged

with the process of analyzing and learning from the events that

impacted the system. A complete analysis and assessment of

system impact could take a very long time.

In a continuing process of resilience improvement, results

from the analysis and deduced structural or process improve-

ments are continuously adopted by the system to make it more

resilient. While the system learns and adapts to past threats, this

long after phase slowly slips into the long before phase, and the

process continues in a cyclic manner.
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B. Examples of the Resilience Wheel in Action

The resilience wheel posits the need for evaluation of chang-

ing system conditions and requirements over an extended period

of time, which is often missed when an engineering system

is designed and tested for reliability using a functional design

approach and a range of scenarios. It is logical to argue that

these scenarios are not capable of providing an exhaustive set

of conditions, particularly the ones arising in nested systems of

systems (comprising of weather, infrastructure, social systems,

etc.). These system behaviors and conditions are path sensitive

and need to be evaluated on a real-time basis using a resilience

framework, such as the resilience wheel; failing to do so may

result in a disaster. There are numerous examples of disasters

that happened due to a lack of understanding of system resilience

and its dependence on other connected systems. A full validation

of the framework would require analyzing systems where this

is implemented and comparing them to systems where it is not.

Besides being difficult to achieve, this is outside the scope of

this work. We shall nevertheless provide two examples of CES

failures highlighting their links to the phases in the resilience

wheel. The first is about the Challenger and Columbia disasters

from the NASA space program—a program that, ironically, is

considered to have popularized the reliability testing methods

of engineering systems. The second is about the collapse of

the air traffic network following the eruption of the volcano

Eyjafjallajokull, previously encountered in Section II-D.

1) From Challenger to the Columbia: In the Challenger dis-

aster, the low-temperature issue leading to the sealing failure of

the “O-rings” [77] was known to the engineers but the consoli-

dated practice of launches at low outside temperature reinforced

the view that the risk was an acceptable one. Vaughan called the

practice “normalization of deviance” which refers to the attitude

of people becoming accustomed to behaviors, events, practices,

and processes that they normally would have considered wrong

or deviant from their own perspective [20]. Feynman described it

as “when playing Russian roulette, the fact that the first shot got

off safely is little comfort for the next” [78]. With the STS-107

Columbia disintegrating at re-entry, history repeated itself. The

foam detachment issue at the origin of the problem was a well

known risk, a recurring issue already noted in mission STS-7 and

STS-112. It was classified as an “accepted risk” for STS-113,

launched one month before the STS-107 Columbia [79]. The

parallel with the Challenger disaster is evident [80], with the

NASA blamed for negligence in official circumstances [79].

The Columbia incident lifted the curtain over a system far

more complex than the space shuttles and space transportation

system (STS) programme. Normalization of deviance did not

occur at the vehicle level. It was an organizational problem

showing a lack of resilience within the extended system, in which

the shuttle was just a “component.” The shuttle failure, at least in

the Columbia case, was a consequence of the lack of resilience

of the system (intended as organization) within which it was

operating.

The events between the Challenger and Columbia accidents

can be mapped to the resilience wheel 5, where we can consider

the system to be the NASA, whose objective is to enable manned

space flight within the STS programme. At the time of the Chal-

lenger event, in the during phase, the STS programme was halted

causing a disruption to the western access to space. The after

phase finished with the launch of STS-26-R Discovery on 29th

September 1988. The restoration included a new safety paradigm

and changes in the management at NASA, as it was clear how

misjudgment more than a technical failure were the reasons for

the explosion [20]. The recovery of the system in the long after

phase saw an in-depth understanding of the process dynamics

that determined the incident, but failed to remove some of the

causes that Vaughan indicates as reasons for the normalization

of the deviance. Among these, the hierarchical organization

that made safety-related decisions became a management and

not engineering concern. The after phase from the Challenger

event appeared concentrated more on the technical aspects than

on resolving the normalization of the deviance. This continued

during the following long before phase of the Columbia event,

with normal operations overlooking the foam shedding problem,

and eventually made ineffective the predictive power of the

alert in the before phase as threats such foam shedding were

overlooked.

