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ABSTRACT   

The European Solar Telescope (EST) is being designed to optimize studies of the magnetic coupling between the lower 

layers of the solar atmosphere (the photosphere and chromosphere) in order to investigate the origins and evolution of 

the solar magnetic field and its role in driving solar activity. In order to achieve this, the thermal, dynamic and magnetic 

properties of the solar plasma must be probed over many scale heights and at intrinsic scales, requiring the use of multi-

wavelength spectroscopy and spectropolarimetry at high spatial, spectral and temporal resolution. In this paper we 

describe some of the over-arching science questions that EST will address and briefly outline the main features of the 

proposed telescope design and the associated instrumentation package. 

Keywords: solar telescopes; high resolution imaging; high resolution spectroscopy; solar spectropolarimetry  

 

1. INTRODUCTION  

The Sun is our closest star, and with space now firmly established as a critical part of our society�s environment, its 

unique proximity has inescapable consequences for us. While its radiation provides the energy source of our whole 

ecosystem, our understanding of how the variations in that radiation control, e.g. our climate, still contains huge gaps. As 

well as the long-term variations in the solar output, the Sun exhibits a cycle of activity the constituents of which are 

explosive events which release huge amounts of magnetic energy that are subsequently converted to many other forms. 

This explosive energy release occurs on a myriad of scales, from nanoflares to huge eruptive flares, the latter 

accompanied by the bulk eruption of plasma and magnetic field known as coronal mass ejections (CMEs) whose impacts 

can be seen globally across the Sun and throughout the heliosphere. The most extreme of these events constitute the 

largest examples of explosive energy release within our solar system, during which upwards of 10
26 J of energy is 

released.  

The ramifications of these explosive events within the heliosphere and the near-Earth environment are considerable. The 

increased electromagnetic radiation produces significant changes in the Earth�s upper atmosphere that impact 

communications and satellite orbits, with �immediate� consequences for GPS L-band signals. The fluxes of accelerated 

particles that are produced during solar energetic particle events (SEPs) lead to significantly increased ionisation in the 

polar atmosphere, affecting radio transmissions and the chemistry of the upper atmosphere. Particularly for large events, 

ozone levels can be subsequently affected for months and even years [1]. SEPs also present a high risk to both manned 

and un-manned space platforms, while the interactions between the magnetic field of the CME and our own 

magnetosphere can lead to well documented impacts on Earth.  

Our ability to probe many layers of the solar atmosphere simultaneously offers unique opportunities to understand the 

processes that drive these explosive events, and study the relationship between fundamental physical processes such as 

Invited Paper

Ground-based and Airborne Instrumentation for Astronomy VI, edited by Christopher J. Evans, Luc Simard, Hideki Takami
Proc. of SPIE Vol. 9908, 990809 ā © 2016 SPIE ā CCC code: 0277-786X/16/$18 ā doi: 10.1117/12.2234145

Proc. of SPIE Vol. 9908  990809-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/10/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

magnetic reconnection, wave generation and particle acceleration. As well as a desire to understand how these processes 

operate and couple in order to develop reliable tools for the prediction of solar flares & CMEs, these are the same 

processes also operating in other astrophysical environments. On the Sun we have the possibility to observe and map the 

evolving magnetic field configuration where the energy release, particle acceleration and subsequent energy transport, 

takes place, and only by fully understanding this parameter space can we begin to appreciate how these processes are 

operating in other more extreme astrophysical environments, as well as critically assess how they might effect the 

formation of life on planets outside of our own solar system.  

To understand the Sun�s activity we need to observe and model the physical processes in the solar atmosphere at their 

intrinsic spatial and temporal scales. The EST is a pan-European project whose goal is the design and construction of a 

revolutionary 4-m diameter ground-based solar telescope and its post-focus instrumentation suite in order to answer 

these science questions. From its first-light in 2026 EST will become the primary ground-based European solar facility. 

Its novel adaptive optics will enable diffraction-limited observations with an unprecedented spatial resolution of 30 km, 

less than the photon scattering mean free path in the photosphere, a fundamental physical scale in the visible. Perhaps 

most importantly, EST will not only make a step change in achievable spatial resolution, but crucially its polarimetric 

capabilities will allow the simultaneous observation of the temporal and spatial evolution of the three dimensional 

magnetic field in the solar photosphere and chromosphere, allowing us to understand the emergence and evolution of the 

solar magnetic field, and critically, to understand the coupling between the photosphere and chromosphere.  

