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Abstract Permanent deformations in the lithosphere can occur in the brittle as well as in the ductile

domain. For this reason, the inclusion of viscous creep and frictional plastic deformation is essential for

geodynamic models. However, most currently available models of frictional plasticity are rate independent

and therefore do not incorporate an internal length scale, which is an indispensible element for imposing a

finite width of localized shear zones. Therefore, in computations of localization, either analytical or

numerical, resulting shear zone widths tend to zero. In numerical computations, this manifests itself in a

severe mesh sensitivity. Moreover, convergence of the global iterative procedure to solve the nonlinear

processes is adversely affected, which negatively affects the reliability and the quality of predictions. The

viscosity that is inherent in deformation processes in the lithosphere can, in principle, remedy this mesh

sensitivity. However, elasto-viscoplastic models that are commonly used in geodynamics assume a series

arrangement of rheological elements (Maxwell-type approach), which does not introduce an internal

length scale. Here, we confirm that a different rheological arrangement that puts a damper in parallel to

the plastic slider (Kelvin-type approach) introduces an internal length scale. As a result, pressure and

strain and strain rate profiles across the shear bands converge to finite values upon decreasing the grid

spacing. We demonstrate that this holds for nonassociated plasticity with constant frictional properties and

with material softening with respect to cohesion. Finally, the introduction of Kelvin-type viscoplasticity

also significantly improves the global convergence of nonlinear solvers.

1. Introduction

Shear localization refers to the phenomenon of the concentration of strains in narrow zones when the

applied load exceeds a certain threshold level. It occurs in virtually all materials (Nadai, 1931), takes place

at all spatial and temporal scales within the lithosphere, and manifests itself through phenomena, which

are widespread in rocks, for example, faults, shear zones, and shear bands. The localization of strains is

observed in lithospheric domains where stress levels are controlled mainly by either the temperature or the

strain rate (viscous creep, ductile mode) or the pressure (frictional plasticity, brittle mode). While the mech-

anisms that govern strain localization in the ductile mode are still being discussed (Bercovici et al., 2001;

Duretz & Schmalholz, 2015; Précigout & Gueydan, 2009; Thielmann & Kaus, 2012), those acting in the brit-

tle mode, particularly in the realm of nonassociated plasticity, are fairly well established (Poliakov et al.,

1994; Rudnicki & Rice, 1975).

For the purpose of geodynamic modeling, accounting for plasticity is mandatory to capture the

self-consistent generation of tectonic plates (e.g., Tackley, 2000) and the development of fault zones (e.g.,

Gerbault et al., 1998; Poliakov et al., 1993). However, the physical processes within shear bands, which con-

trol their width, are often considered to be beyond the scope of current geodynamic models. Hence, for

sake of simplicity, strain localization is often induced by a priori-defined strain-softening functions (Buck

& Lavier, 2001; Buiter et al., 2006; Döhmann et al., 2019; Huismans & Beaumont, 2002; Lavier et al., 1999),

which are meant to take into account the role of complex thermo-hydro-chemico-mechanical interactions

within faults in a phenomenological sense.

Since geodynamic models need to deal primarily with large deviatoric static strains, most models rely on

the incompressible Stokes equations (e.g., Gerya & Yuen, 2003; Fullsack, 1995; Tackley, 2000). Typically,
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viscoplasticity is used to describe the rheological behavior of geomaterials under these conditions, treating

them as highly viscous fluids that can locally undergo plastic flow if a yield criterion is met (Willett, 1992).

Many geodynamic models neglect the role of elasticity and can therefore not capture the effects of elastic

unloading, which can be pivotal in the proper description of progressive shear-band development. Multidi-

mensional stress states in geodynamics are typically captured using pressure-dependent yield functions like

Drucker-Prager or Mohr-Coulomb (Moresi et al., 2007; Popov & Sobolev, 2008).

For most rocks, the angle of internal friction is relatively large in the steady state, around 30◦ or more

(Byerlee, 1978). On the other hand, the magnitude of the dilatancy angle, which controls the amount of

plastic volumetric change for a given amount of plastic shearing, is usually much lower, at most 10–15◦ at

the onset of shear banding (Vermeer & de Borst, 1984), tending to zero for progressively increasing deforma-

tions. The latter observation ties in with the common use of the incompressible Stokes equations for these

applications. The nearly incompressible nature of the plastic flow in combination with the strong frictional

character of geomaterials renders the plasticity models nonassociated.

Both the introduction of strain softening and the use of nonassociated flow rules in pressure-dependent

plasticity models yield mesh-dependent results and often exhibit an erratic and unsatisfactory convergence

behavior of the equilibrium-searching iterative procedure (Spiegelman et al., 2016). The underlying reason

is that the introduction of cohesion softening or of a nonassociated flow rule has a mechanically destabi-

lizing influence. Indeed, both for cohesion softening (Read & Hegemier, 1984) and for nonassociated flow

(Rudnicki & Rice, 1975) not only loss of mechanical stability can be induced but, worse, also loss of ellip-

ticity. This mathematical condition is the basic cause of the frequently observed mesh dependence, which

occurs in computations of materials that have constitutive laws that are equipped with this kind of behav-

ior. It has also been shown that under such conditions convergence of the incremental-iterative solution

procedure deteriorates with increasing mesh refinement (de Borst et al., 2012).

For nonassociated flow, loss of ellipticity can happen even if the material is still hardening and simulations

have shown that global structural softening can then take place (de Borst, 1988; Le Pourhiet, 2013; Sabet &

de Borst, 2019). It occurs at more and more positive hardening rates when the difference increases between

the angles of internal friction and dilatancy.