2) North Atlantic Air Traffic Collapse in April 2010: On 14th

April, 2010, a mix of magma and meltwaters from the Eyjafjal-

lajökull glacier generated an explosive eruption sending fine-

grained ash the atmosphere. The jetstream quickly dispersed

these over Europe. On the basis of previous encounters between

airplanes and volcanic ashes, causing some jet engines to fail, the

air traffic across most Europe was grounded for several days and

intermittently in the following weeks [81]. It is estimated that, to

the aviation industry alone, this costed 250 million per day [82].

It can be argued that the air traffic control showed some resilience

by avoiding the risk of air disasters. However, this course of

action was driven more by the uncertainty about the effects

of volcanic ashes on jet engines, rather than the certainty that

such a concentration of that specific compound could be fatal.

Even accepting that the closure of the airspace was inevitable,

the lack of preparation, alternative routing, or technological

solutions to ensure a minimum continuity of service, were not in

place. Analyzing the events, it appears how in the before phase,

premonitory signs were advisable as the eruption culminated 18

years of intermittent volcanic activity [83]. The fact that imme-

diate short-term eruption precursors may be subtle and difficult

to detect highlights the gaps in science (in this case geophysics)

that we advocate should support engineering. The fact that the

during phase was dominated by uncertainty highlights the lack

of knowledge across fields and the research gap on the specific

effect on engineered systems [84]. Once achieved, this should

not rest within the engineering of turbomachinery, but reach out

to the air traffic regulations and operations. The same uncertainty

dominated the after phase, when air traffic was intermittently

restored. The long after and the long before phase lead up to

the present days, with analysis that saw network science used

in the attempt to explain why a pointwise threat became a

continentwide problem [65]. Several voices are now calling for

greater cooperation between scientists and aviation-sector ser-

vice providers to provide support to decision-makers [85]. With

the premonitory signs now being more clearly identifiable and

with the research that is currently undergoing, the opportunity

arises for better preparation to be made in the new before phase.

This appeal is an example, limited to the problems of the aviation

sector, of the general position expressed in this article. How this

appeal will be received and how quickly we realize that the same
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can be extended to all CES domains will shape the resilience of

our society through the systems on which it depends always

more.

IV. CONCLUSION AND WAY FORWARD

The rush toward integrated, intelligent, and synchronized

transportation, new energy sources, congestion-free urban en-

vironments, and their realization is associated, in many cases, to

a matter of “just” engineering. This so far successful approach is

revealing less capability to deliver resilient systems as the bound-

ary of systems are trespassed by increasing interconnectivity

where systems evolve in response to the evolving surrounding

environment. We acknowledge that all engineering systems

have some degree of complexity—from Roman aqueducts to

Babbage difference engine, but the complexity of such systems

was confined in time and space. Modern CES, those we are

concerned with, evolve over time, bolting new onto old tech-

nologies and in space, interacting and changing the environment

(natural, technological, social, urban, economic) in which they

operate. Our analysis of the literature confirmed that engineering

systems are perceived as complex but there is not a defined

and self-standing research stream looking at their resilience as

complex systems as opposed to specific, domain-bound systems.

The most popular engineering resilience definitions, even within

specific sectors, do not capture evolution and crossing bound-

aries, appearing often inadequate. In response to this, we argue

that the understanding of a system is a proxy for its resilience.

It is the key point in preventing, mitigating, adapting, and

improving after failures. This understanding, which translates

into learning around its failures, can only be captured using a

complexity perspective. There are multiple possibilities through

which this can be practically addressed. One can be summarized

as investing in research to progress complex system modeling

to integrate specific systems’ and environment’s features. The

new models, while incorporating real system features, should

keep the analytic tractability of abstract models, currently more

popular in science than engineering. In this way, the new models

can be useful to understand and predict complex system behavior

by uncovering and leveraging their fundamental dynamics.

