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a b s t r a c t

This project set out to develop an app for infants under one year of age that responds in real time to

language-like infant utterances with attractive images on an iPad screen. Language-like vocalisations

were defined as voiced utterances which were not high pitched squeals, nor shouts. The app,

BabblePlay, was intended for use in psycholinguistic research to investigate the possible causal relation-

ship between early canonical babble and early onset of word production. It is also designed for a clinical

setting, (1) to illustrate the importance of feedback as a way to encourage infant vocalisations, and (2) to

provide consonant production practice for infant populations that do not vocalise enough or who vocalise

in an atypical way, specifically, autistic infants (once they have begun to produce consonants). This paper

describes the development and testing of BabblePlay, which responds to an infant’s vocalisations with

colourful moving shapes on the screen that are analogous to some features of the infant’s vocalization

including loudness and duration. Validation testing showed high correlation between the app and two

human judges in identifying vocalisations in 200 min of BabblePlay recordings, and a feasibility study

conducted with 60 infants indicates that they can learn the contingency between their vocalisations

and the appearance of shapes on the screen in one five minute BabblePlay session. BabblePlay meets

the specification of being a simple and easy-to-use app. It has been shown to be a promising tool for

research on infant language development that could lead to its use in home and professional environ-

ments to demonstrate the importance of immediate reward for vocal utterances to increase vocalisations

in infants.

� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Past research (e.g., [24]; [32,22,35] has shown that babbling

supports infants’ first word production: Infants’ early canonical

babble (production of language-like consonant-vowel [CV] sylla-

bles) affects the way they listen to speech [7] and the types of

consonants and syllable structures most frequent in vocalisations

at the babbling stage are those used most often in children’s

earliest words [32,35]. It is also accepted that infants who start

to produce consonants reliably in babble earlier also produce

words earlier [22,21].

The aim of this project was to supply infants with visual rein-

forcement, via a tablet device, as a way of encouraging more vocal

exploration. Our assumption was that, once a child has begun to

produce canonical babble, or CV syllables, then an increase in volu-

bility will bring with it, among other kinds of vocalisations, an

increase in canonical babble. This increase, or intensified practice

in consonant production, should lead to more rapid consonant pro-

duction mastery. Previous research, as mentioned above, suggests

that earlier consonant mastery would lead to earlier language learn-

ing. It is known that it is possible to increase a motorically available

rhythmic behavior in infants using visual reinforcement: Rovee-

Collier and colleagues have shown that even 2-month olds will

increase spontaneous kicking in order to activate a mobile [27].

Previous attempts have been made to create tools to encourage

or improve infant vocalisations, often targeting populations with

delayed language development. A now expired patent describes a

hardware-based system designed to immediately replay an infant’s

vocal utterances back to the infant over speakers alongside an

interesting visual reinforcement displayed on a computer screen

[3,4].
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A more recent software-based system, developed as part of the

Spoken Impact Project (SIP) [11] has been specifically developed to

improve language outcomes for children with Autism Spectrum

Disorder (ASD), and has tested the use of visual and auditory

responses with a small delay or at the end of an utterance to

encourage vocalisations [14]. Specifically aimed at facilitating mul-

tisyllabic speech production, VocSyl was developed to allow a clin-

ician to provide a visual ‘template’ image (produced with their own

vocalisation) that could then be overlayed with the visual response

from the child’s vocalisation [13]. VocSyl was designed and tested

with children diagnosed with ASD or with speech delays as well as

typically developing children alongside their carers with encourag-

ing results [12].

Another software-based system targeting young infants with

developmental speech delays, VisiBabble, visually rewards an

infant for target syllables. VisiBabble used an acoustic analysis

approach to identify syllable-like utterances using five of the

acoustic landmarks identified by Stevens in phoneme recognition

[29]. User testing of the VisiBabble system was reported on a small

sample of 5 children with severe expressive impairments aged 2.5

to 7.5 years old [10]. For all of the children there was a rise in the

number of utterances and the variety of syllables produced during

interactions with VisiBabble relative to the periods when the

screen was black and unresponsive. This suggests that the visual

rewards provided by VisiBabble led to an advance in vocalising.