It is emphasized that the fundamental, mechanical-mathematical cause of these numerical problems is loss

of ellipticity. Loss of ellipticity can cause the initial value problem to become ill posed, which makes that

solutions no longer continuously depend on the initial and boundary conditions. Numerical solutions then

become meaningless, since they are fully dependent on the discretization, with respect to the fineness of

the mesh and also with respect to the direction of the grid lines (Jirašek & Grassl, 2008; Sluys & Berends,

1998). This holds for any discretization method, including meshless methods (Pamin et al., 2003), and also,

adaptive mesh refinement is severely biased (Perić et al., 1994).

Unless a plasticity model that incorporates cohesion softening or nonassociated flow is equipped with an

internal length scale, it will lose ellipticity and hence suffer from mesh sensitivity, at some loading stage.

Yet most plasticity models that have been used so far in long-term tectonics do not incorporate an internal

length scale. Suchmodels, while ubiquitous in geophysics, geomechanics, and engineering, are based on the

assumption that themechanical behavior in a point is representative for a small but finite volume surround-

ing it. This assumption is often correct but fails for highly localized deformations, like fault movement or

shear bands. In the presence of strain weakening or nonassociated flow, local stress-strain relations have to

be enriched to properly take into account the physical processes that occur at small length scales. A range of

possibilities has been proposed to remedy this deficiency (de Borst et al., 1993), including Cosserat plastic-

ity (Mühlhaus & Vardoulakis, 1987; Stefanou et al., 2019), nonlocal plasticity (Bažant & Jirasek, 2002), and

gradient plasticity (de Borst & Mühlhaus, 1992). Unfortunately, all these possible solutions come with dis-

advantages. Obviously, they share the need to specify additional boundary conditions, which are often not

easily understood from the physics. Other disadvantages are the introduction of additional degrees of free-

dom, as in Cosserat or gradientmodels, or they can result in fully populated, nonbanded, and nonsymmetric

stiffness matrices (nonlocal models).

For geodynamic applications, the inclusion of a deformation-limiting viscosity, which has been tailored for

modeling the deformation of crystalline solids (Needleman, 1988; Peirce et al., 1983), represents an alterna-

tive to nonlocal rheological models. It is emphasized though that not all visco-elasto-plastic rheologies solve
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Figure 1. Investigated rheological models for deformation of the
lithosphere: (a) Maxwell elasto-plastic model, (b) Maxwell
visco-elasto-plastic model, (c) elastic model coupled to a Kelvin viscoplastic
element, and (d) Maxwell visco-elastic model coupled to a Kelvin
viscoplastic element.

the issue of mesh dependence and that a pure series arrangement of

the rheological elements (Maxwell-type approach; see Figure 1b), for

instance, does not introduce a length scale and therefore does not remove

the mesh-dependence issue. By contrast, a viscoplastic model that relies

on the introduction of a rate-limiting viscosity in a parallel arrangement

with a plastic slider (Kelvin-type viscoplasticity, Figure 1c; Perzyna, 1966)

does introduce a length scale and can provide mesh-independent numer-

ical solutions (Dias da Silva, 2004; Niazi et al., 2013; Sluys & de Borst,

1992; Wang et al., 1996). Although a Kelvin-type viscoplasticity rheology

has been used in tectonic modeling studies before (e.g., Hansen, 2003;

Regenauer-Lieb et al., 2018; Yin et al., 2018), the consequences have

largely remained unexplored.

Herein, we will numerically study strain localization using nonasso-

ciated Drucker-Prager plasticity, which captures the first-order behav-

ior of the frictional lithosphere (Lemiale et al., 2008; Moresi et al.,

2007; Kaus, 2010). We first illustrate the problem of mesh dependence

using rate-independent plasticity. Then, we introduce a Kelvin-type

rate-dependent viscoplastic formulation and demonstrate that the com-

puted shear bands are mesh independent, even when strain softening is

also introduced. We analyze the pressure, strain, and strain rate profiles

across the shear bands as well as their evolution. Finally, we discuss the

implications of using viscoplasticity for modeling in geodynamics.

2. ConstitutiveModels

In the remainder, we consider three rheological models. The first model

is a standard, rate-independent elasto-plastic model (E-P), depicted in

Figure 1a, and, assuming small strains, it can be characterized by an additive decomposition of the strain

rate into an elastic component and a plastic component:

.
𝝐 =

.
𝝐
e +

.
𝝐
p
, (1)

where the subscripts e and p denote elastic and plastic components, respectively. The deviatoric elastic strain

𝜖e′ relates to the deviatoric stress 𝜏 as follows:

𝝐
e ′ =

𝝉

2G
, (2)

where G represents the shear modulus, which is kept constant for simplicity.

Plastic deformations arise when the yield function

F =
√
J2 − C cos(𝜙) − P sin(𝜙) (3)

attains a zero value, with C and 𝜙 the cohesion and the angle of internal friction, respectively. J2 =
1

2

(
𝜏2
xx
+ 𝜏2

𝑦𝑦
+ 𝜏2

zz

)
+ 𝜏2

x𝑦
is the second invariant of the deviatoric stresses 𝜏xx, 𝜏yy, 𝜏zz, and𝜏xy, and P =

−
1

3

(
𝜎xx + 𝜎𝑦𝑦 + 𝜎zz

)
is the mean stress, defined as negative in tension. When cohesion hardening or

softening is incorporated, the hardening/softening modulus takes the form:

h =
dC

d𝜖p
, (4)

where 𝜖p is the accumulated equivalent plastic strain according to the strain-hardening hypothesis and is

formulated as

𝜖p = ∫
√

2

3

( .
𝝐
p
)T .
𝝐
pdt. (5)

During continued plastic flow, F = 0 and the deviatoric strain rates are assumed to be derivable from a

plastic potential function Q:

.
𝝐
p =

.
𝜆
𝜕Q

𝜕𝝈
, (6)
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Table 1
List of Parameters Relative to the Different Tests Presented in This Study

Parameter Model 1 E-P Model 2 E-VP Model 3 V-E-P Model 4 E-VP soft. Model Crust 1 Model Crust 2

Lx (m) 1 1 1 1 1.0 × 104 2 × 104

Ly (m) 0.7 0.7 0.7 0.7 0.685 × 104 104

Δ𝜖BC (—) 5 × 10−6* 5 × 10−6 5 × 10−6* 5 × 10−6 2 × 10−5 5 × 10−5

Δt (s) — 104 104 104 108 1010

Pc (Pa) 0 0 0 0 0 50 × 106

C (Pa) 1.74 × 10−4 1.74 × 10−4 1.74 × 10−4 1.74 × 10−4 1.75 × 107 107**

h (Pa) 0 0 0 −10−2 −7 × 107 −1.5 × 107

K (Pa) 2 2 2 2 2 × 1010 2 × 1010

G (Pa) 1 1 1 1 1010 1010

𝜂 (Pa·s) — — 2.5 × 105 — — —

𝜂VP (Pa·s) — 2.5 × 102 — 2.5 × 105 1 × 1017 3 × 1018

*In Models 1 and 3, the strain increment may vary with time to allow for global convergence (see Figure 11d). **In
Model Crust 2, the initial cohesion is randomly perturbed.

where
.
𝜆 is a plastic multiplier and Q is assumed to have a form similar to that of the yield function F:

Q =
√
J2 − P sin(𝜓), (7)

with 𝜓 ≤ 𝜙 the dilation angle.

Next, we consider an visco-elasto-plastic model classically used in geodynamics (Figure 1b) with a viscous

damper added in series to the previous rheology (Maxwell-type approach, V-E-P):

.
𝝐 =

.
𝝐
v +

.
𝝐
e +

.
𝝐
p
, (8)

the superscript v denoting a viscous (strain) component. The viscous deviatoric strain rate
.
𝝐
v ′ is assumed

to be linearly related to the deviatoric stress tensor:

.
𝝐
v ′ =

𝝉

2𝜂
, (9)

with 𝜂 the (constant) dynamic shear viscosity.

Third, we consider a model where the plastic element of Figure 1a is substituted by a viscoplastic element

(Figure 1c), which can be considered as a Kelvin-type arrangement (E-VP):

.
𝝐 =

.
𝝐
e +

.
𝝐
vp
. (10)

During viscoplastic flow, the yield function is now defined as (Heeres et al., 2002):

F =
√
J2 − C cos(𝜙) − P sin(𝜙) − 𝜂vp

.
𝜆, (11)

where 𝜂vp is the viscosity of the damper. The rate-independent limit is recovered by letting 𝜂vp → 0.

Expression (11) makes the yield function rate dependent, so this model belongs to the class of consistency

viscoplastic models. It has been shown (Heeres et al., 2002; Wang et al., 1997) that this class of viscoplas-

tic models has advantages over overstress-type viscoplastic models, for example, those of the Perzyna-type

(Perzyna, 1966), including an improved convergence behavior and a more straightforward implementation.

3. Numerical Implementation

The expression of the viscoelastic tangent matrix Dve is obtained by integrating the Maxwell rheological

chain, equation (8) under the assumption of no plastic flow. We introduce the quantities

Gve =

(
1

G
+

Δt

𝜂

)−1

and 𝜉 =
Gve

G
(12)
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Figure 2. Spatial distribution of accumulated strain (𝜖II ) calculated with an elasto-plastic rheology for three different
mesh resolutions: (a) 512, (b) 1012, and (c) 2012 nodes. Results are depicted after a bulk strain of ≈ 7.7 × 10−5. The
white lines indicate the location of solution profiles reported in (d). (d) Profiles of accumulated strain (a) probed across
elasto-plastic shear bands.

to obtain the following update rule for the total stress tensor:

𝝈
t+1 = −iPt + 𝜉𝝉 t +Dve

(
�𝝐

ve
)t+1

, (13)

where the Δ-operator represents a finite increment and i = [1, 1, 1, 0]T . The visco-elastic tangent operator

reads:

Dve =

⎡
⎢⎢⎢⎢⎣

K +
4

3
Gve K −

2

3
Gve K −

2

3
Gve 0

K −
2

3
Gve K +

4

3
Gve K −

2

3
Gve 0

K −
2

3
Gve K −

2

3
Gve K +

4

3
Gve 0

0 0 0 Gve

⎤
⎥⎥⎥⎥⎦
, (14)

with K the elastic bulk modulus.

If (visco)plastic flow has occurred, the incremental plastic multiplier, Δ𝜆, must be computed from

equation (11) with
.
𝜆 =

Δ𝜆

Δt
and F = 0; see also Heeres et al. (2002). Using a Taylor's expansion for the yield

function (de Borst & Feenstra, 1990; Duretz et al., 2018), or by considering that the corrected stress state

lie onto the yield surface (de Souza Neto et al., 2008), a closed-form expression for Δ𝜆 can be derived for a

Drucker-Prager yield function:

Δ𝜆 =
F(𝝈trial)

Gve + K sin(𝜙) sin(𝜓) +
𝜂vp

Δt
+H

, (15)

where 𝜎trial is the trial stress, which has been computed assuming no (visco)plastic flow, and

H = h cos𝜙

√
2

3

(
𝜕Q

𝜕𝝈

)T
𝜕Q

𝜕𝝈
. (16)

Defining 𝜎t as the stress state at the beginning of the loading step, the new stress state can be computed by

adding the viscoelastic stiffness times the difference of the total and the (visco)plastic strain increments to

𝜎t:

𝝈
t+1 = 𝝈

t +Dve(Δ𝝐 − Δ𝝐vp) = 𝝈
t +Dve

(
Δ𝝐 − Δ𝜆

𝜕Q

𝜕𝝈

)
, (17)
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Figure 3. Spatial distribution of accumulated strain (𝜖II ) calculated with an elasto-viscoplastic rheology for five
different mesh resolutions: (a) 512, (b) 1012, (c) 2012, (d) 4012, and (e) 8012 nodes. Results are depicted after a bulk
strain of 3.0 × 10−4. The white lines indicate the location of solution profiles reported in Figure 4.

which exactly satisfies the yield condition.