 

2. SCIENCE GOALS 

EST will answer fundamental questions relating to the origins of solar magnetism. In particular it will address:  

The role of small-scale field concentrations in the evolution of the solar magnetic field throughout the solar cycle: 

Outside sunspots, the solar magnetic field is organized in small-scale magnetic flux concentrations with spatial scales 

down to the diffraction limit of current solar telescope (<100 km). These concentrations are believed to play an important 

role in controlling solar irradiance, as well as in the dynamics and, ultimately, the heating of the chromosphere and 

corona through a variety of localised processes, including the channelling of waves and shocks. The field in these 

magnetic flux concentrations can reach values of up to 1.5 kG, requiring a field amplification process. One possibility is 

a process known as convective collapse, which leads to a strong evacuation of a magnetic flux tube and a concentration 

of the magnetic field, coupled to rapid downflows both in the tube�s interior and its surroundings. The associated spatial 

and temporal scales are on the order of 100 km and 30 s, according to state-of-the-art numerical simulations. 

Observational evidence to support this process has proven challenging, partly because current polarimetric measurements 

cannot meet the very small scales and rapid cadences required. EST will resolve some of the smallest magnetic field 

concentrations, which are ubiquitous across the solar disk, down to the 25 km diffraction limit, and track their 

emergence, structure and dynamics and, perhaps most importantly, measure their three-dimensional vector magnetic 

field. Its field-of-view will accommodate features of the global field � the sunspots and active regions that are generated 

by a large-scale sub-surface dynamo, and emerge by buoyancy to the photosphere.  

Establishing how energy is transported from the photosphere to the chromosphere. Despite may years of research, the 

reasons why the average electron temperature in the solar atmosphere begins to increase again about ~500 km above the 

solar surface, giving rise to a warm chromosphere, a hot and dynamic transition region, and even hotter corona above, 

are still unknown. The strong radiative losses of the chromosphere and transition region make its energy requirements 

much more demanding than for the corona, and the current consensus is that the additional energy comes from the 

turbulent convective plasma motions that penetrate through the photosphere. One of the most promising mechanisms by 

which this energy could be transported to the chromosphere is by magnetohydrodynamic waves, with dissipation in the 

form of chromospheric shocks, or other complex processes in magnetically dominate regions (e.g. phase mixing, 

resonant absorption). However, the chromosphere represents a region of vast changes in plasma properties - the gas 

pressure falls exponentially with a scale height of ~ 200 km, while the magnetic field strength falls off much less rapidly, 

as it expands and fills all space, i.e. the transition from high to low plasma-® occurs in the mid chromosphere. Thus, 

while the lower chromosphere shares many characteristics with the photosphere, the upper chromospheric structure is 

dominated by the magnetic field topology and strength, leading to intricate patterns of wave interactions that are highly 

variable in space and time. The detection of periodic signatures in line profiles (i.e. Doppler broadening and Doppler 

shifts), combined with measurements of the direction and strength of the magnetic field, is critical in order to identify 
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and characterize wave modes and their propagation in the lower solar atmosphere, requiring simultaneous observation of 

several photospheric and chromospheric spectral lines. The topology, strength, and flux evolution of the magnetic fields 

must also be measured with high spatial, temporal and spectropolarimetric precision. EST�s light-gathering capacity and 

polarimetric precision is vital for detecting the three dimensional structure of the weak chromospheric magnetic field and 

disentangling its morphology and dynamics down to the smallest scales observable.  