In a longer-term study, a sample of 3 infants of varying age and

with different developmental impairments used VisiBabble for

eight minutes a day over an average of 17 days in a 10 week period

and showed an increase in the frequency, complexity and/or vari-

ety of their vocalisations after this intervention period, and gener-

alised the new vocal behaviour to other, non-intervention,

situations [9]. However, whilst there is mention that ‘the system

rarely responded to noise or whispering’ [8], it isn’t clear from

the available literature on VisiBabble how the system itself was

tested, in terms of its accuracy in identifying syllabic utterances

made by the infant. Whilst there were several iterations of this sys-

tem it seems that it has not been developed since these initial

publications.

The systems discussed above are all designed as desktop com-

puter activities and have mainly been targeted at older children

with delayed speech and language development. With the rapidly

growing popularity of mobile devices and in particular electronic

tablets, there is a new opportunity to revisit the possibilities of

producing an accessible, easy to use tool that encourages vocaliza-

tions in infants. There is an acknowledged increase in the engage-

ment of younger infants (under 1 year) with these technologies

(e.g., 52% of 6–11 month-olds in the UK are reported to use touch-

screens [N = 134]: [1], as are 92% of all lower-SES infants in a US

sample [N = 51]: [16]).

However, current games and apps do not treat infants as active

agents who influence their own surroundings, but as passive recip-

ients of external stimuli: Interactive apps designed for infants

require the infant to respond to some stimulus (e.g. touch a pic-

ture) and no app currently exists, as far as we know, which requires

or allows the infant to initiate the interaction. Producing an app

which responds to the vocalisation of the infant empowers them

to be in control of the game and learn the contingency between

the behavior and the visual response.

Infants at risk for ASD and children diagnosed with ASD have

atypical babble as regards rhythm [25] and consonant use [26].

Between ages 6 and 12 months, infants at risk for autism produce

fewer speech-like and more non-speech-like (e.g., squeals, laughs,

cries, growls) vocalisations than infants at low risk [28,26]. They

also receive fewer contingent (within 1 s) parental responses to

their vocalisations than typically developing peers [34], presum-

ably because their vocalisations are less speech-like. Encouraging

more typical-sounding (speech-like) vocalisations in such infants

through a visual screen display that does not rely on social interac-

tion or adult facial expression as a positive reinforcer may be ben-

eficial for these infants (who engage less in eye contact in their first

year than typically developing infants: Clifford & Dissanayake [5],

but see [33]. Such a change in vocalisation type may in turn lead

to more contingent parental responses.

The approach taken in this project is quite different from that

taken by the creators of LENA (Language Environment Analysis

system, [20], a system which is widely used to study infant vocal-

isations. The LENA system allows researchers to record the sounds

an infant hears and produces over many hours without the need

for an external observer. It also estimates the amount of vocalisa-

tions produced by the infant and the adults around it. However,

LENA analysis takes place off-line, once the recordings have been

downloaded. They can be used to provide parents or researchers

with a picture of the language environment of the infant. They

do not include a visual interface which can provide the infants with

feedback on their own vocalisations on-line. As such, BabblePlay

and LENA complement each other, in terms of the information they

provide, when they provide it and who can make use of it.

In this project we set out to develop an iPad app that would

encourage more intensive babbling in infants, by supplying them

with attractive visual feedback, using a tool which is non-

invasive and requires no engagement on behalf of the parents (be-

yond switching it on and off). The purposes of the app are twofold:

firstly it is intended as a tool for research, whereby the causal rela-

tionship between increased consonant production and early lan-

guage acquisition can be investigated. Secondly, the app is

designed to be used directly by families with their infants as a

means to promote vocal development. In particular, it can be used

to demonstrate to families the importance for infants of receiving

feedback on their early vocalisations.

1.1. Contributions

This paper provides the following contributions:

1) We introduce a new app, BabblePlay, specifically developed

to encourage vocal utterances. The app is designed so that

infants under a year old can control it, by using their voice

to initiate the appearance of moving images on the screen.

2) We demonstrate that the app is in good agreement with

humans in detecting an infant’s vocalisations as distinct

from bangs and other non-harmonic environmental sounds,

high pitched squeals and unvoiced utterances.

We show, using data collected from a feasibility study reported

elsewhere, that infants can learn the contingency between their

voiced utterance and the app’s response.

