
This is a repository copy of Programmed DNA elimination of germline development genes 
in songbirds.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/154505/

Version: Published Version

Article:

Kinsella, C.M., Ruiz-Ruano, F.J., Dion-Côté, A.-M. et al. (9 more authors) (2019) 
Programmed DNA elimination of germline development genes in songbirds. Nature 
Communications, 10 (1). 5468. ISSN 2041-1723 

https://doi.org/10.1038/s41467-019-13427-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


ARTICLE

Programmed DNA elimination of germline
development genes in songbirds
Cormac M. Kinsella 1,8,12, Francisco J. Ruiz-Ruano 1,2,9,12*, Anne-Marie Dion-Côté1,3,10,

Alexander J. Charles 4, Toni I. Gossmann 4,11, Josefa Cabrero2, Dennis Kappei 5,6, Nicola Hemmings4,

Mirre J.P. Simons4, Juan Pedro M. Camacho 2, Wolfgang Forstmeier 7 & Alexander Suh 1,9*

In some eukaryotes, germline and somatic genomes differ dramatically in their composition.

Here we characterise a major germline–soma dissimilarity caused by a germline-restricted

chromosome (GRC) in songbirds. We show that the zebra finch GRC contains >115 genes

paralogous to single-copy genes on 18 autosomes and the Z chromosome, and is enriched in

genes involved in female gonad development. Many genes are likely functional, evidenced by

expression in testes and ovaries at the RNA and protein level. Using comparative genomics,

we show that genes have been added to the GRC over millions of years of evolution, with

embryonic development genes bicc1 and trim71 dating to the ancestor of songbirds and

dozens of other genes added very recently. The somatic elimination of this evolutionarily

dynamic chromosome in songbirds implies a unique mechanism to minimise genetic conflict

between germline and soma, relevant to antagonistic pleiotropy, an evolutionary process

underlying ageing and sexual traits.
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N
ot all cells of an organism must contain the same genome.
Dramatic differences between germline and somatic
genomes can occur by programmed DNA elimination of

chromosomes or fragments thereof. This phenomenon happens
during the germline–soma differentiation of ciliates1, lampreys2,
nematodes3,4, and various other eukaryotes5. A particularly
remarkable example of tissue-specific genome differentiation is
the germline-restricted chromosome (GRC) in the zebra finch
(Taeniopygia guttata), which is consistently absent from somatic
cells6. Although the zebra finch is an important animal model7,
molecular characterisation of its GRC is limited to a short
intergenic region8 and four genes9,10, rendering its evolutionary
origin and functional significance largely unknown. The zebra
finch GRC is the largest chromosome of this songbird6 and likely
comprises >10% of the genome (>150 megabases)7,11. Cytoge-
netic evidence suggests that the GRC is inherited through the
female germline, expelled late during spermatogenesis, and pre-
sumably eliminated from the soma during early embryonic
development6,12. Previous analyses of a 19 kb intergenic region
suggested that the GRC contains sequences with high similarity to
regular chromosomes (‘A chromosomes’)8. Here, we combine
cytogenetic, genomic, transcriptomic, and proteomic approaches
to uncover the evolutionary origin and functional significance of
the GRC.

Results
Sequencing of germline and soma genomes. In order to reliably
identify sequences as GRC-linked, we used a single-molecule
genome sequencing technology that permits reconstruction of
long haplotypes through linked reads13. Haplotype phasing can
aid in resolving heterozygous diploid genomes and improve the
assembly of difficult genomic regions14. We therefore generated
separate haplotype-phased de-novo genome assemblies for the
germline and soma of a male zebra finch, as well as pseudoha-
ploid versions of these assemblies (testis and liver; Seewiesen
population; Supplementary Table 1). The haplotype-phased
assemblies had 7.3 Mb and 0.1 Mb scaffold N50 for testis and
liver, respectively, consistent with differences in input molecule
lengths (Supplementary Table 1). We evaluated the performance
of haplotype phasing by visually inspecting alignments of geno-
mic regions with more than two testis haplotypes and up to two
liver haplotypes (Supplementary Fig. 1a, b). This curation step
validated 36 scaffolds as GRC-linked, nearly all in the range of
1–71 kb (Supplementary Fig. 1c, Supplementary Table 2). We
assume that the short lengths are due to difficulties in haplotype
phasing of regions where GRC and A-chromosomal haplotypes
are nearly identical, i.e., regions with effectively three or more
haplotypes (Supplementary Fig. 1d, e) and thus non-optimal for
existing diploid assemblers. We therefore used the com-
plementary approach of mapping linked-read data to compare
testis and liver sequencing coverage and haplotype barcodes in
relation to the zebra finch somatic reference genome assembly
(taeGut2; generated from muscle tissue of a male individual)7.
This allowed us to identify sequences that are shared, amplified,
or unique to the germline genome, similarly to recent studies on
cancer aneuploidies15. We also re-sequenced the germline and
soma from two additional unrelated male zebra finches (Spain
population; testis and muscle; Supplementary Fig. 2) using con-
ventional PCR-free Illumina libraries as independent replicates.

Repeat and gene content of the GRC. We first established the
presence of the GRC in the three independent testis samples.
Cytogenetic analysis using fluorescence in situ hybridisation
(FISH) with a GRC-amplified probe (dph6) showed that the GRC
is present exclusively in the germline and eliminated during

spermatogenesis as expected (Fig. 1a, b, Supplementary Fig. 3)6,12.
To determine whether GRC-linked sequences might stem from
regular A chromosomes (i.e., autosomes or sex chromosomes), we
compared germline and soma sequencing coverage by mapping
reads from all three sampled zebra finches onto the somatic
reference genome assembly (regular A chromosomes), revealing
consistently germline-increased coverage for single-copy regions,
reminiscent of programmed DNA elimination of short genome
fragments in lampreys2 (Fig. 1c, d). A total of 92 regions (41 with
>10 kb length) on 13 chromosomes exhibit >4-fold increased
germline coverage relative to the soma in the Seewiesen bird
(Fig. 1e, Supplementary Table 3). Such a conservative coverage cut-
off provides high confidence in true GRC-amplified regions. We
obtained nearly identical confirmatory results using the PCR-free
library preparation for the Spain birds (Fig. 1f). Notably, the largest
block of testis-increased coverage spans nearly 1Mb on chromo-
some 1 and overlaps with the previously8 FISH-verified intergenic
region 27L4 (Fig. 1e, f).