Determining what processes are involved in the large-scale release of energy in flares and CMEs. The study of solar 

flares and accompanying Coronal Mass Ejections (CMEs) is a topic of fundamental importance in solar and space 

physics research, not just for our understanding of solar activity and its impacts on the near Earth space environment 

(space weather), but also from the perspective of energy release in astrophysical plasmas in general. In particular, the 

physics of energy storage, flare triggering and flare energy release remains an enigma that extends beyond the 

predictions of our current flare models. Magnetic free energy is known to arrive into the corona through the photosphere, 

a process which may be tracked by emergence and flows in photospheric magnetic structures, revealing where the 

emerging flux is introducing magnetic twist into the overlying field or cancelling and changing the topology of a pre-

existing flux system in the build-up of an instability. While solar flares and eruptions have a dramatic coronal 

appearance, the majority of the energy that they radiate (which forms the basis of the majority of the diagnostics 

available to us) is in fact radiated from the transition region, chromosphere and photosphere. Flare signatures in the 

lower atmosphere map directly to the energy release sites in the corona, making this regime one of critical importance to 

understanding both the onset and evolution of both flares and CMEs. EST will address the arrival and deposition of flare 

energy in the lower solar atmosphere by revealing the basic spatial scales of flare energy input and its vertical location in 

the atmosphere. EST will also provide accurate magnetic field measurements from the photosphere into the 

chromosphere, allowing the determination of pre- and post- flare & CME configurations. Its photospheric and 

chromospheric imaging and spectroscopic capabilities will provide critical information on the topological changes in the 

magnetic field as a result of magnetic reconnection. EST will also enable the detailed study of the magnetic and 

thermodynamic properties of the filaments that form the core of many CMEs, including their formation.  

 

3. BASELINE CONFIGURATION 

The planned design for EST is a 4-metre class telescope with on-axis Gregory configuration. Active and adaptive optics 

(AO) will be integrated into the optical path between the primary mirror and the focal plane in order to simultaneously 

provide all instruments with a corrected image at the Coudé focus.  Since the original design study it has been envisaged 

that EST will be the first solar telescope to fully integrate multi-conjugate adaptive optics (MCAO) into the optical path 

from construction. The adaptive optics system will include a fast tip-tilt mirror, a pupil deformable mirror and four 

deformable mirrors conjugated at different atmospheric heights. 

The optical design is an aplanatic Gregory telescope with three magnification stages, giving an f/50 telecentric science 

focus [2]. In order to optimize the telescope to achieve polarization compensation, integrated optical field-of-view 

rotation, telecentric design, collimated beam at the AO system and four MCAO DM mirrors [3], the design includes 

fourteen reflections arranged so that incidence-reflection planes are perpendicular. The alt-azimuth configuration allows 

for a compact design, with excellent primary mirror (M1) air flushing, making it possible to achieve a polarimetrically 

compensated design, critical for achieving the science goals. In order to facilitate the M1 air flushing, the elevation axis 

is cited 1.5 m below the M1 vertex, and this also provides space for vertical placement of the transfer optics train to the 

Coudé focus. The unbalanced weight around the elevation axis that this produces is compensated for by the structure 

below M1. Asymmetric folding of the optical path produces a telescope Mueller matrix that is almost independent of 

elevation and azimuth angles for all wavelengths, but requires that the azimuth and elevation axes are decentred with 

respect to the telescope optical axis. 

A large Coudé laboratory allows for the different instruments to be situated on different floors, fed by a configurable 

light distribution system composed of dichroics and beam-splitters at the Coudé focus. This allows for maximum 

flexibility in the number of instruments and wavelength channels. Image rotation is also compensated at the Coudé focus 

through the placement of an optical de-rotator integrated into the telescope optical path. In order to achieve this, the 

seven mirrors of the transfer optics are arranged in such a way that input and output optical axes are coincident with the 

telescope optical axis, allowing them to be rotated around it to act as a de-rotator. This arrangement has the added bonus 
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that it removes the requirement for a rotating instrument platform. An auxiliary Nasmyth platform will also be available 

for NIR or UV instruments to be fed directly from the telescope. 

The baseline telescope enclosure is completely foldable [2], in order to maximize natural wind flushing of the telescope, 

and improve the local seeing conditions. An additional and important advantage of the completely foldable enclosure is 

that it permits the use of a reflecting heat rejecter at the Gregory focus, thereby removing the requirement to absorb the 

heat inside the dome. The open-air configuration has implications for image quality as the result of wind-shake on the 

telescope structure and wind buffeting deformation of the primary mirror. This issue has been compensated for by 

inclusion of a wind shield, and by maximizing the stiffness of the telescope structure and primary mirror support, 

improving the bandwidth of the telescope drives, and providing fast tip-tilt and focus correction capabilities to the 

secondary mirror. Residual wind generated errors can be corrected by the deformable mirrors of the AO system.  