As engineering systems evolve and do so at an increasing pace,

the design approach must evolve to incorporate the fundamentals

of complexity science. This will push designers to look beyond

strictly engineering to incorporate wider system aspects into

their job, enabled in this by the analytic tools that complexity

science can deliver. As Newtonian physics underpins our world

from the engineering of road bridges to the principles of flight,

so complexity science will underpin the understanding, at least

partially, of why cities are central for economic and cultural

prosperity, how the self-organization of the national grid allows

for handling, within some limits, a variety of load profiles, and

so on, up to deceptively simple phenomena such as the effects of

roundabouts on the traffic flow. Having such understanding will

allow learning across all phases of the resilience wheel before the

following shock hits the system. Achieving this passes through

research that bridges fundamental and abstract knowledge to

actual system dynamics. There is the need to conjugate hetero-

geneous systems and be able to model their joint dynamics in

a way that captures nonobvious interactions, including those

which arise as a later result of the whole system’s evolution.

At the same time, resilience engineering needs to evolve to

embrace complex features in understanding and designing of

systems changing over time or presenting new features following

a change in their environments. These ever-changing features of

complex systems are nowadays instrumental to the object of

resilience engineering.

ACKNOWLEDGMENT

The authors would like to acknowledge the continuous idea

exchange with academics and practitioners in the field of CES.

REFERENCES

[1] A. Gheorghe and P. Katina, “Editorial: Resiliency and engineering
systems—Research trends and challenges,” Int. J. Crit. Infrastruct.,
vol. 10, no. 3/4, pp. 193–199, 2014.

[2] J. Boardman and B. Sauser, “System of systems—The meaning of of,” in
Proc. IEEE/SMC Int. Conf. Syst. Syst. Eng., Apr. 2006, p. 6.

[3] A. Gorod, B. Sauser, and J. Boardman, “System-of-systems engineering
management: A review of modern history and a path forward,” IEEE Syst.

J., vol. 2, no. 4, pp. 484–499, Dec. 2008.
[4] B. Roberts, T. Mazzuchi, and S. Sarkani, “Engineered resilience for

complex systems as a predictor for cost overruns,” Syst. Eng., vol. 19,
no. 2, pp. 111–132, 2016.

[5] M. Ram, “On system reliability approaches: A brief survey,” Int. J. Syst.

Assur. Eng. Manage., vol. 4, no. 2, pp. 101–117, 2013.
[6] A. Vespignani, “Complex networks: The fragility of interdependency,”

Nature, vol. 464, no. 7291, pp. 984–985, 2010. [Online]. Available: http:
//www.nature.com/doifinder/10.1038/464984a

[7] M. Bujara and S. Panke, “Engineering in complex systems,” Current Opin-

ion Biotechnol., vol. 21, no. 5, pp. 586–591, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0958166910001266

[8] W. B. Rouse, “Complex engineered, organizational and natural systems,”
Syst. Eng., vol. 10, no. 3, pp. 260–271, 2007.

[9] O. L. de Weck, D. Roos, C. L. Magee, and C. M. Vest, “From inventions
to systems,” in Engineering Systems: Meeting Human Needs in a Complex

Technological World. Cambridge, MA, USA: MIT Press, 2011. [Online].
Available: https://ieeexplore.ieee.org/document/6282211

[10] Y. Bar-Yam, “When systems engineering fails—Toward complex systems
engineering,” in Proc. IEEE Int. Conf. Syst., Man Cybern., 2003, vol. 2,
pp. 2021–2028.

[11] J. Park, T. P. Seager, P. S. C. Rao, M. Convertino, and I. Linkov, “Integrating
risk and resilience approaches to catastrophe management in engineering
systems,” Risk Anal., vol. 33, no. 3, pp. 356–367, 2013.

[12] D. E. Alexander, “Resilience and disaster risk reduction: An etymological
journey,” Natural Hazards Earth Syst. Sci., vol. 13, no. 11, pp. 2707–2716,
2013.