2. Specification

This section first presents the background literature which

informed the design of the interface to be suitable for the target

user and the system aims, followed by a breakdown of the result-

ing technical specifications of BabblePlay.

2.1. Background: context for interface design

The target audience of this project in the first instance is typi-

cally developing infants between 5 and 10 months old. Future

developments will target infant populations at risk of language

delay for whom more practice with speech-like vocalisations

would be beneficial, e.g., infants at risk for ASD.
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Canonical babbling typically develops between 6 and 8 months

[31]) with an average age of about 6 months [24]. Therefore, a key

requirement of the app’s design was for the visual display to be

attractive to typically developing infants of this age, so that they

would be incentivised to remain engaged with the screen rather

than their wider surroundings. By age 6 months, infants are cap-

able of following a moving object with their gaze and make predic-

tive eye movements, they prefer moving objects to stationary ones,

and they can distinguish between types of object movement (side-

to-side vs. rotating). Infants of this age also prefer to look at objects

that are patterned (rather than with a solid surface), and can

already perceive colours as belonging to categories of hue [15,2].

Studies on contingency learning in infants showed that long

latencies between the infant’s action (usually limb movement)

and a resultant visual display led to less effective learning: Millar

[23] found that a delay of 1 or 2 s impaired learning and a delay

of 3 s led to no learning at all. Thelen and Smith [30] also stress

the value for infant contingency learning of moving, seeing and

hearing all being time-locked.

2.2. Technical specification

2.2.1. Audio processing (response triggers)

The fundamental frequency range for infants has been identi-

fied as between 30 Hz and 2500 Hz [17], however, in order to

remove screeches uttered by the infants and to reduce interference

from adult voices, the F0 range to elicit responses from the app was

set to 250 Hz–750 Hz. The app should not respond to non-voiced

sounds which we are not interested in reinforcing (whispers, hiss-

ing, and more importantly environmental sounds such as banging,

tapping, rustling etc.).

2.2.2. Visual responses

Coloured and patterned moving objects with different types of

movement were chosen as visual responses to be attractive to

the target age group (see Fig. 1).

2.2.3. System efficiency

The app should perform in real-time, or with as short a delay as

possible between the infant vocalisation and the visual response.

Based on the research on contingency learning discussed in Sec-

tion 2.1 this must be less than one second.

2.2.4. Default running time

In order to prevent the app from being used as a ‘babysitter’ and

replacing real-life interaction between family members, Bab-

blePlay must automatically shut itself off after 5 min.

3. Implementation

The audio processing algorithm was originally written in Mat-

lab (2015a) and then implemented as an app which was written

in Xcode (10.1) for iOS 8.0.

3.1. Audio processing and feature extraction

The acoustic signal is received by the integral microphone of the

iPad (Audio in) which is processed at 16 kHz sample rate. A 30 s

mono channel circular buffer is populated with a 5 ms input

latency. A 100 ms buffer then iterates at 50 Hz (producing a

1600 sample linear buffer, which repopulates every 800 samples

after the initial 1600 have been received). This buffer is then

divided into 22 blocks of 256 samples with an overlap of 75%

which is equal to a hop size of 64 samples/4 ms (see Fig. 2).

Features of fundamental frequency (pitch) and amplitude (vol-

ume) are extracted from each block. Pitch is calculated using the

Yin algorithm [6], which is based on established autocorrelation

methods of pitch extraction for speech signals, modified to not

include the parabolic interpolation. Root Mean Square is used to

calculate the amplitude of the signal as the characteristic corre-

sponding to the volume of the sound being produced.

Fig. 3 shows a schematic for the processing and decision making

algorithm implemented in BabblePlay. A binary decision is made

for each feature based on parameters of the desired vocalisations:

they are considered positive (Y) if the f0 of the given block=250 Hz

and 750 Hz, and the RMS = 0.1 and < 10. Note that these parame-

ters can be altered in the settings of the app and the volume

parameter changed if needed on a case by case basis, depending

on distance to the microphone and the specification of the tablet

being used. Both features must be positive for that block to be clas-

sified as a Yblock, otherwise it is classed as a Nblock. Four consec-

utive Yblocks (overlapped by 75%) are required for the app to

initiate an animation, i.e. for a vocalization to be identified. The

animation will continue to appear on the screen until 10 consecu-

tive Nblocks (with an overlap of 75%) are received, at which point

the animation disappears and the screen returns to black. New ani-

mations are initiated once another four consecutive positive blocks

have been received. Once the app has been running for 5 min it

automatically closes down.