In order to improve seeing, the telescope will be placed on the top of a conically shaped tower that also supports the 

telescope enclosure. The enclosure is supported with a transparent framework, to reduce air obstruction and turbulence, 

and the optical layout is arranged on a tower situated ~33�38 m between the base of the Coudé laboratory and the 

telescope platform, sufficient to reduce the ground layer effect on the local seeing conditions. The Coudé instrument 

laboratory will be situated at the base of the tower, while the transfer optics, including the MCAO system, will be 

distributed inside a chamber between the telescope and the instrument laboratory. The baseline construction material for 

the telescope tower is concrete, which will provide the necessary stiffness to the telescope azimuth base, and minimize 

both lateral displacement and the tilt between the telescope and the Coudé focus.  

An auxiliary full disk telescope [4] will be used to give the observer a global context of the solar activity and allow for 

precise coordinate measurements. The operation of the telescope will be carried out by an integrated control system, 

employing distributed, object-oriented architecture and common software throughout the entire system. The volumes of 

data that EST will produce require a highly efficient control system for management of the data and metadata, and their 

transmission from each sub-system to a real-time repository, as well as to users and to temporary and permanent archives 

[5]. Figure 1 shows the proposed realization of the telescope and the facilities that host it.  
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Schematic of the telescope structure, instrument platform, pier and building from [3]. 
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4. OPTICAL DESIGN 

As noted above, the main telescope has an on-axis Gregory-type configuration (see [2]) achieving a diffraction-limited 

Coudé Focus in the range 0.39 ȝm to 2.3 ȝm. The optical design of EST is composed of three main subsystems (see Fig. 

2):  

1. Main telescope (M1 and M2), defined by an on-axis Gregory-type configuration.  

2. Main axes subsystem (M3 to M8), which includes mirrors that define the elevation and azimuth axes. This 

subsystem houses an on-axis magnification stage to produce the pupil used by the AO system.  

3. Transfer optics subsystem (M9 to M14). These mirrors transfer the light from the main axes subsystem to the 

science Coudé Focus. This assembly integrates the MCAO mirrors in its light path and also works as the field-

of-view de-rotator of the telescope.  

The main telescope includes an f/1.5 primary mirror. The secondary mirror defines the aperture stop of the whole system 

and produces an f/11.8 beam at the secondary focus (F2). A heat rejecter that also works as a field-stop is located at the 

primary focus (F1) to limit the field of view to the required unvignetted 2 × 2 arcmin
2

. The entrance pupil of the system 

is defined by the conjugation of the aperture stop (M2) through M1, and is 4100 mm in diameter. Active optics 

correction is achieved by mounting M2 on a hexapod [6] with 5 degrees of freedom (piston, įx, įy and slow tip-tilt). 

Additionally, M2 can be used as a fast AO tip- tilt mirror, with a limited bandwidth. If a larger bandwidth is required, a 

second smaller and faster tip-tilt mirror, M6 (which is located in the main axes subsystem), will be used. Including fast 

tip-tilt and piston capabilities at M2 will provide adaptive correction for the Nasmyth station.  

To further facilitate polarization compensation within the telescope, M3 and M4 will have identical reflection coatings, 

and will be tilted 45 degrees in perpendicular planes to auto-balance their instrumental polarization. The ground-layer 

turbulence correction is also accomplished within the main axes subsystem. 

4.1 Adaptive Optics 

To achieve the required high spatial resolution, it is necessary for EST to incorporate a powerful adaptive optics system 

[7,8]. The adaptive optics system will include a ground layer adaptive optics system (GLAO), composed of a deformable 

mirror located at a pupil position, and a fast tip-tilt mirror, as well as additional deformable mirrors that are required to 

increase the size of the corrected field of view. These DMs will be located at positions that correspond to certain heights 

in the atmosphere, thus achieving a multi-conjugate system. Without a multi-conjugate adaptive optics system it would 

not be possible to achieve the required corrected FoV. The AO system will be integrated in the main telescope optical 

path in order to minimize the number of optical surfaces.  