[13] S. Meerow and J. P. Newell, “Resilience and complexity: A bibliometric
review and prospects for industrial ecology,” J. Ind. Ecology, vol. 19, no. 2,
pp. 236–251, 2015.

[14] H. Small, “Co-citation in the scientific literature: A new measure of the
relationship between two documents,” J. Amer. Soc. Inf. Sci., vol. 24, no. 4,
pp. 265–269, 1973.

[15] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source software
for exploring and manipulating networks,” in Proc. 3rd Int. AAAI Conf.

Weblogs Social Media, May 2009.
[16] C. S. Holling, “Resilience and stability of ecological systems,” Annu. Rev.

Ecology Systematics, vol. 4, no. 1, pp. 1–23, 1973.
[17] E. Hollnagel, D. D. Woods, and N. Leveson, Resilience Engineering:

Concepts and Precepts. Farnham, U.K.: Ashgate, 2006.
[18] S. Dekker, “Drift into failure: From hunting broken components to under-

standing complex systems,” 2012.
[19] C. Perrow, Normal Accidents: Living With High Risk Technologies (Up-

dated). Princeton, NJ, USA: Princeton Univ. Press, 1999.
[20] D. Vaughan, The Challenger Launch Decision: Risky Technology, Culture,

and Deviance at NASA. Chicago, IL, USA: Univ. Chicago Press, 1996.
[21] A. Geist, “How to kill a supercomputer: Dirty power, cosmic rays, and bad

solder,” IEEE Spectr., 2016.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PUNZO et al.: ENGINEERING RESILIENT COMPLEX SYSTEMS: THE NECESSARY SHIFT TOWARD COMPLEXITY SCIENCE 9

[22] T. A. Saurin and G. C. Carim, Jr, “A framework for identifying and
analyzing sources of resilience and brittleness: A case study of two air
taxi carriers,” Int. J. Ind. Ergonom., vol. 42, no. 3, pp. 312–324, 2012.

[23] M. F. Costella, T. A. Saurin, and L. B. de Macedo Guimaraes, “A method
for assessing health and safety management systems from the resilience
engineering perspective,” Saf. Sci., vol. 47, no. 8, pp. 1056–1067, 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.ssci.2008.11.006

[24] J. O. Gomes, D. D. Woods, P. V. R. Carvalho, G. J. Huber, and M. R. S.
Borges, “Resilience and brittleness in the offshore helicopter transporta-
tion system: The identification of constraints and sacrifice decisions in
pilots’ work,” Rel. Eng. Syst. Saf., vol. 94, no. 2, pp. 311–319, 2009.

[25] G. Morel, R. Amalberti, and C. Chauvin, “How good micro/macro er-
gonomics may improve resilience, but not necessarily safety,” Saf. Sci.,
vol. 47, no. 2, pp. 285–294, 2009.

[26] N. Leveson, “A new accident model for engineering safer systems,” Saf.

Sci., vol. 42, no. 4, pp. 237–270, 2004.
[27] E. Hollnagel, Barriers and Accident Prevention. Aldershot, U.K.: Ashgate,

2004.
[28] D. D. Woods and E. Hollnagel, Joint Cognitive Systems: Patterns in

Cognitive Systems Engineering. Boca Raton, FL, USA: CRC Press, 2006.
[29] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’

networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. [Online].
Available: http://dx.doi.org/10.1038/30918

[30] A.-L. Barabasi and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, no. 5439, pp. 509–512, 1999.

[31] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance
of complex networks,” Lett. Nature, vol. 406, no. 1/3, pp. 378–382,
2000.

[32] O. L. de Weck, A. M. Ross, and D. H. Rhodes, “Investigating relation-
ships and semantic sets amongst system lifecycle properties (Ilities),”
in Proc. 3rd Int. Eng. Syst. Symp. CESUN Delft Univ. Technol, 2012,
pp. 18–20.