When a Newton-Raphson iterative procedure is used to achieve global equilibrium, the above expression

must be linearized. This leads to the so-called consistent tangent operator for visco-elastic-viscoplastic solids

Dvep ≡ 𝜕𝝈

𝜕𝝐
= E−1Dve −

E−1Dve 𝜕Q

𝜕𝝈

(
𝜕F

𝜕𝝈

)T
E−1Dve

H +
𝜂vp

Δt
+
(

𝜕F

𝜕𝝈

)T
E−1Dve 𝜕Q

𝜕𝝈

, (18)

with Δt the time step and

E = I + Δ𝜆
𝜕2Q

𝜕𝝈2
. (19)

Detailed derivations of the consistent tangent operator and incremental plastic multiplier are provided in

Appendices A and B.

4. Model Configuration

The results shown in this study have been obtained using a simple initial model configuration. The

two-dimensional model consists of a 1.0 × 0.7 domain subjected to a kinematic boundary condition, which

DURETZ ET AL. 6
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Figure 4. Profiles of (a) accumulated strain, (b) effective strain rate, and (c) pressure probed across elasto-viscoplastic
shear bands. The results were obtained on five different mesh resolutions (512, 1012, 2012, 4012, and 8012 nodes). The
solution profiles were sampled along the white lines visible on Figure 3.

induces a pure shear state. Displacements increments (ΔuBC
x

= −xΔ𝜖BC,ΔuBC
𝑦

= 𝑦Δ𝜖BC) are imposed on the

south and east sides of the domain. The west and north sides of the domain are slip-free boundaries. A cir-

cular inclusion with radius 5 × 10−2 is located at the southwest corner of the domain. This imperfection is

characterized by a lower shear modulus, which causes the stress perturbation ultimately leading to strain

localization. All initial stress and strain components are set equal to zero. We have used the same number of

nodes (ni) in both spatial dimensions (nx = ny). The shear modulus G has been set equal to 1 in the matrix

and equal to 0.25 in the perturbation, while the bulk modulus K has been set equal to 2. The applied strain

increment Δ𝜖BG = 5.0 × 10−6. For the viscoplastic model, the viscosity is set to 2.5 × 102 and the time step

Δt = 104, which yields a background strain rate
.
𝜖BG =

Δ𝜖BG

Δt
= 5.0×10−9. More information about the model

parameters is given in Table 1.

5. Modeling Results with an Elasto-Plastic Rheology (E-PModel)

The first series of computations have been carried using a rate-independent elasto-plastic rheology, an angle

of internal friction 𝜙 = 30o, and a dilatancy angle 𝜓 = 10o. Three different resolutions were employed,

with ni = [51, 101, 201] nodes. Figure 2 shows the second invariant of the accumulated strain for all three

resolutions, for the same amount of applied background strain. A single shear band develops starting from

the imperfection. The shear band is oriented at 35o from the direction of the principal compressive stress,

which is in line with the Arthur formula, 45o− 1∕4(𝜙+𝜓) (Arthur et al., 1977; Kaus, 2010), which has been

experimentally observed for shear banding in sands and can be derived from bifurcation analysis using the

Mohr-Coulomb criterion. For the Drucker-Prager yield criterion, the out-of-plane stress, however, plays a

role (Rudnicki & Rice, 1975), but this apparently affects the numerical results only marginally. The results

are clearly mesh dependent as the localized strain is distributed over a thickness of a single cell.

DURETZ ET AL. 7
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Figure 5. Temporal evolution of (a) accumulated strain, (b) effective strain rate, and (c) pressure across the shear zone.
The different profiles correspond to five values of background strain (from 1.0 × 10−4 to 3.0 × 10−4 ). Results were
computed on a mesh consisting of 4012 nodes.

Another representation was made by plotting the profiles of the second invariant of the accumulated strain

invariant and of the pressure across the shear bands (see Figure 2d). The profiles reveal a divergence of the

solutions with increasing resolution. Since the displacement jump across the shear band is constant, the

magnitude of strain in the shear band continues to increase for finer resolutions. For the finest discretization,

we observe the development of a Dirac-like strain distribution. This is further evidence for the ill-posed

character of the boundary value problem, since the Dirac-like strain profile points at a discontinuity in the

displacements, which can only occur if the governing equations have locally changed character from elliptic

to hyperbolic.

6. Results for An Elasto-Viscoplastic Rheology (E-VPModel)

The second series ofmodelswere carried out using a elasto-viscoplastic rheology. The numerical simulations

were achieved on progressively refined meshes consisting of ni = [51, 101, 201, 401, 801] nodes. Figure 3

depicts the spatial distribution of the accumulated strain at a fixed amount of shortening (3.0 × 10−4). In

contrast with the elasto-plastic models of Figure 2, shear bands of a finite width now arise. We note that

the shear band is still oriented at 35o from the direction of 𝜎1. Detailed probing of different variables, in

particular the pressure, the second invariant of the accumulated strain and strain rate, results in a clear

convergence uponmesh refinement (see Figure 4). The strain and strain rate profiles across the shear bands

have a quasi–Gaussian shape. The peak strain and the peak strain rate are at the center of the shear band

and reach values of 1.8 × 10−3 and 5.3 × 10−9, respectively. The pressure is lower inside the shear band and

reaches a minimum value of 0.9× 10−4. For a low resolution (512 nodes), the peak strain reaches about half

the magnitude of that obtained with the higher resolutions and the strain is localized over a wider zone.