4.2 Ground Layer Adaptive Optics 

The GLAO is composed of the pupil DM and the tip-tilt mirror, with the pupil DM (M7) located at a pupil position. The 

optimum sub-aperture size has been determined to be 8 cm, which is equivalent to 50 sub-apertures across the pupil 

mirror, and hence 51 actuators across the DM diameter. Approximately, 50% of the stroke of the actuators will be 

dedicated to compensating for atmospheric effects and 50% to telescope effects.  

The tip-tilt mirror can be implemented at either M2 or M6, with M2 defining the telescope pupil and including fast tip-

tilt and focus capabilities in order to provide some wave-front correction to the Nasmyth focus. The M2 fast tip-tilt and 

focus correction capabilities are intended to compensate for a large fraction of the wave-front distortions produced by the 

effects of wind buffeting on M1, since they are also capable of correcting for piston and focus errors, in addition to the 

tip-tilt components. These capabilities are also useful for the Coudé path, since they reduce the load on the rest of the AO 

system. However, given the relatively large diameter of M2 (800 mm), its correction bandwidth will be limited. For this 

reason, the possibility of implementing a second smaller and faster tip-tilt mirror at M6 is being investigated.  

4.3 MCAO 

The driver for the MCAO optical design (in particular the number and size of the conjugate high altitude DMs) is the 

turbulence (Cn2) stratification with height above the telescope site. The large zenith angles that are typical of solar 
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observations during the morning lead to a variation in the effective turbulence over a wide range of heights. EST�s 

solution to this is a configuration based on four conjugated DMs (M9-M12) at fixed positions, that reduce the height 

mismatch between the DMs and the turbulence layers caused by the varying zenith angle. The optical design allows 

some flexibility to adapt the position of the conjugated DMs without dramatic changes in the optical layout.  

Given the size of the telescope and primary mirror, the telescope must include active optics in order to keep the 

alignment and optical figure of the mirror. These will compensate for initial alignment tolerances, changes in the gravity 

vector with elevation angle, temperature variations and wind buffeting. In order to guarantee the optical quality of the 

telescope, continuous operation of the active optics system will be required throughout the telescope operation.  

5. INSTRUMENTS 

The EST instrumentation suite is preliminary at this stage, but will comprise a range of instruments devoted to imaging, 

spectroscopy and spectropolarimetry, with the instruments distributed across two floors in the Coudé laboratory: the 

upper one dedicated to imagers, and the lower one to grating spectrographs. The instrument layout within the Coudé 

laboratory takes into account the current design of each instrument type, as well as the possibility of adding two 

additional guest instruments (one in the visible beam and one in the NIR beam).  

The design of the Coudé laboratory has the instruments static on a concrete slab (field rotation being provided by transfer 

optics as described above). The light coming from the telescope is then split between the following instruments channels:  

̇ Three visible broad-band imaging channels [9].  
̇ Five narrow-band imager channels: three operating in visible wavelengths and two in the near-infrared (NIR).  
̇ Four grating spectrographs: two for the visible spectral range and two for the NIR. These spectrographs are 

envisaged to have flexible modes of operation, allowing for the following possible configurations [10]:  Ȃ Long-slit standard spectrograph. Ȃ Multi-slit multi-Wavelength spectrograph equipped with an integral field unit [11]. Ȃ Tunable universal narrow-band imaging spectrograph. Ȃ      Multi-channel subtractive double-pass spectrograph of new generation.  

The light distribution among the instruments (see Fig. 2) is based on a division of the main beam coming from the 

transfer optics by a primary dichroic D1 in two spectral stations: one for visible wavelengths and another for near-

infrared. This division makes it possible to optimize the light flux transmission (after the beam separation, coating optics 

can be optimized for the selected spectral range at each station).  
After the intensity beam-splitter BS5, the transmitted beam goes to the scanning unit of the two NIR spectrographs (a 

single unit for both). This unit is based on two pairs of 45-incidence mirrors, for which the lines that connect the centre 

of the mirrors of each pair are perpendicular to each other. This means that the FoV of the telescope can be scanned in 

both directions to select the spectrograph FoV without impacting the imaging instruments. For the visible branch, one 

similar quad-mirror is located in the beam reflected by BS1 to scan the entrance FoV of the visible spectrographs. In 

addition, these quad-mirror scanning systems can also focus the image at the entrance focal plane of the spectrographs. 