[33] W. Weaver, “Science and complexity,” Amer. Sci., vol. 36, pp. 536–544,
1948.

[34] M. Baranger, Chaos, Complexity, and Entropy: A Physics Talk for Non-

Physicists. Cambridge, MA, USA: New England Complex Syst. Inst.,
2001, pp. 1–17.

[35] M. Gell-Mann, “What is compexity? Remarks on simplicity and com-
plexity by the Nobel Prize-winning author of The quark and the jaguar,”
Complexity, vol. 1, no. 1, pp. 16–19, 1995.

[36] Y. Bar-Yam, “Complexity rising: From human beings to human civiliza-
tion, a complexity profile 1,” Encyclopedia Life Support Syst., vol. 1,
pp. 1–33, 1997.

[37] Y. Bar-Yam, “General features of complex systems,” Knowl. Manage.,

Org. Intell. Learn. Complexity, vol. 1, no. 1, pp. 1–10, 1997.
[38] Y. Bar-Yam, “About engineering complex systems: Multiscale analysis

and evolutionary engineering,” in Proc. Int. Product Focused Softw. De-

velop. Process Improvement Conf., 2005, pp. 16–31.
[39] D. O. Norman and M. L. Kuras, “Engineering complex systems,” in

Complex Engineered Systems, vol. 21. Berlin, Germany: Springer, 2006,
ch. 10, pp. 206–245.

[40] E. Zio, “Challenges in the vulnerability and risk analysis of critical
infrastructures,” Rel. Eng. Syst. Saf., vol. 152, pp. 137–150, 2016.

[41] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of
complex networks,” Physica A, Statist. Mech. Its Appl., vol. 340, no. 1/3,
pp. 388–394, 2004.

[42] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Network
robustness and fragility: Percolation on random graphs,” Phys. Rev. Lett.,
vol. 85, no. 25, pp. 5468–5471, 2000.

[43] S. Lloyd, “Measures of complexity: A nonexhaustive list,” IEEE Control

Syst., vol. 21, no. 4, pp. 7–8, Aug. 2001.
[44] M. Efatmaneshnik and M. J. Ryan, “A general framework for mea-

suring system complexity,” Complexity, vol. 21, pp. 533–546, 2016,
doi:10.1002/cplx.21767.

[45] D. Braha and O. Maimon, “The measurement of a design structural and
functional complexity,” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans,
vol. 28, no. 4, pp. 527–535, Jul. 1998.

[46] J. D. Summers and J. J. Shah, “Mechanical engineering design complexity
metrics: Size, coupling, and solvability,” J. Mech. Des., vol. 132, no. 2,
2010, Art. no. 021004.

[47] S. Hosseini, K. Barker, and J. E. Ramirez-Marquez, “A review of defini-
tions and measures of system resilience,” Rel. Eng. Syst. Saf., vol. 145,
pp. 47–61, 2016.

[48] L. K. Comfort, Shared Risk: Complex Systems in Seismic Response, 1st
ed. New York, NY, USA: Pergamon, 1999.

[49] “2009 UNISDR terminology on disaster risk reduction,” Int. Strategy Dis-

aster Reduction, UNISDR, Geneva, Switzerland, pp. 1–30, 2009. [Online].
Available: www.unisdr.org/publications

[50] I. Linkov et al., “Changing the resilience paradigm,” Nature Climate

Change, vol. 4, no. 6, pp. 407–409, 2014. [Online]. Available: http:
//dx.doi.org/10.1038/nclimate2227

[51] J. F. I. Horne and J. E. Orr, “Assessing behaviors that create resilient
organizations,” Employment Relations Today, vol. 24, pp. 29–39, 1998.

[52] J. Wreathall, “Properties of resilient organizations: An initial view,” in
Proc. Resilience Eng., Concepts Precepts, 2006, pp. 275–286.