Our linked-read and re-sequencing approach allowed us to
determine the sequence content of the GRC. As the GRC
recombines only with itself after duplication, probably to ensure
its inheritance during female meiosis8, it is effectively presumed
to be a non-recombining chromosome. Thus, we predicted that
the GRC would be highly enriched in repetitive elements, similar
to the female-specific avian W chromosome (repeat density
>50%, compared to <10% genome-wide)16. Surprisingly, neither
assembly-based nor read-based repeat quantifications detected a
significant enrichment in transposable elements or satellite
repeats in germline samples relative to soma samples (Supple-
mentary Fig. 4, Supplementary Table 4). Instead, most germline
coverage peaks lie in single-copy regions of the reference genome
overlapping with 38 genes (Fig. 1e, f, Supplementary Fig. 5,
Supplementary Tables 5 and 6), suggesting that these peaks stem
from very similar GRC-amplified paralogs with high copy
numbers (up to 308 copies per gene; Supplementary Table 7).
GRC linkage of these regions is further supported by sharing of
linked-read barcodes between different amplified chromosomal
regions in germline but not soma (Fig. 1g, h), suggesting that
these regions reside on the same haplotype (Supplementary
Fig. 6). We additionally identified 245 GRC-linked genes through
germline-specific single-nucleotide variants (SNVs) present in
read mapping of all three germline samples onto zebra finch
reference genes (up to 402 SNVs per gene; Supplementary
Table 6). As a negative control of our bioinformatic approach,
we used the same methodology to screen for soma-specific SNVs
and found none. We conservatively consider the 38 GRC-
amplified genes and those among the 245 genes with at least 5
germline-specific SNVs as our highest-confidence set (Supple-
mentary Table 5). We also identified GRC-linked genes using
germline–soma assembly subtraction (Fig. 1i); however, all were
already found via coverage or SNV evidence (Supplementary
Table 5). Together with the napa gene recently identified
in transcriptomes (Fig. 1j)10, our complementary approaches
yielded 115 high-confidence GRC-linked genes, all of these with
paralogs located on A chromosomes, i.e., 18 autosomes and the Z
chromosome (Supplementary Table 5; all 267 GRC genes in
Supplementary Table 6).

Gene expression and long-term evolution of the GRC. We next
tested whether the GRC is physiologically functional and
important, rather than facultative and purely selfish (parasitic), as
presumed for supernumerary B chromosomes17–19, using tran-
scriptomics and proteomics. We sequenced RNA from the same
tissues of the two Spain birds used for genome re-sequencing and
combined these with published testis and ovary RNA-seq data
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from North American domesticated zebra finches10,20. Among
the 115 high-confidence GRC genes, we detected transcription for
6 genes in the testes and 32 in the ovaries (Supplementary
Table 5). Note, these are only genes for which we could reliably

separate GRC-linked and A-chromosomal paralogs using GRC-
specific SNVs in the transcripts, providing an underestimate of
physiologically relevant expression of the GRC (Fig. 2a, b, Sup-
plementary Fig. 7, Supplementary Table 8). We next verified
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Fig. 1 The zebra finch germline-restricted chromosome contains genes copied from many A chromosomes. a, b Cytogenetic evidence for GRC absence in

muscle a and GRC presence in the testis b of the same bird (Spain_1) using fluorescence in-situ hybridisation (FISH) of our new GRC-amplified probe dph6

(selected due its high germline/soma coverage ratio; cf. e, f). Note that the single-copy A-chromosomal paralog of dph6 yields no visible FISH signal, unlike the

estimated 308 dph6 copies on the GRC. The scale bar indicates 10 μm. c, d Comparison of germline/soma coverage ratios for 1 kb windows with an expected

symmetrical distribution (blue bars) indicates enrichment of A-chromosomal single-copy regions in the germline (red bars), similar to lamprey2, both

in Seewiesen (c; linked reads) and Spain (d; average of Spain_1 and Spain_2 coverage; PCR-free short reads) samples. Y-axis is truncated for visualisation.

e, f Manhattan plot of germline/soma coverage ratios in 1 kb windows across chromosomes of the somatic reference genome taeGut2. Colours indicate high-

confidence GRC-linked genes and their identification (red: coverage, blue: SNVs, purple: both; Supplementary Table 5). Note that the similarities between

Seewiesen e and Spain_1/Spain_2 averages f constitute independent biological replicates for GRC-amplified regions, as the data are based on different

domesticated populations and different library preparation methods. Red arrows denote two FISH-verified GRC-amplified regions (cf. b)8. Only chromosomes

>5Mb are shown for clarity. g, h Linked-read barcode interaction heatmaps of an inter-chromosomal rearrangement on the GRC absent in Seewiesen liver g but

present in Seewiesen testis h. i, j Coverage plots of two examples of GRC-linked genes that are divergent from their A-chromosomal paralog, trim71 i and napa

j10, and thus have very low coverage (normalised by total reads and genome size) in soma.
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translation of GRC-linked genes through protein mass spectro-
metry data for 7 testes and 2 ovaries from another population
(Sheffield). From 83 genes with GRC-specific amino acid changes,
we identified 5 genes with peptide expression of both the paralog
containing GRC-specific amino acid changes (alternative or ‘alt’),
as well as the A-chromosomal paralog (reference or ‘ref’) in testes
and ovaries (Fig. 2c, d, Supplementary Fig. 8, Supplementary
Table 5). We therefore established that many GRC-linked genes
are transcribed and translated in adult male and female gonads,

extending previous RNA evidence for a single gene10 and
rejecting the hypothesis from cytogenetic studies that the GRC is
silenced in the male germline21,22. Instead, we propose that the
GRC has important functions during germline development in
both sexes, which is supported by a significant enrichment in
gene ontology terms related to reproductive developmental pro-
cesses among GRC-linked genes (Fig. 2e, Supplementary Table 9).
We further found that the GRC is significantly enriched in genes
that are also germline-expressed in GRC-lacking species (i.e.,
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f Expression evidence for chicken orthologs of three different sets of zebra finch GRC gene paralogs in testes, ovaries, or other tissues of chicken23.