Below we briefly describe only the currently envisaged designs for the broadband imager and the multi-slit multi-

Wavelength spectrograph equipped with an integral field unit [11].  
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 Figure 2: Light distribution for the instruments of EST. Labels Dn correspond to dichroic mirrors splitting light in 

wavelength; labels BSn stand for intensity beam-splitters, and labels FM refer to folding mirrors. BBn indicate the 

broad-band imagers, NBn the narrow-band instruments and SPn the spectrographs (from [3]).  

5.1 Broadband Imager (BBI) 

The BBI will be a pivotal baseline instrument for EST, exploiting the high spatial and temporal resolution afforded by a 

4 metre class telescope. The requirements for the instrument are given in Table 1, but in addition the final instrument 

design should include the capability for each wavelength channel to work as a �stand-alone� instrument, and allow for the 

use of post-fact reconstruction methods (e.g. SPECKLE [12]; MOMBFD [13]) in order to achieve diffraction limited 

imaging, i.e. three focal planes and associated detectors are required: two chromospheric channels for phase diversity, 

and a third continuum channel to correct the chromospheric data.  

In order to achieve the multi-channel requirements of the BBI, the instrument will have two arms: red (600-900 nm) and 

blue (390-500 nm), with the latter split into two channels. Beam-splitters and dichroics will allow simultaneous use of all 

channels. Further details can be found in [10]. 

Table 1: Requirements for the EST broad-band imager (adapted from [10]). 

No. spectral channels 3 channels working simultaneously; goal - 5 

Max. FoV 2x2 arc minutes 

Angular resolution 0.04″ @ 500 nm (goal: 0.03″) over a 60″x60″ FoV 

Mosaic mode 3′x3′ mosaic mode at optimum resolution (60″x60″ sub 

fields) 

Wavelength coverage 390 � 900 nm 

Wavelength switching < 2 seconds 

Max. bandpass shift 5x10-3 nm (goal: 3x10-3) @ 500 nm, 30″ from field centre 

Transmission Total throughput > 30% 
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5.2        Grating Spectrograph 

Spectroscopy and spectropolarimetry are primary tools for diagnosing the state of the solar plasma and the electric and 

magnetic fields that permeate it, and thus spectrographs are key instruments for EST. A very desirable evolution of the 

current state of the art in solar spectrographs is to combine spectroscopic and spectro-polarimetric functions within a 

single instrument, which also addresses the limitations in simultaneity imposed by scanning slit spectrographs. This is 

precisely the concept proposed by [11] through the application of integral field spectroscopy. The instrument 

requirements are listed in Table 2, and reflect the scientific requirements to be able to resolve structures of ~70 km in the 

photosphere and the chromosphere with a spectral resolution of 300000 across a spectral range covering 390 � 2300 nm. 

The proposed spectrograph configuration allows the simultaneous observation of eight wavelengths (five visible and 

three infrared) meaning that energy transport and coupling between different layers of the solar atmosphere can be, for 

the first time, accurately tracked. The spectrograph incorporates a new concept integral field unit based on the image 

slicer concept developed by [14]. While now being more routinely considered for night-time astronomy applications, 

image slicers are a new technology for solar telescopes. The DL-NIRSP (Diffraction Limited Near Infrared 

Spectrograph) currently being developed for the Daniel K. Inoue Solar Telescope (DKIST [11]) includes an image slicer 

in its design, but covers only the range 500 -1800 nm in three spectral windows. The proposed design for EST would 

represent a step change in spectroscopic and spectropolarimetric capabilities for solar physics. Further details can be 

found in [11]. 

Table 2: Integral field spectrograph requirements, from [11]. 

 

Spectral resolving power 300,000 

Spatial resolution 0.1″ 

Spectral range 390 � 2300 nm 

Number of simultaneous wavelengths 8, 5 visible, 3 NIR 

 

6. SUMMARY 

In summary, once constructed, EST will be the state-of-the-art ground-based solar telescope in Europe, and will possess 

the most powerful spectropolarimetric capabilities of any solar facility, in space or on the ground. It will be highly 

complementary to the US DKIST facility, but will benefit from the integration of MCAO from construction, and access 

to the most advanced instrumentation suites. EST will make major contributions to resolving the outstanding open 

questions in solar physics. 
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