[53] E. Hollnagel, J. Pariès, D. D. Woods, and J. Wreathall, Resilience En-

gineering Perspectives Volume 3: Resilience Engineering in Practice.
Farnham, U.K.: Ashgate, 2011.

[54] “Queensland Floods Commission of Inquiry Final Report,” The Queens-
land Floods Commission of Inquiry, Brisbane, QLD, Australia, Tech. Rep.,
Mar. 2012. [Online]. Available: http://www.floodcommission.qld.gov.au/
publications/final-report/

[55] R. van den Honert and J. McAneney, “The 2011 Brisbane floods: Causes,
impacts and implications,” Water, vol. 3, no. 4, pp. 1149–1173, 2011.

[56] J. Healy, W. Rubey, D. Griggs, and C. Raleigh, “The Denver earthquakes,”
Science, vol. 161, no. 3848, pp. 401–408, 1968.

[57] L. C. Pakiser, J. P. Eaton, J. Healy, and C. B. Raleigh, “Earthquake
prediction and control,” Science, vol. 166, no. 3912, pp. 1467–1474, 1969.

[58] N. Calder, Restless Earth: A Report on the New Geology, London, U.K.:
Brit. Broadcast. Corp., 1972.

[59] L. van Valen, “A new evolutionary law,” Evol. Theory, vol. 1, pp. 1–30,
1973.

[60] M. Kuohi, E. Onate, and G. Bugeda, “Robust design methods in aerospace
engineering,” Int. Centre Numer. Methods Eng., Barcelona, Spain, Res.
Rep. PI328, 2008.

[61] H. Agarwal, Reliability Based Design Optimization: Formulations and

Methodologies. Notre Dame, IN, USA: Univ. Notre Dame, 2004.
[62] C. Johansson, “On system safety and reliability methods in early design

phases,” Licentiate dissertation, , Linköping Univ., Linköping, Sweden,
2013.

[63] R. J. Duphily, “Space vehicle failure modes, effects, and criticality analysis
(FMECA) guide,” Space Missile Syst. Center, El Segundo, CA, USA,
Aerosp. Rep. No. TOR-2009(8591)-13, 2009.

[64] K. L. Bedingfield, R. D. Leach, and M. B. Alexander, “Spacecraft system
failures and anaomalies attributed to the natural space environment,”
National Aeronautics and Space Administration, Huntsville, AL, USA
NASA Ref. Publication 1390, 1996.

[65] S. M. Wilkinson, S. Dunn, and S. Ma, “The vulnerability of the European
air traffic network to spatial hazards,” Natural Hazards, vol. 60, no. 3,
pp. 1027–1036, Feb. 2012.

[66] D. D. Woods, “Four concepts for resilience and the implications for the
future of resilience engineering,” Rel. Eng. Syst. Saf., vol. 141, pp. 5–9,
2015.

[67] B. Turner and N. Pidgeon, Man-Made Disasters, 2nd ed. Oxford, U.K.:
Butterworth-Heinemann, 1997.

[68] Y. Sheffi and J. B. Rice Jr, “A supply chain view of the resilient enterprise,”
MIT Sloan Manage. Rev., vol. 47, no. 1, pp. 41–48, 2005.

[69] A. M. Madni and S. Jackson, “Towards a conceptual framework for
resilience engineering,” IEEE Syst. J., vol. 3, no. 2, pp. 181–191, 2009.

[70] J. Clarke, J. Coaffee, R. Rowlands, J. Finger, S. Hasenstein, and U. Siebold,
“Realising European resilience for critical infrastructure,” Tech. Rep.
653260, 2015. [Online]. Available: resilens.eu/wp-content/uploads/2016/
01/D1.1-Resilience-Evaluation-and-S%OTA-Summary-Report.pdf

[71] E. Hollnagel, “RAG—Resilience analysis grid,” pp. 1–7, 2015.
[72] J. Giroux and T. Prior, “Expressions of resilience: From ‘bounce back’

to adaptation,” , Swiss Federal Inst. Technol. Zurich, Zurich, Tech. Rep.
March, 2012.