Randomisation tests show a significant enrichment for germline-expressed genes among the chicken orthologs of 115 high-confidence GRC gene paralogs

and all 267 GRC gene paralogs, but not the 38 GRC-amplified gene paralogs.
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chicken9 and human) with RNA expression data available from
many tissues23 (Fig. 2f, Supplementary Table 10). Specifically, out
of 65 chicken orthologs of high-confidence zebra finch GRC-
linked gene paralogs, 22 and 6 are most strongly expressed in
chicken testis and ovary, respectively.

The observation that all identified GRC-linked genes have A-
chromosomal paralogs allowed us to decipher the evolutionary
origins of the GRC. We utilised phylogenies of GRC-linked genes
and their A-chromosomal paralogs to infer when these genes
copied onto the GRC, comparable to the inference of evolutionary
strata of sex chromosome differentiation24,25. First, the phylogeny
of the intergenic 27L4 locus of our germline samples and a
previous GRC sequence8 demonstrated stable inheritance among
the sampled zebra finch populations (Fig. 3a). Second, 37 gene
trees of GRC-linked genes with germline-specific SNVs and
available somatic genome data from other birds identify at least
five evolutionary strata (Fig. 3b–f, Supplementary Fig. 9,
Supplementary Table 4), with all but stratum 3 containing
expressed genes (cf. Fig. 2a–d). Stratum 1 emerged during early
songbird diversification, stratum 2 before the diversification of
estrildid finches, and stratum 3 within estrildid finches (Fig. 3g).
The presence of at least 7 genes in these three strata implies that
the GRC is tens of millions of years old and likely present across
songbirds (Supplementary Fig. 9), consistent with a recent study
reporting comprehensive cytogenetic evidence for GRC presence
in all 16 songbirds analysed9. Notably, stratum 4 is specific to the
zebra finch species and stratum 5 to the Australian zebra finch
subspecies (Fig. 3g), suggesting piecemeal addition of genes from
18 autosomes and the Z chromosome over millions of years of
GRC evolution (Fig. 3h). The long-term residence of expressed
genes on the GRC implies that they have been under selection,
such as bicc1 and trim71 on GRC stratum 1 whose human
orthologs are important for embryonic cell differentiation26.
Using ratios of non-synonymous to synonymous substitutions
(dN/dS) for GRC-linked genes with >50 GRC-specific SNVs, we
found 17 genes from all five strata evolving faster than their A-
chromosomal paralogs (Supplementary Table 11). However, we
also detected long-term purifying selection on 9 GRC-linked
genes, including bicc1 and trim71, as well as evidence for positive
selection on the transcription factor puf60, again implying that
the GRC is an important chromosome with a long evolutionary
history.

Discussion
Here we provided evidence for the origin and functional sig-
nificance of a GRC. Together with recent cytogenetic evidence for
GRC absence in non-passerine birds9, our analyses suggest that
the GRC emerged during early songbird evolution. The phylo-
geny of the trim71 gene (Supplementary Fig. 9a) even suggests
emergence of the GRC in the common ancestor of Passeriformes,
earlier than recently suggested through cytogenetic GRC presence
in oscine songbirds9,27. Therefore, we predict the GRC to be
present in half of all bird species. The species-specific addition of
dozens of genes on stratum 5 implies that the rapidly evolving
GRC likely contributed to reproductive isolation during the
massive diversification of songbirds28. Previous knowledge of the
gene content of the zebra finch GRC was limited to four genes
(napa, dph6, gbe1, robo1)9,10. Our germline genome analyses
expanded this gene catalogue, revealing an enrichment of
germline-expressed genes on the zebra finch GRC reminiscent of
nematodes and lampreys, where short genome fragments con-
taining similar genes are eliminated during germline–soma dif-
ferentiation2–4. All these cases constitute extreme mechanisms of
gene regulation through germline–soma gene removal rather than
transcriptional repression3,5,11. Remarkably, the GRC harbours

several genes involved in the control of cell division and germline
determination, including prdm1, a key regulator of primordial
germ cell differentiation in mice29,30. Consequently, we hypo-
thesise that the GRC became indispensable for its host by the
acquisition of germline development genes and probably acts as a
germline-determining chromosome. This might explain our evi-
dence for RNA and protein expression of GRC genes under long-
term purifying selection, and would be consistent with the pre-
vious hypothesis that GRCs are formerly parasitic B chromo-
somes which became stably inherited17,18. The aggregation of
developmental genes on a single eliminated chromosome con-
stitutes a unique mechanism to ensure germline-specific gene
expression amongst multicellular organisms. Similar to what was
proposed for programmed DNA elimination of short genome
fragments in lamprey31,32, the evolution of a GRC may allow
adaptation to germline-specific functions free of detrimental
effects on the soma which would otherwise arise from antag-
onistic pleiotropy. Negative effects arising from pleiotropy of
genes that are in normal circumstances active in the germline,
have previously been shown in the context of cancer
development33,34. Our results therefore have implications not
only for our understanding of the function of germline-restricted
DNA and the genome evolution of birds, but for how we
understand resolutions to antagonistic pleiotropy, relevant to
sexual conflict35 and the biology of disease and ageing36.