The evolution of the strain, the strain rate, and the pressure across the shear band is shown in Figure 5a

for a given fixed resolution. From a background strain of 1.0 × 10−4, the strain locally increases inside a

DURETZ ET AL. 8
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Figure 6. (a) Evolution of the characteristic shear zone thickness (Dvp) versus accumulated background strain (𝜖BG).
The values were extracted from the runs with five different mesh resolutions (Figure 3). (b) Characteristic shear band
thickness (Dvp) versus grid spacing h. The results were extracted from the runs depicted on Figure 3.

well-defined region. The amplitude of a Gaussian-like strain profile exhibits a growth of 1.8 × 10−3 over an

increment of background strain of 2.0 × 10−4 (see Figure 5a). The evolution of the second invariant of the

strain rate shares these characteristics. The amplitude of the Gaussian-like profile of the strain rate reaches

a peak value of 6.2 × 10−9 shortly after the onset of shear localization (background strain 2.0 × 10−4). This

corresponds to a magnitude of the strain rate that is approximately 12 times larger than the applied back-

ground strain rate. The profiles of the pressure are characterized by a progressive decrease towards the center

of the shear zone. After an applied background strain of 3.0 × 10−4, the pressure in the shear band drops to

about two thirds the background pressure. The shape of the pressure profile differs from that of the accumu-

lated strain rate profiles. With ongoing strain, it progressively deviates from a Gaussian shape and morphs

into a square shape. At the final stage, positive pressures develop adjacent to the shear zone, which further

increases the magnitude of the pressure gradient across the shear band.

7. Characteristic Shear Bandwidth

The above results indicate that the viscoplastic rheology introduces a length scale into the boundary value

problem. In the following, we define the characteristic shear-band thickness (Dvp) as the bandwidth of the

accumulated strain profiles, which can be extracted from the two-dimensional modeling. Since the strain

rate profiles sampled normal to the shear band exhibit a Gaussian-like shape, they can approximated as

.
𝜖 =

.
𝜖max exp

(
−

z2

Dvp2

)
, (20)

where z is coordinate orthogonal to the shear band and
.
𝜖max is the maximum value of second strain rate

invariant along the profile. The value of Dvp is obtained by an optimum fit of the Gaussian equation to the

profiles that have been extracted from the two-dimensional models.
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Figure 7. Influence of the initial size of the imperfection on the shear bands. Models were run with five different initial
seed radius and for a fixed resolution of 4012 nodes. The radius of the imperfection in the reference model is r (panel
c). The inclusion has a reduced size in panels (a) and (b) and an increased size in panels d) and e). No material
softening was applied.

The transient evolution Dvp for different mesh resolutions is given in Figure 6a. For all resolutions, the

initial value of Dvp is equal to the radius of the initial perturbation (r = 0.05). The values of Dvp progres-

sively decrease with an increasing applied strain. They all reach an asymptotic value at an applied strain of

approximately 2.5× 10−4. We have plotted the asymptotic Dvp values as a function of the grid spacing h−1 in

Figure 6b. The shear bandwidth asymptotically approaches a value of 0.01 with an increasing resolution.

Using a similar rheological model, Wang et al. (1996) have quantified the impact of the dimension of the ini-

tial imperfection on the shear bandwidth. The dimensions of the initial perturbation are, together with the

material parameters, key to the occurrence and further evolution of shear localization. It plays a fundamen-

tal role at the onset of shear localization. However, when the shear zone reaches a steady-state situation,

that is, when the width Dvp has stabilized, the shear bandwidths are virtually independent of the size of

the imperfection, as shown in Figure 7. This is similar to results obtained with thermo-mechanical mod-

els of strain localization in temperature activated rate-dependent materials (Lemonds & Needleman, 1986)

using a power law viscous rheology (Duretz et al., 2014) and a power law viscoelastic rheology (Duretz et al.,

2015). In a steady state, the characteristic shear-band thickness is essentially independent of the size of the

imperfection.
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Figure 8. Strain localization at the kilometer scale arising from a single material perturbation. Panel (a) depicts the
strain field after a bulk strain of 5 × 10−3. Panel (b) shows measured shear bandwidths for different parameter
combinations. Panel (c) depicts the master curve obtained when defining the characteristic time directly proportional
to the Kelvin element viscosity.

8. Modeling Strain Localization at the Crustal Scale

In order to investigate the applicability and consequences of viscoplasticity for modeling lithospheric defor-

mations, we have carried out simulations on kilometer-scale dimensions, using typical material parameters

for rocks (Model Crust 1 and Model Crust 2; see Table 1). Model Crust 1 was designed to study the initia-

tion and propagation of a single shear band, which originates from a well-defined material imperfection

using cohesion softening. The configuration shares similarities with that ofModel E-VP but has a material

imperfection with radius of 500 m. The shear modulus within the perturbation is equal to 25% of that in the

matrix (Table 1). The boundary velocity was set to VBC = 2 × 10−9 m/s. The dimensions of the domain are

10 × 6.85 km, which is discretized using 4002 cells leading to a resolution of 25 m. For the reference test,

the Kelvin element viscosity was set to 1017 Pa · s, and the initial cohesion was set to C = 1.75 × 107 Pa.