[73] L. Medina, “Spring forward or fall back? The post-crisis recovery of firms,”
Int. Monetary Fund, Washington, DC, USA, Working Paper 12/292, 2012.

[74] A. Y. Grinberger and D. Felsenstein, “Bouncing back or bouncing forward?
Simulating urban resilience and policy in the aftermath of an earthquake,”
Urban Des. Planning, vol. 167, no. 3, pp. 115–124, 2014.

[75] T. L. Vu and K. Turitsyn, “A Framework for robust assessment of power
grid stability and resiliency,” 2016, arXiv:1603.05347.

[76] A. Alessandri and R. Filippini, “Evaluation of resilience of interconnected
systems based on stability analysis,” in Proc. 7th Int. Workshop Crit. Inf.

Infrastruct. Secur., 2013, vol. 7722, pp. 180–190.
[77] “Report of the Presidential Commission on the Space Shuttle Challenger

Accident,” Presidential Commission on the Space Shuttle Challenger
Accident, Tech. Rep., 1986.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

[78] R. P. Feynman, “Appendix F—Personal observations on the reliability of
the shuttle,” Presidential Commission on the Space Shuttle Challenger
Accident, Tech Rep., 1986.

[79] “Columbia accident investigation board report,” Columbia Accident In-
vestigation Board, National Aeronautics and Space Administration and
the Government Printing Office, Washington, D.C., vol. 1, Aug. 2003.

[80] J. L. Hall, “Columbia and Challenger: Organizational failure at NASA,”
Space Policy, vol. 19, no. 4, pp. 239–247, 2003.

[81] S. Gislason et al., “Characterization of Eyjafjallajökull volcanic ash parti-
cles and a protocol for rapid risk assessment,” Proc. Nat. Acad. Sci. USA,
vol. 108, no. 18, pp. 7307–7312, 2011.

[82] M. Gudmundsson, R. Pedersen, K. Vogfjörd, B. Thorbjarnardóttir, S.
Jakobsdóttir, and M. Roberts, “Eruptions of Eyjafjallajökull volcano,
iceland,” Eos, vol. 91, no. 21, pp. 190–191, 2010.

[83] F. Sigmundsson et al., “Intrusion triggering of the 2010 Eyjafjallajokull
explosive eruption,” Nature, vol. 468, no. 7322, pp. 426–430, Nov. 2010.

[84] M. G. Dunn, “Operation of gas turbine engines in an environment contam-
inated with volcanic ash,” J. Turbomachinery, vol. 134, no. 5, Sep. 2012,
Art. no. 051001.

[85] U. Reichardt, G. Ulfarsson, and G. Petursdottir, “Cooperation between sci-
ence and aviation-sector service providers in Europe for risk management
of volcanic ash,” Transp. Res. Rec., vol. 2626, no. 1, pp. 99–105, 2017.

Giuliano Punzo graduated in aerospace engineering
and received the Ph.D.degree in swarm engineering.

In 2019, he joined as a Lecturer with the Depart-
ment of Automatic Controls and Systems Engineer-
ing, University of Sheffield, Sheffield, U.K. He was
with the industry prior to his doctoral studies. He has
held Postdoctoral appointments with the University
of Glasgow, the University of Strathclyde, and the
University of Sheffield. His research interests include
networks, control theory, sociotechnical systems, and
complexity.

Eugene Butan graduated in software engineer-
ing and received the Ph.D. degree in evolutionary
optimization from Cranfield University, Cranfield,
U.K.

He is VP Platforms Lead for Fraud with Barclay-
card, Northampton, U.K. In his current role, he is
leading scalable high-performance platform develop-
ment for detection and prevention of financial fraud.
His research interests include evolutionary multiob-
jective optimization, automation, control theory, and
complex system modeling and design. Prior to his

current position, he was an Automation Architect as well as holding Postdoctoral
and Visiting Fellow appointments with Cranfield University.