3.2. Animations

Once initialised, animations appear (see Fig. 1), which are ran-

domly generated simple shapes with bright contrasting colours

that move around the screen, designed to be attractive to infants

under one year of age. The initial size of the shape is randomly cho-

sen. It is then controlled by the RMS value (corresponding to the

loudness of the infant’s vocalisation), whereby a larger value

increases the size of the shape. We made the size of the shape anal-

ogous to the loudness of the vocalisation in order to add another

cue, besides duration, for the infants to base their contingency

learning on.1 Note that BabblePlay does not necessarily reinforce

loud utterances over quiet ones, as it merely responds to changes

in amplitude by changes in size. The shape generated moves in a ran-

dom direction around the screen, leaving a ‘trail’ as long as the ani-

mation is triggered (see Fig. 1).

3.3. Data collection through BabblePlay

In order to facilitate the use of the app for research, a mono

audio file (16 kHz sampling frequency) is created of the vocalisa-

tions of the infant (all audio captured by the integral microphone

of the iPad while the app is on) as well as a count of the number

of vocalizations that the app has identified (i.e. the number of ani-

mations that were initiated in that session). The .wav file generated

at the end of each session is automatically attached to an email

which also contains a record of the timestamped animation initia-

tions. This email is sent to the project research account to allow

quantitative analysis. The email is only sent once the ‘send’ button

is pressed. Families can choose to delete an email if they do not

want the sound file to be listened to by the research team. In such

a case, the team is notified (in the next email) that a previous

recording has taken place, but that the files were not saved.

1 The app is sensitive to differences in amplitude which the human (adult) ear

normalises over, such as the difference in inherent loudness between close vowels

and open vowels, or to the silences involved in the closure phase of stop consonants.

Therefore, in addition to responding to changes in amplitude that are felt to be

analogous to humans’ auditory experience, it also responds to many differences that

are not felt as such.
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Families who register an infant on the app can opt in to taking part

in the research. If they choose to take part, personal data is sent to

the research team including the date of birth of the infant and,

optionally, postcode and parental education, alongside audio

recordings and vocalisation counts from the app. The baby is iden-

tified by a code. If families do not opt into the research no files are

sent to the research team.

4. Validation and feasibility testing with infant users

Initial, informal, piloting with one typically developing six

month old infant produced very promising results, with research-

ers observing that the infant quickly understood the contingency

between vocalising and images appearing on the screen (see video:

https://www.york.ac.uk/babbleplay/). In order to generalise across

the infant population, controlled testing was needed to test the

app’s validity, or its ability to identify the target vocalisations it

is intended to detect and respond to, and to ensure that infants

could learn to control the app.

4.1. Feasibility test: methods

A controlled study was conducted to test the app’s validity and

its learnability by infants. Sixty infants (mean age 6.5 months)

were recorded by BabblePlay in two 5-minute-long trials. In both

trials a caregiver and up to two experimenters were with the

infants, but the adults avoided interacting with them and did not

vocalise. In the solo-play trial the infant played with non-

responsive toys and was recorded by BabblePlay in the back-

ground, with its screen hidden from the infant. In the experimental

trial the infant interacted with BabblePlay (experimental group:

n = 30) or with a non-responsive video (control group: n = 30).

4.2. Validation – comparing the app’s vocalisation identification to

that of humans: findings

The study produced a dataset for each trial that contained

sound files and timestamped counts of the vocalisations which ini-

tiated a responses by the app: voiced utterances that do not consti-

tute cries, high pitched squeals or vocal fry. Two human judges

Fig. 1. BabbleApp screenshots, demonstrating the variety of shape, size, colour and patterning, as well as patterns of movement across the screen.