Softening was prescribed by setting a negative value of hardening modulus, h = −7.0 × 107 Pa, and allow-

ing a reduction of cohesion by a factor 2. The shear band develops from the southwest corner towards the

northeast corner (see Figure 8a). As for the previous cases, strain localization is progressive, and the shear

bandwidth narrows down with increasing time or strain (Figure 8b) and progressively reaches a width of

90 m. In order to test the sensitivity of the model, we have tested different parameter combinations, all sat-

isfying a constant value the product
𝜂vpVBC

C
. The resulting models all predict a final shear band thickness of
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Figure 9. Effect of plastic dilatancy on shear band development. Panel (a) depicts the strain field after a bulk strain of
1 × 10−2 in the incompressible limit (𝜓 = 0◦). Panel (b) shows measured shear bandwidths for different values of
dilatancy angle. Panel (c) depicts stress-strain curves for the different values of 𝜓 .

about 90 m. The time needed for strain localization is proportional to the Kelvin element viscosity. Defining

the characteristic time tc ∝
𝜂vp

G
and the characteristic length Dc ∝

𝜂vpVBC
C

allows to collapse the shear-band

thickness evolution onto a single master curve (Figure 8c).

When considering crustal-scale strain localization, incompressible plastic deformation is generally invoked.

However, with rate-independent plasticmodels, such a limit poses serious numerical issues. The latter occur

for large differences between the friction and dilation angles (𝜙−𝜓 > 20o) and are caused by the loss of ellip-

ticity (Sabet & de Borst, 2019). In practice, models often diverge (e.g., Spiegelman et al., 2016) even when

using consistent linearizations (e.g., Duretz et al., 2018).WithKelvin-type viscoplasticitymodels, attainment

of convergence appears to bemuch less problematic because of theweak regularization of the ill-posed prob-

lem. Fully converged results were obtained for 𝜓 = 0◦ and 𝜙 = 30◦ as depicted on Figure 9a. Interestingly,

strain localization was obtained for values of the dilation angle up to 10◦, but localization did not occur for

larger values of 𝜓 . During localization, the shear zone narrows down at a faster rate when the dilation angle

is small (Figure 9b). However, the width of the postlocalization shear zone is not affected by a variations

of 𝜓 (Figure 9b). By contrast, stress-strain curves notably differ for the different values of 𝜙. In the incom-

pressible limit, the effective stress (�̄� =
1

V
∫ √

JIIdV) reaches a peak value (15 MPa) and then decreases to a
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Figure 10. Shear banding at kilometer scale arising from an initial random perturbation of the initial cohesion field for
various mesh resolutions (from 1002 to 8002 cells). A Kelvin E-VP rheological model was applied. The confining
pressure was set to 50 MPa, and the Kelvin element viscosity was set to 𝜂VP = 3 × 1018 Pa·s.

saturation value (≈ 10MPa). For larger angles, the effective stress keeps increasing despite the occurrence

of strain localization.

In Model Crust 2, strain localization is seeded by setting an initial random perturbation on the cohesion

field. The confinement pressure was set equal to 50 MPa, and cohesion softening is again applied. Numer-

ous intersecting shear bands develop (see Figure 10). Due to the complex internal kinematics, shear bands

exhibit different lengths and widths. This is in contrast with previously presented models in which single

shear bands were arising from single perturbations (Figure 8a). We have run simulations for various reso-

lutions (ni = [101, 201, 401, 801]) up to a bulk strain of 0.5 × 10−2. The results show that, despite the use

of nonassociated plasticity and cohesion softening, a reasonable convergence upon mesh refinement was

achieved. While there is a difference in the strain fields between the low-resolution models, for example,

between 1002 and 2002 cells, the differences are much less pronounced when comparing simulations for

higher resolutions, for example, between 4002 and 8002 cells.Most importantly, global equilibrium iterations

converged quadratically up to machine precision without any need to reduce the applied strain increment.

This is in complete contrast with rate-independent elasto-plastic models, with which it was impossible to

reach such a high accuracy (results not shown here).

9. Discussion
9.1. A Potential Regularization forMesh-Dependent Strain Softening Plasticity

In tectonic modeling, strain localization in the frictional domain is generally modeled using a

strain-softening parametrization, for example, Huismans and Beaumont (2002). A progressive decrease of

the magnitude of plastic parameters (cohesion, friction angle) is imposed as a function of the accumu-

lated plastic strain. Such a parametrization is supposed to mimick the effects of complex physicochemical

processes (e.g., metamorphic reactions and fluid pressure variations) that are not taken into account in

the model description, which may cause postlocalization stress drops measured in experiments on rock

deformation. However, this approach is known to suffer frommesh dependence. Among the numerous pos-

sibilities that provide regularization ofmesh dependence in plasticity, viscoplasticity is a simple and efficient

solution. Herein, we have shown that using a viscoplastic rheology together with a nonassociated frictional

plasticity model and cohesion softening provides results that converge upon mesh refinement. Morerover,

we have found that viscoplasticity also facilitates resolving strain localization in the incompressible plastic

limit (𝜓 = 0), which is very relevant for lithospheric conditions.
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Table 2
Number of Newton-Raphson Iterations Required to Reach Global
Equilibrium for Different Resolutions Using Either the E-P or the E-VP
Model

E-P models 512 1012 2012 4012

Mean # its. 3.88 6.78 − − − − − −

Max. # its. 11 26 − − − − − −

E-VPmodels 512 1012 2012 4012

Mean # its. 3.88 4.17 4.41 4.89

Max. # its. 11 12 12 12

Note. The relative tolerance was set to 10−11 and was measured using the
L2 norm. Runs that did not result in a converged state are denoted by a
dash.