Methods
Animals and sampling. The male zebra finch (SR00100) from the Seewiesen
population was part of a domesticated stock maintained at the Max Planck
Institute for Ornithology in Seewiesen since 2004, a population originally derived
from the University of Sheffield population described below. The specimen was
four years of age when it was sacrificed and immediately dissected. Due to housing
in a unisex group, it is unclear whether the male was sexually active, but at dis-
section its testes were of normal size (about 3–4 mm long). Testes and a sample of
liver were dissected and stored in 70% ethanol before sequencing library pre-
paration. This work complied with local laws and was carried out under the
housing and breeding permit no. 311.4-si (by Landratsamt Starnberg, Germany).

The male zebra finches from the Spain population (Spain_1 and Spain_2) were
bought in a pet shop in Granada. Specimens were sacrificed and dissected,
extracting testes and leg muscles. Portions of testis and muscle from Spain_2 were
fixed for cytogenetic study, and remaining material was immediately frozen in
liquid nitrogen and stored at −80 °C before DNA and RNA extraction. This
procedure was performed according to local laws and under project number 20/02/
2017/027 (by Junta de Andalucía, Spain).

The zebra finches from the Sheffield population were part of a domesticated
stock maintained at the University of Sheffield from 1985 to 2016. Two females and
seven males were used, all aged between two and three years and reproductively
active at the time of the study (i.e., females were laying eggs and males were
producing sperm). The birds were maintained in breeding pairs prior to sample
collection, and on the day the female laid her first egg, they were humanely
euthanised by cervical dislocation under Schedule 1 (Animals (Scientific
Procedures) Act 1986). Ovaries/testes were immediately dissected, washed in
phosphate buffered saline solution to remove blood and connective tissue, and
instantly frozen in liquid nitrogen. The entire ovary was collected from each
female, as were both testes of each male. Testis and ovary samples were stored at
−80 °C prior to analysis. This study was approved by the University of Sheffield,
UK. All procedures performed conform to the legal requirements for animal
research in the UK and were conducted under a project licence (PPL 40/3481)
issued by the Home Office.

Linked-read sequencing and genome assembly. Genomic DNA was extracted
from testis and liver samples of the Seewiesen specimen using magnetic beads on a
Kingfisher robot, and 10× Chromium libraries were constructed at SciLifeLab
Stockholm. Libraries were multiplexed at an equimolar concentration and paired-
end (2 × 150 bp) sequencing was carried out on one full lane of the Illumina HiSeq
X platform (run one). For additional sequencing depth, the testis library received a
further full lane of sequencing, while the liver library received a further half lane
alongside a distantly related bird sample (run two). In total sequencing of testis and
liver libraries generated 1,295,235,378 and 776,317,533 reads, respectively. A
phased (‘megabubble’) and regular (‘pseudohaploid’) de-novo assembly was pro-
duced for each tissue from run one data (Supplementary Table 1) using Super-
nova13 v2.0. Based on these assemblies, Supernova estimated median library insert
sizes of 0.28 kb and mean input molecule lengths of 62.31 kb for testis, as well as
median library insert sizes of 0.31 kb and mean input molecule lengths of 28.84 kb
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for liver. Separately, to identify tissue-specific enrichment of sequences that were
either shared between libraries or exclusive to one library, run one reads from testis
and liver were compared using K-mer Analysis Toolkit37 v2.1.1. K-mer frequency
spectra (k= 27) were then plotted, revealing a large enrichment of shared k-mers at
high frequency in the testis, derived from repeated sequences on the GRC
homologous to single-copy sequences in the soma (Supplementary Fig. 4a).

Genome resequencing and RNA-seq. Genomic DNA was extracted from testis
and leg muscle samples of the two Spain individuals using the GenElute Mam-
malian Genomic DNA Miniprep Kit (Sigma-Aldrich) following the manufacturer’s
indications. Libraries were constructed using the Illumina TruSeq DNA PCR-Free
method with an insert size of ~350 bp and sequenced on the HiSeq X Ten platform,
yielding at least 17 Gb per sample (coverage ~14×) of 2 × 151 bp paired-end reads.
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Fig. 3 The zebra finch germline-restricted chromosome is ancient and highly dynamic. a Phylogeny of the intergenic 27L4 locus previously sequenced by

Itoh et al.8 suggests stable inheritance of the GRC paralog (alternative or ‘alt’ in red; cf. reference or ‘ref’) among the sampled zebra finches. b–f

Phylogenies of GRC-linked genes (‘alt’, in red; most selected from expressed genes) diverging from their A-chromosomal paralogs (‘ref’) before/during

early songbird evolution (b; bicc1, stratum 1; cf. Supplementary Fig. 9), during songbird evolution (c; ugdh, stratum 2), during estrildid finch evolution (d;

psip1, stratum 3), in the ancestor of the zebra finch species (e; rnf17, stratum 4), and in the Australian zebra finch subspecies (f; secisbp2l; stratum 5). The

maximum likelihood phylogenies in panels a–f (only bootstrap values ≥50% shown) include available somatic genome data from estrildid finches and other

songbirds. g Species tree of selected songbirds showing the chronological emergence of evolutionary strata (S1–S5) on the GRC (red gene names).

Molecular dates are based on previous phylogenies28,73. Bird illustrations were used with permission from Lynx Edicions. h Circos plot indicating A-

chromosomal origin of high-confidence GRC-linked genes from 18 autosomes and the Z chromosome. Due to the lack of chromosome-level scaffolding

information for the GRC, we were unable to attribute the relative order between most of the genes in the GRC (see details in Supplementary Fig. 1c).