Fig. 2. A schematic of the audio processing for BabblePlay.
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were instructed to listen to one third of the sound files, those pro-

duced by the last ten infants seen in each group. That amounted to

40 5-minute recording sessions, totalling 200 min of audio. The

judges counted infant vocalisations that adhered to the target

criteria. Because humans may count a string of syllables as several

vocalisations while the app might count them as a single vocalisa-

tion, or vice versa, we did not expect the numbers produced by the

app and the humans to be the same, but rather, we expected their

Fig. 3. A schematic of BabblePlay.
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rankings of some infants as high vocalisers and others as low

vocalisers to show positive correlation. The results (see Table 1

and Fig. 4) show that the app and the humans are in close agree-

ment, with the correlations between the two humans (0.93) very

similar to those between the humans and the app, in both the

solo-play and the app trials: between 0.92 and 0.95 in 3 out of 4

cases, and 0.87 in the fourth. Note, that the vast majority of solo-

play trials involved ‘noisy’ toys: Stacking cups, sensory toys which

create crinkly or rustling noises, rattles hanging from an arch over

a baby seat, etc. App trials, on the other hand, only involved the

infant and the iPad. The consistent accuracy of BabblePlay’s counts

in both the solo-play trials and the app trials demonstrates that

BabblePlay is successfully differentiating between human voices

and background noise.

4.3. Feasibility study: Summary of findings

The infants in the experimental group significantly increased

their vocalisations throughout the app trial, such that on average

only about a third (0.36) of their vocalisations were produced in

the first half of the trial and almost two-thirds (0.64) in the second

half. In contrast, the control group did not increase their vocalisa-

tions in this way, but produced half (0.52) of their vocalisations, on

average, in the first half of the trial and half (0.48) in the second.

This indicates that infants in the experimental group were indeed

learning the contingency between their vocalisations and the ani-

mations appearing on the screen, and were motivated to vocalise

more as the trial progressed, whereas the control group were not

(for a full report of this study see [18,19]).

5. Future work

The current version of the app meets the original specification,

and testing has shown that it has potential to be used in a number

of situations, including for research. Next steps utilizing the cur-

rent app include testing the use of the app with clinical popula-

tions, to explore the long term impact of BabblePlay on language

outcomes in infants who receive the app as a language intervention

tool, as well as to test whether infants maintain a high enough

level of engagement with the app with repeated use over longer

periods.

BabblePlay currently responds to any voiced utterance, not only

to utterances which contain consonants (i.e., canonical babble).

However, as long as a child has begun to produce canonical babble,

then we expect any increase in volubility to be accompanied by an

increase in consonant production (if not in relative terms, then in

absolute terms). The intention is to further develop the app to

include the representation of more features of the vocalisations

in the visual feedback (e.g. pitch), and to distinguish between types

of vocalisations (e.g. those involving plosives compared to nasals).

Our long-term aim is to build an app that responds differentially to

different consonant sounds. This presents a significant technologi-

cal challenge which will be approached by utilising a combination

of techniques including implementing Steven’s Landmark’s

approach together with neural networks.

6. Conclusion

This paper describes the development and validation of an iOS

app, BabblePlay, which provides a visual reward for vocal utter-

ances made by an infant in real time, ignoring high pitched

screeches, very low-pitched vocalisations and environmental

noises. There was good agreement between the number of vocal-

izations identified by the app and two human judges in 40

BabblePlay recordings. The results of a feasibility study with 60

typically developing infants indicate that the target population

Table 1

Table showing the number of vocalisations as counted by humans as compared to

those counted by BabblePlay (App).

Solo Play Trials App Trials

Correlation Human 1 – Human 2 0.93 0.93

Correlation Human 1 – App 0.92 0.92

Correlation Human 2 – App 0.95 0.87

Fig. 4. Relations between human and app counts of vocalisations. Top panels: Values for solo-play trials, bottom panels: values for the app trials. As can be seen, the fit

between the two humans is very similar to that between each human and the app. The numbers on the axes indicate number of vocalisations identified.
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can learn the contingency between their vocalisations and images

appearing on the screen in a single 5-minute BabblePlay session.

This project illustrates the potential for utilising electronic tablet-

based games for infants under one year of age, both as a tool for

research into infant language development, and for use in the

home or in professional environments to demonstrate the impact

of immediate feedback for increasing vocalizations in young

infants.
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