Anurag Tewari received the B.Tech. degree in chem-
ical engineering from Harcourt Butler Technological
Institute, Kanpur, Uttar Pradesh, India, in 1998, the
M.Sc. Logistics and Supply Chain degree in opera-
tions management from Cranfield University, Cran-
field, U.K., in 2012, second Master degree in busi-
ness administration and management, general from
Cranfield School of Management, Cranfield, U.K., in
2013, and the Ph.D. degree in supply chains and com-
plex systems from Cranfield School of Management,
Cranfield, U.K., in 2017.

He is a Lecturer with the School of Management, Cranfield University, Cran-
field, U.K. Before moving into academia, he spent a significant amount of time in
the industry, managing logistic and supply chain of companies. After the Ph.D.
studies, he joined the Complex System Research Centre, Cranfield University,
as a Research Fellow. Currently, he teaches operations management, advanced
statistics and python-based data analytics. His research interests include the
modeling, visualization, and interpretation of large complex systems.

Massimiliano Vasile received the M.S. and Ph.D.
degrees from the Politecnico di Milano, Milan, Italy,
in 1996 and 2001, respectively.

He is a Professor of Space Systems Engineering
and Director of the Aerospace Centre of Excellence
in the Department of Mechanical and Aerospace En-
gineering, University of Strathclyde, Glasgow, U.K.
Prior to this, from 2005 to 2010, he was Head of
Research with the Space Advanced Research Team,
University of Glasgow, Glasgow, U.K. Before starting
his academic career in 2004, he was the First Member

of the ESA Advanced Concepts Team and initiator of the ACT research streams.
His research interests include astrodynamics, space traffic management, com-
putational intelligence and optimization under uncertainty.

Prof. Vasile is a member of the IAF Astrodynamics and Space Power
Committee, the IEEE Committee on Emerging Technologies in Computational
Intelligence, and the UN Space Mission Planning Advisory Group. He is a Senior
Member of the American Institute of Aeronautics and Astronautics.

Alan Purvis received the BSc. hons degree from
Leeds University, Leeds, U.K., in 1976, and the Ph.D
degree from the Cavendish Laboratory, Cambridge
University, Cambridge, U.K., in 2001, specializing
in radio interferometry.

In 2017, he joined as an Emeritus Professor with the
School of Engineering, Durham University, Durham,
U.K. His research interests include radio and op-
tical signal processing and strategies for resilient
electronic networks to support autonomous complex
systems, along with medical signal processing, self-

repairing systems, and satellite communications for remote global regions.

Martin Mayfield received the B.Eng. (Hons) first
class from the University of Sheffield, U.K., in 1996.

He is an Engineer with design and research ex-
pertise spanning systems engineering, sustainable
design, climate change mitigation and adaptation,
mission critical, and city systems. He has 24 years
of practice as a Designer of Engineering Systems
with Mott MacDonald and as a Director of Arup,
leading teams working on a diverse array of projects
in the U.K. and overseas. He has a grant portfolio of
over £50 m comprising both research, network, and

capital grants. He coleads a group working across the nexus of technology and
infrastructure to enable the creation of a built environment that allows humanity
to thrive within the carrying capacity of the planet, and, in so doing, restore the
balance between humanity and natural systems.

Liz Varga is a Professor of Complex Systems with the
Civil, Environmental, and Geomatic Engineering De-
partment, University College London, London, U.K.
She is leading the Infrastructure Systems Institute
on transdisciplinary studies of interdependent energy,
transport, water, waste, and telecoms systems. Her
research is on innovation and resilience of infras-
tructure systems that delivers environmental, social,
and economic outcomes. She is a proponent of mixed
methods research, with a preference for agent-based
modeling. As a leading complexity scientist, her re-

search exposes interventions, mechanisms, and behaviors that distinguish the
influence of infrastructure organization, global contexts, and trends, such as
automation, digitalization, decarbonization, and waste recovery.