Therefore, the represented genes are indicated in the same spot in the GRC placeholder (red box; not to scale). Note that A-chromosomal paralogs of 37

genes remain unplaced on chromosomes in the current zebra finch reference genome taeGut2.
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RNA was extracted from testis and leg muscle from the same individuals using the
RNeasy Lipid Tissue Kit (Qiagen) following the manufacturer’s indications.
Libraries were constructed with the TruSeq mRNA Sample Prep Kit v2 and
sequenced using the HiSeq4000 platform, yielding ~10 Gb per sample of 2 × 101 bp
paired-end reads. Trimming was done using Trimmomatic38 v0.33 with options
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLI-
DINGWINDOW:4:20 MINLEN:100.

Repetitive element analyses. Simple satellite repeats evolve rapidly across species
and tend to accumulate on non-recombining portions of the genome39. The
kSeek40 v4 pipeline was used to detect and quantify simple satellite repeats. Briefly,
kSeek detects and quantifies short sequences (1–20 bp) that are tandemly repeated
from unassembled reads. PCR-free reads from the Spain individuals were quality-
filtered and trimmed using Trimmomatic v0.36 with options PE -phred33 ILLU-
MINACLIP: 2:1:10 SLIDINGWINDOW:4:20 MINLEN:20 and the k_seek.pl script
was run. Quality-filtered and trimmed reads were mapped to the zebra finch
somatic reference genome assembly (taeGut2; generated from muscle tissue of a
male individual)7 using BWA-MEM41 v.0.7.8 with default parameters. Median
insert size was obtained using the function CollectInsertSizeMetrics from Picard
Tools v2.10.3. The k-mer counts were then corrected accounting for GC content
using a previously published script42. K-mer abundance was compared for k-mers
that were shared between the four samples (n= 257) and had a minimal count of
100. As the two samples for each tissue type were highly correlated (Pearson’s r >
0.98), the k-mers were averaged between samples.

To compare the number of assembled repeats in the pseudohaploid de-novo
assemblies for Seewiesen liver and testis, repetitive elements were annotated using
RepeatMasker43 v4.0.7 (‘-species Aves’). The summaries from the .tbl output files
are shown in Supplementary Table 4.

To specifically detect satellite DNA, a repetitive element database was generated
from taeGut2 using RepeatModeler44 v1.0.8. Since satellites are usually
underrepresented in genome assemblies, the satMiner45 protocol was additionally
applied to Spain testis libraries with two rounds of clustering using RepeatExplorer46

with 400,000 and 1,600,000 read pairs respectively. The relative genomic abundance
of repeats was then compared between libraries by sampling 5 million read pairs per
library and aligning them to the repeat database with RepeatMasker. A subtractive
repeat landscape was generated by subtracting muscle from testis repeat abundances
(Supplementary Fig. 4f).

Cytogenetics. To demonstrate GRC presence in zebra finch germline cells and
absence in somatic cells, a FISH probe to a GRC-amplified region was designed.
The contigs assembled from testis libraries by RepeatExplorer as described above
were clustered using CD-HIT-EST47, and muscle and testis reads were mapped to
them using SSAHA248. Two contigs with high testis versus muscle coverage ratio
were selected, and were found to be homologous to an intron of the dph6 gene (cf.
Fig. 1e, f). Primers (Supplementary Data 1) were designed to amplify a region >500
bp from both contigs using the Primer3 software49. PCR amplifications were
performed with initial denaturation at 95 °C for 5 min, followed by 30 cycles with
30 s denaturation at 94 °C, 30 s annealing at 60 °C, and 30 s extension at 72 °C,
finishing with a final extension at 72 °C for 7 min. Cytological preparations were
made from testis and leg muscle from individual Spain_2 using Meredith’s tech-
nique50. We labelled the dph6 probe (Supplementary Data 1) with
Tetramethylrhodamine-5-dUTP by nick translation and performed FISH in these
preparations51. The hybridisation mix was composed of 10.5 μl formamide, 6 μl
dextran sulfate, 3 μl 20×SSC, 1 μl salmon sperm, 0.5 μl SDS, 4 μl dph6 probe, and
5 μl H2O, and we applied 7 min of denaturation.

Since testes contain both somatic and germline cells, the testis FISH
preparations were utilised to estimate the proportion that contained a GRC.
Germline cells (with FISH signal) and somatic cells (without FISH signal) were
counted. The number of GRCs per haploid A genome set was calculated as 0.364,
taking into account that germline cells are tetraploids and contain two GRCs, and
somatic cells are diploid. A small number of polyploid cells were excluded from
calculations. GRC size was estimated by measuring the relative length of
synaptonemal complexes of chromosome 2 and the GRC from Figs. 1a and 2a of
Pigozzi and Solari12. The average GRC/chromosome 2 length ratio was 1.07.
Considering that chromosome 2 is 156.41 Mb in the taeGut2 reference, GRC size is
estimated at 167.3 Mb. This value was used to normalise GRC copy number
estimations for protein-coding genes.

Coverage analysis. Linked reads derived from Seewiesen tissues were aligned
separately to taeGut2 using Long Ranger v2.1.2 in whole genome mode. Read
coverage per position of taeGut2 was calculated using the mpileup utility of
Samtools52 v1.4. Average coverage across the genome was then calculated in
windows of 1 kb and 5 kb. The smaller windows were utilised for fine-scale plotting
of genome-wide coverage ratios in Fig. 1e, f, while the larger were utilised to filter
GRC-amplified regions as follows. The mapping and coverage calculation was
carried out again for the Spain individuals, and for the testis pseudohaploid
assembly, except alignment used BWA-MEM with default settings41. To correct for
different sequencing depth between tissues of Seewiesen, testis windows were first
multiplied by the soma to testis coverage ratio. Testis windows for which the