9.2. Benefits for the Convergence Behavior of the Global Nonlinear Solver

The use of a viscoplastic model as regularization method can also dramatically improve global convergence

and the computability and solvability of shear banding. With a viscoplastic model, strains are not concen-

trated in one cell but are distributed over a finite width. Therefore, increasing the resolution does not lead

to an increase of the strain locally, which can cause serious numerical issues such as local snapbacks in the

returnmapping and the occurrence of multiple, nonphysical equilibrium states that cause divergence of the

global equilibrium-finding iterative procedure.An illustration is that for an elasto-plastic rheology, no results

could be obtained for meshes with more than 2012 nodes, even when reducing the strain increment. When

the strain increment was kept constant, it was not possible to reach convergence for resolutions with more

than 1012 nodes (Table 2). Using an elasto-viscoplastic rheology, however, converged results were obtained

for fine resolutions, up to 8012 nodes (Figures 3 and 10). Moreover, both the maximum and average num-

ber of iterations required to achieve global equilibrium are almost insensitive to the numerical resolution,

as expected (Table 2).

9.3. Implications of Viscoplasticity

The viscoplastic model introduces a rate dependence in the yield function and requires an additional model

parameter: the viscosity of the viscoplastic (Kelvin) element. Here, we used the viscosity as a numeri-

cal parameter rather than as an experimentally measured quantity with a clear physical meaning. Shear

viscosities estimated from laboratory experiments of rock deformation exhibit an Arrhenius temperature

dependence, which results in a exponential growth of viscosity with decreasing temperature. Using such

values as viscosity of the Kelvin element would lead to an unrealistic overshoot of the yield function in

the frictional (low temperature) domains of the lithosphere and would preclude strain localization. We

believe that the viscosity of the Kelvin element should be chosen such that shear bands can be resolved

numerically. We expect that such an approach will allow for the converged resolution of shear bands in geo-

dynamic models where the spatial resolution has so far at most reached the 100-m scale. Another approach

to select the Kelvin element viscosity is to reason in terms of the overstress (�̄� = 𝜂vp
.
𝜆). By assuming that

the rate of the plastic multiplier is proportional to the background strain rate (
.
𝜆 ∝ LVBC), it is possible to

define the viscosity that will approximately generate the predefined overstress (𝜂vp ∝
�̄�

LVBC
). For example,

using the parameters ofModelCrust 1 (Figure 8) and assuming an overstress of 20 kPa, one obtains a viscosity

for the Kelvin element of 1017 Pa·s.

In general, the width of shear bands that arise in the frictional domains of the lithosphere is highly variable

and can range from discrete fault planes to finite thickness fault zones (gouges), which involve complex

processes that are beyond the scope of this study (shear heating, fluid pressure variations, grain crushing, and

mineral reactions). A detailed study of these processes may provide a physics-based regularization for the

width of frictional shear bands,whichwill likely be smaller than the current resolution power of geodynamic

models.

9.4. Differences with the Standard Visco-Elasto-Plastic Model

In geodynamics, visco-elasto-plasticity is generally implemented via a rheological model, which couples

a viscous damper, an elastic spring, and a plastic slider in series, which can be dubbed a Maxwell V-E-P

model, for example, Lemiale et al. (2008), Gerya and Yuen (2007), and Kaus (2010). With such a model,

DURETZ ET AL. 14



Geochemistry, Geophysics, Geosystems 10.1029/2019GC008531

Figure 11. Spatial distribution of accumulated strain (𝜖II ) after a bulk strain of 3.0 × 10
−4. Panel (a) depicts the results

obtained with an elasto-plastic rheology (E-P). Panel (b) corresponds to a visco-elasto-plastic rheology (V-E-P) using a
serial viscosity of 2.5 × 105. Panel (c) shows the results obtained with an elasto-viscoplastic rheology (E-VP) using a
Kelvin viscosity of 2.5 × 102. Panel (d) shows the variations of the strain increment needed for achieving successful
nonlinear solutions. Panel (e) shows the evolution of effective stress for the three different rheological models.

rate dependence is included in the visco-elastic trial stress but not in the plastic strain component. Shear

localization obtainedwith suchmodels has the same characteristics as that obtainedwith a rate-independent

elasto-plastic rheology. Shear bands localize on a single band of cells or elements, thus causing numerical

simulations to be mesh sensitive (see Figures 11a and 11b). This is in contrast with the model discussed

above, which incorporates rate dependence in the plastic element and allows shear localization to spread

over several cells or elements (see Figure 11c).

Simulations with an elasto-plastic model may also require extremely fine load increment to reach global

equilibrium, as shown in Figure 11d. This equally applies to models with a viscoelastic-plastic (V-E-P) rhe-

ology. Elasto-viscoplastic (E-VP) models overcome this issue (Figure 11d) and can accurately compute the

load-bearing capacity of an E-P material (see Figure 11e).

For geodynamics modeling purposes, we suggest that E-VP and V-E-P models could be combined into an

E-V-VP model, shown in Figure 1d. On the one hand, Maxwell visco-elasticity is necessary to capture both

the short timescale (Deng et al., 1998; Heimpel, 2006; Wang, 2007) and the long timescale, for example,

Farrington et al. (2014), Schmalholz et al. (2015), and Olive et al. (2016), which are essential features of

lithospheric deformations. On the other hand, Kelvin-type viscoplastic models remedy known issues in

modeling strain localization in the lithosphere. A combined E-V-VP model would be suitable to capture the

visco-elastic behavior of rocks but would also enable to obtain mesh-independent and globally convergent

solutions of plastic shear banding.