coverage was higher than the mean coverage plus two standard deviations were
then removed (~5000 windows). A linear model linking window coverage in the
testis as a function of the somatic sample was built, and the slope of the linear
model was used to correct all testis coverage windows down (these windows were
already library depth corrected). These corrections resulted in highly correlated
coverage between the somatic and testis samples, with the exception of the win-
dows that are highly amplified on the GRC (Supplementary Fig. 5a, b). The same
was carried out on Spain windows, after averaging the coverage values of both
individuals by tissue (Supplementary Fig. 5c, d). To filter GRC-amplified windows,
the distribution of germline to soma coverage ratio was computed on a log2 scale.
Windows with low coverage (<5th percentile) in the testis sample were removed,
and the distribution was centred on 0 (effectively representing a 1:1 coverage ratio
between the testis and soma samples). After visual inspection of the distribution,
log2= 2 was selected as our coverage ratio cut-off for confident GRC-amplified
windows. For Seewiesen, 510 windows were filtered and 475 for Spain, of which
465 (97.8%) were shared with Seewiesen. In all filtered windows, GC content was
no lower than 30% or higher than 60%, a range where we expect read mapping not
to be significantly biased. A search for somatic windows at the same excess ratio
with respect to the testis returned 6 windows for Seewiesen, and none for Spain,
showing the cut-off is highly conservative. Putative GRC-containing windows often
occurred in blocks; Seewiesen included 51 singletons and 41 blocks of at least 10 kb,
of which the largest spanned 825 kb, while Spain included 44 singletons and 36
blocks of at least 10 kb, the largest of which also spanned 825 kb.

Genes in the taeGut2 annotation of Ensembl Release 93 with overlap to putative
GRC windows were identified using the intersect utility of bedtools53 v2.25.0, and
further genes from the TransMap Ensembl V4 annotation were identified by
intersection with windows via the UCSC Table Browser54. A total of 38 annotated
genes were found.

Structural variant analysis. Loupe outputs from Long Ranger alignment of
linked-reads to taeGut2 were loaded into the 10× Genomics Loupe genome
browser v2.1.1, and 11 testis-specific inter-chromosomal structural variant calls
limited to anchored chromosomes were identified. No such variants were found to
be liver-specific, supporting the conclusion that these represent junctions on the
GRC between sequence regions with distinct A-chromosomal origins. The number
of log2-transformed barcodes shared between structural variant coordinate ranges
were plotted for the testis and liver samples using ggplot2 v3.0.0 in R v3.5.1.

Protein-coding gene copy number analysis. Transcript sequences from the
taeGut2 transcriptome were downloaded and clustered at 80% similarity across
80% of the transcript length using CD-HIT-EST set to local alignment and greedy
algorithm (options -M 0 -aS 0.8 -c 0.8 -G 0 -g 1). For each tissue of the Spain and
Seewiesen individuals, genomic DNA reads were then mapped to the transcriptome
using SSAHA2 with an alignment score of ≥40 and minimum identity of 80%.
Average read coverage per position was calculated for each transcript, normalising
by library size and genome size to estimate the copy number per haploid genome
with the formula: copy number= (coverage × genome size)/library size. For the
genome size of somatic libraries, the taeGut2 assembly size was used (1223 Mb).
For testis libraries, the size of 0.364 GRCs was added to this (yielding a total of
1329Mb). For genes with a high variance of coverage along the sequence, regions
of high coverage and regions of low coverage were split for these calculations.

Germline DNA-specific variant analysis. Custom SNV calling was performed,
selecting SNVs with ≥10 read coverage in testis but not found in somatic reads. As
a negative control, the process was repeated looking for soma-specific SNVs, but
none were identified. Somatic (‘ref’) and testis-specific (‘alt’) consensus sequences
were generated, and coverage plots were produced using a custom script. A detailed
description of this protocol can be found in Ruiz-Ruano et al.19 and scripts are
freely available via GitHub (https://github.com/fjruizruano/whatGene). We inclu-
ded in our highest-confidence gene set those genes with at least 5 germline-specific
SNVs (for details, see section “Gene ontology and over-representation analyses”
below).

Germline RNA-specific variant analysis. Transcription of GRC genes was
demonstrated by identification of testis-specific SNVs in RNA-seq data from
Spain_1, Spain_2, and published testis and ovary data10,20 (Supplementary
Table 12). Reads were mapped to taeGut2 transcripts using SSAHA2 with options
described above. Variants were identified with a minimum of 100 reads and an
‘alt’/‘ref’ ratio above 1%. Mappings were visualised using IGV55.

Subtractive BLAST gene discovery. Similar to earlier work on zebra finch
transcriptomes10, a whole-genome assembly subtractive BLAST56 approach was
used to identify GRC-specific genes. The unmasked (so that repetitive sequences
could still be identified) phased testis assembly containing 42,343 scaffolds was
queried against the unmasked phased liver assembly containing 84,506 scaffolds
using default BLASTn. Testis scaffolds aligning at minimum 95% identity for ≥500
bp (half the minimum scaffold length) were removed, leaving 7720. These were
queried using the same algorithm and filtering options against taeGut2, leaving
3356. Next, since these scaffolds may have derived from regions difficult to
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assemble, the raw Sanger and 454 reads used for the taeGut2 assembly were
BLASTn searched against them. Applying the same filtering criteria left
2404 scaffolds, which were then queried against an unmasked phased PacBio zebra
finch genome assembly (generated from muscle tissue of the same individual as
taeGut2)14, leaving 2020 which were regarded as ‘orphan’ scaffolds. Orphan scaf-
folds were queried using BLASTx against a chicken (Gallus gallus) SWISS-PROT
database, applying an e-value cutoff of 1e-20 and a culling_limit of 1 (non-over-
lapping hits only). A total of 49 hits to 22 chicken proteins from 31 scaffolds were
obtained. Pairwise MAFFT57 alignment was performed on the scaffolds and
identical sequences were manually removed. Finally, reads from the Spain samples
were mapped to the remaining scaffolds and sequences were BLASTn searched
against the NCBI shotgun assembly contigs database to exclude the possibility of
contamination. All scaffolds were related to bird sequences and had low coverage
in the Spain library, however, all these genes had previously been identified by
other approaches (specific SNVs and/or coverage).

Mass spectrometry analysis. Testes and ovary samples were dounced and
extracted using RIPA buffer (Sigma Aldrich) and quantified with the BCA Protein
Quantitation Kit (Thermo Fisher Scientific). In total 150 μg total protein extract
were mixed with 4× LDS sample buffer (Thermo Fisher Scientific) supplemented
with 0.1 M DTT and boiled for 10 min at 70 °C prior to separation on a 12%
NuPAGE Bis-Tris precast gel (Thermo Fisher Scientific) for 30 min at 170 V in
MOPS buffer. The gel was fixed using the Colloidal Blue Staining Kit (Thermo
Fisher Scientific) and each sample was divided into 4 equal fractions of different
molecular weights. For in-gel digestion prior to MS analysis, samples were
destained in destaining buffer (25 mM ammonium bicarbonate, 50% ethanol) and
reduced in 10 mM DTT for 1 h at 56 °C followed by alkylation with 55 mM
iodoacetamide (Sigma) for 45 min in the dark. Tryptic digest was performed in
50 mM ammonium bicarbonate buffer with 2 μg trypsin (Promega) at 37 °C
overnight. Peptides were desalted on StageTips and analysed by nanoflow liquid
chromatography on an EASY-nLC 1200 system coupled to a Q Exactive HF
Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific). Peptides were
separated on a C18-reversed phase column (25 cm long, 75 μm inner diameter)
packed in-house with ReproSil-Pur C18-QAQ 1.9 μm resin (Dr Maisch). The
column was mounted on an Easy Flex Nano Source and temperature controlled by
a column oven (Sonation) at 40 °C. A 215-min gradient from 2 to 40% acetonitrile
in 0.5% formic acid at a flow of 225 nl/min was used. Spray voltage was set to
2.4 kV. The Q Exactive HF was operated with a TOP20 MS/MS spectra acquisition
method per MS full scan. MS scans were conducted with 60,000 at a maximum
injection time of 20 ms and MS/MS scans with 15,000 resolution at a maximum
injection time of 50 ms.

Proteomic data analysis. The raw MS files were processed with MaxQuant58

v1.6.2.10 using the LFQ quantification59 option on unique peptides with at least 2
ratio counts against a single proteomic reference database generated from trans-
lated RNA-seq data of 83 high-confidence GRC-linked genes plus napa (‘alt’
sequences, all with at least 1 GRC-linked amino acid variant; napa accession
MH263723.1 [https://www.ncbi.nlm.nih.gov/nuccore/MH263723.1]) and their
autosomal copies (‘ref’ sequences, napa accession MH263724.1 [https://www.ncbi.
nlm.nih.gov/nuccore/MH263724.1]), which was used to generate peptide align-
ments in silico. Carbamidomethylation was set as fixed modification while
methionine oxidation and protein N-acetylation were considered as variable
modifications. Search results were filtered with a false discovery rate of 0.01. Second
peptides, dependent peptides and match between runs parameters were enabled.
Both unique and razor peptides were selected for quantification. Figures were
generated from the LFQ intensity data using the ggplot2 package in R.

Gene ontology and over-representation analyses. Genes detected by all meth-
ods in addition to napa (N= 267) were compiled in a table (Supplementary
Table 6) and manually curated for redundancy using NCBI, Ensembl, and UniProt
lookups. In instances where multiple transcripts from the same genomic loci were
identified, one gene entry was retained (X1 variant), and alternate transcripts were
recorded in a separate column. We assigned genes detected in GRC-amplified
regions, those with at least 5 germline-specific SNVs, and napa to our highest-
confidence gene set (N= 115, Supplementary Table 5). Genomic coordinates of
high-confidence genes on anchored chromosomes >5Mb were used to annotate a
Manhattan plot of testis to soma coverage ratio averaged across 1-kb windows for
both the Seewiesen and Spain samples. Genes predicted to be derived from
endogenous retroviruses were not plotted. A chord diagram was generated indi-
cating the location of 81 genes from the high-confidence list that had a known
location in taeGut2 using Circos60.

Gene symbol lists for the full and high-confidence gene sets were analysed for
enrichment of gene ontology (GO) biological process terms with respect to the
Homo sapiens reference list using the PANTHER Overrepresentation Test61 with a
Fisher exact test for significance, and filtering of significant results using a false
discovery rate of 0.05. Enriched terms were visualised using REVIGO62, with the
SimRel semantic similarity measure and clustering at 0.9 similarity. Terms were
plotted with size proportional to fold-enrichment above expected occurrence, and
colour according to log10 of the false discovery rate p-value.

Germline expression enrichment analysis. To test whether A-chromosomal
paralogs of GRC-linked genes showed elevated expression levels in the gonads of
species lacking a GRC, expression data across 5 male and 5 female tissues (brain,
heart, kidney, liver, and gonads) were downloaded for both chicken and human23.
Genes that were not expressed in any of the tissues were excluded. The full list of
18,616 annotated genes for taeGut2 in the Ensembl 93 release (i.e., the background
zebra finch genes) was intersected with the remaining chicken and human genes.
For chicken, the intersection list contained 7918 genes, of which 1376 showed their
highest expression levels in testes and 685 in ovaries. Of our comprehensive list of
267 GRC-linked genes, 148 were paralogs of genes with Ensembl identities, and 143
were included in the intersection. For our high-confidence list of 115 genes
(Supplementary Table 5), 75 were paralogs of genes with Ensembl identities and 65
were in the intersection. In total 17 of 36 GRC-amplified genes paralogous to genes
with Ensembl identities were also in the intersection. Figure 2f shows how many
chicken orthologs of the zebra finch GRC-linked gene paralogs had their highest
expression in chicken testes, ovaries, or a somatic tissue. To test whether there was
a higher number of genes highly expressed in the testes or ovaries than would be
expected by chance, 143 (then 65, and 17) genes were randomly sampled 10,000
times from the list of 7918 genes and the number with maximal expression in the
testes or ovaries were counted. For p-values, the fraction of the 10,000 replicates
where the count for testes (or ovaries) was equal or higher than the observed count
among chicken orthologs of the zebra finch GRC-linked gene paralogs is reported.
Hence, these are one-tailed tests for ‘enrichment’. Likewise, one-tailed tests for
‘underrepresentation’ for the category ‘highest in other tissues’ were calculated. All
observed counts and p-values (also for the human intersection list) are reported in
Supplementary Table 10. Note that only one p-value survives a strict Bonferroni
correction for conducting 18 hypothesis tests.