10. Conclusions

Wehave investigated the role of elasto-viscoplasticitywith a damper in parallel to a plastic slider (Kelvin-type

rheology) on the development of shear bands in the frictional regions of the lithosphere. While the

rate-independent frictional plasticity models, which have been used classically, suffer from mesh sensitiv-

ity, models using this viscoplastic rheology converge upon mesh refinement. The strain, the strain rate, and

the pressure inside the shear bands reach finite values upon a decrease of the grid spacing. A characteris-

tic length scale is introduced due to the rate dependence of the viscoplastic model. Our results indicate that
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shear bands that arise from pressure-dependent viscoplasticity maintain their orientation but are now also

equipped with a characteristic bandwidth. Even the combination of a Kelvin-type viscoplasticity with strain

softening on the cohesion gives a mesh-convergent behavior. The approach is thus a viable way to regular-

ize strain localization in geodynamic models. Most importantly, the introduction of an internal length scale

due to viscoplasticity maintains well posedness of the boundary value problem also during shear banding,

and therefore markedly improves the convergence of equilibrium iterations, which is a recurrent issue in

geodynamic simulations.

Appendix A: The Incremental Plastic Multiplier

For (visco)plastic deformations to occur, the stress must lie on the yield surface and continue to be on the

yield surface for an infinitesimal time increment when adopting the consistency model of viscoplasticity

(Heeres et al., 2002; Wang et al., 1997). This implies that for the yield function at the end of the plastic

increment, we must have Ft+1 = 0. Following de Souza Neto et al. (2008), the corrected total stress is given

by

𝝈
t+1 =

⎛
⎜⎜⎜⎝
1 −

GveΔ𝜆√
Jtrial
II

⎞
⎟⎟⎟⎠
𝝈
trial. (A1)

Using the identity 𝝈
t+1√
Jt+1
II

=
𝝈
trial√
Jtrial
II

, the corrected second stress invariant is

√
Jt+1
II

=

√
Jtrial
II

− GveΔ𝜆. (A2)

The corrected pressure reads

Pt+1 = Ptrial + K sin(𝜓)Δ𝜆, (A3)

and the updated cohesion can be expressed as

Ct+1 = Ctrial +HΔ𝜆. (A4)

Approximating the rate of the plastic multiplier as
.
𝜆 =

Δ𝜆

Δt
, the yield function at the end of the plastic

increment can be written explicitly as

Ft+1 =
√
Jtrial
II

− GveΔ𝜆 − cos(𝜙)
(
Ctrial +HΔ𝜆

)
− sin(𝜙)

(
Ptrial + K sin(𝜓)Δ𝜆

)
− 𝜂vp

Δ𝜆

Δt
. (A5)

Solving for Ft+1 = 0 then yields the following expression for the incremental plastic multiplier

Δ𝜆 =
Ftrial

Gve + K sin(𝜙) sin(𝜓) +
𝜂vp

Δt
+H

, (A6)

where Ftrial =
√
Jtrial
II

− sin(𝜙)Ptrial − cos(𝜙)Ctrial.

Appendix B: The Visco-Elastic-Plastic Consistent Tangent Operator

During visco-elasto-(visco)plastic straining, the stress update follows

𝝈
t+1 = −Pti + 𝜉𝝉 t +DveΔ𝝐 − Δ𝜆Dve 𝜕Q

𝜕𝝈.
(B1)

A small variation 𝛿 of the updated stress 𝜎t+1 is given by

𝛿𝝈 = Dve𝛿𝝐 − 𝛿𝜆Dve 𝜕Q

𝜕𝝈
− Δ𝜆Dve 𝜕

2Q

𝜕𝝈2
𝛿𝝈 (B2)
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and can be recast as

𝛿𝝈 = E−1Dve𝛿𝝐 − E−1Dve 𝜕Q

𝜕𝝈
𝛿𝜆 (B3)

with

E = I + Δ𝜆D
𝜕2Q

𝜕𝝈2
. (B4)

We now invoke the consistency condition

𝛿F = 0, (B5)

which, using F = F(𝝈, 𝜆,
.
𝜆), can be elaborated as

(
𝜕F

𝜕𝝈

)T
𝛿𝝈 +

𝜕F

𝜕𝜆
𝛿𝜆 +

𝜕F

𝜕
.
𝜆
𝛿
.
𝜆 = 0. (B6)

Premultiplying equation (B3) by
(

𝜕F

𝜕𝝈

)T
, using the approximation 𝛿

.
𝜆 =

𝛿𝜆

Δt
and invoking condition (B6),

provides an expression for the variation of the plastic multiplier

𝛿𝜆 =

(
𝜕F

𝜕𝝈

)T
E−1Dve

H +
𝜂vp

Δt
+
(

𝜕F

𝜕𝝈

)T
E−1Dve 𝜕Q

𝜕𝝈

𝛿𝝐, (B7)

with H ≡ 𝜕F

𝜕𝜆
and 𝜂vp ≡ 𝜕F

𝜕𝜆
. This expression is now substituted into equation (B3), which leads to

𝛿𝝈 =

⎛⎜⎜⎜⎝
E−1Dve −

E−1Dve 𝜕Q

𝜕𝝈

(
𝜕F

𝜕𝝈

)T
E−1Dve

H +
𝜂vp

Δt
+
(

𝜕F

𝜕𝝈

)T
E−1Dve 𝜕Q

𝜕𝝈

⎞⎟⎟⎟⎠
𝛿𝝐. (B8)

The consistent tangent operator hence reads

Dvep ≡ 𝜕𝝈

𝜕𝝐
= E−1Dve −

E−1Dve 𝜕Q

𝜕𝝈

(
𝜕F

𝜕𝝈

)T
E−1Dve

H +
𝜂vp

Δt
+
(

𝜕F

𝜕𝝈

)T
E−1Dve 𝜕Q

𝜕𝝈

. (B9)
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