Mitogenome analysis. The phylogenetic relationships between the zebra finch
short-read libraries used in this study were calculated using the mitogenome, which
was assembled for each library with a previously described whole mitogenome as a
reference (haplotype A, accession DQ422742 [https://www.ncbi.nlm.nih.gov/
nuccore/DQ422742])63 using MITObim with the quickmito protocol64. This
protocol successfully reconstructed the mitogenome in DNA-seq and RNA-seq
libraries. Assembled sequences and haplotype A were aligned with zebra finch
haplotypes B-E63 (accessions DQ453512-15 [https://www.ncbi.nlm.nih.gov/
nuccore/DQ453512,DQ453513,DQ453514,DQ453515]) with the White-rumped
Munia (Lonchura striata swinhoei) as an outgroup65 (accession KR080134 [https://
www.ncbi.nlm.nih.gov/nuccore/KR080134]). Alignments were with MAFFT57

using the ‘LINSI’ option, and uninformative sites were removed using Gblocks66. A
phylogenetic tree was built using RAxML67 v8.2.12, with 100 tree searches and 100
bootstrap replicates.

Phylogenetic analysis. GRC-linked genes may have individual evolutionary his-
tories, so the phylogenetic relationships of each and their A-chromosomal paralogs
were inferred. Since published gene transcripts from outgroup species on the NCBI
Nucleotide database have different exon combinations, using these for an infor-
mative alignment would be difficult. Therefore, in addition to the soma and
germline reads generated by this study, raw Sequence Read Archive reads from 10
outgroups were utilised: Taeniopygia guttata guttata, Poephila acuticauda, Sti-
zoptera bichenovii, Lonchura striata, Lonchura castaneothorax, Uraeginthus gran-
atina, Serinus canaria, Geospiza fortis, Zonotrichia albicollis, and Corvus cornix
(Supplementary Table 12). Reads homologous to genes containing GRC-specific
SNVs were filtered using BLAT68 with the very relaxed setting, and subsequently
mapped to the same references using SSAHA248 to derive a consensus sequence
with the majority nucleotide for each position. Sequences with over 20% unde-
termined nucleotides were removed. For some genes, zebra finch testis coverage
was unevenly distributed across the transcript. In these cases, only the high-
coverage region was used in the alignment. In the remaining cases the whole
transcript was retained. A phylogeny was built using RAxML67 v8.2.12 with 100
tree searches and 100 bootstrap replicates. Trees were rooted to the deepest branch
among the sampled birds69. In the case of the genes bicc1 and trim71 in evolu-
tionary stratum 1, non-passerine outgroups were included to estimate the time of
their arrival on the GRC (Supplementary Fig. 9, Supplementary Tables 13 and 14).
Poorly resolved trees or those that lacked sequence information from several
sampled songbirds were not ranked for an evolutionary stratum. The same pro-
cedure was carried out for the previously published GRC probe 27L4 (accession
FJ609199.1 [https://www.ncbi.nlm.nih.gov/nuccore/FJ609199.1]). Protocols and
scripts are freely available via GitHub (https://github.com/fjruizruano/whatGene).

Substitution rate estimation and dN/dS tests for selection. To ensure sufficient
power to confidently estimate nonsynonymous to synonymous substitution rate
ratios (dN/dS ratios), genes with at least 50 GRC-specific SNVs (e.g., single site
substitutions) as well as napa were selected, including genes belonging to the five
different evolutionary strata (Fig. 3g). To estimate codon specific substitution rates
(dN/dS) codeml from the PAML70 suite v4.9 was used. Codeml input was con-
structed as follows. The coding parts of the DNA sequences constructed for gene
phylogenetic analyses were translated into their corresponding protein sequences
and prepared for codeml by backtranslating using trimAl71 v1.4 using the option
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-gt 0.2 -block 10 –splitbystopcodon. The topology from the gene tree identified in
the phylogenetic analysis was used. Branch-specific models were then set up, for
which a two branch type model was considered with the GRC-specific lineage as
the foreground and the remaining branches as background. It was first tested
whether the GRC lineage showed a significantly different dN/dS ratio compared to
the rest of the tree. Secondly it was tested whether the GRC lineage shows a
significantly different dN/dS ratio from 1 (indicative of neutral evolution if this
hypothesis is rejected). In a third model lineage specific evidence for positive
selection using the Branch-Site model A was tested. In all cases model significance
was assessed with likelihood ratio tests assuming that twice the log likelihood
difference is approximately χ2 distributed, as suggested in the PAML manual.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated in this study have been deposited in public databases; Sequence Read

Archive for the DNA and RNA sequencing data (accession numbers PRJNA552984

[https://www.ncbi.nlm.nih.gov/bioproject/PRJNA552984]), Figshare for the linked-read

assemblies (https://doi.org/10.6084/m9.figshare.8852024), and the ProteomeXchange

Consortium via PRIDE72 for the mass spectrometry proteomics data (accession number

PXD014692).

Code availability
All custom code is freely available via GitHub (https://github.com/fjruizruano/

whatGene).
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