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Metabolic pathway analysis for in silico 
design of eicient autotrophic production 
of advanced biofuels
Pornkamol Unrean1* , Kang Lan Tee2 and Tuck Seng Wong2

Abstract 

Herein, autotrophic metabolism of Cupriavidus necator H16 growing on  CO2,  H2 and  O2 gas mixture was analyzed by 
metabolic pathway analysis tools, speciically elementary mode analysis (EMA) and lux balance analysis (FBA). As case 
studies, recombinant strains of C. necator H16 for the production of short-chain (isobutanol) and long-chain (hexade-
canol) alcohols were constructed and examined by a combined tools of EMA and FBA to comprehensively identify 
the cell’s metabolic lux proiles and its phenotypic spaces for the autotrophic production of recombinant products. 
The efect of genetic perturbations via gene deletion and overexpression on phenotypic space of the organism 
was simulated to improve strain performance for eicient bioconversion of  CO2 to products at high yield and high 
productivity. EMA identiied multiple gene deletion together with controlling gas input composition to limit pheno-
typic space and push metabolic luxes towards high product yield, while FBA identiied target gene overexpression to 
debottleneck rate-limiting luxes, hence pulling more luxes to enhance production rate of the products. A combina-
tion of gene deletion and overexpression resulted in designed mutant strains with a predicted yield of 0.21–0.42 g/g 
for isobutanol and 0.20–0.34 g/g for hexadecanol from  CO2. The in silico-designed mutants were also predicted to 
show high productivity of up to 38.4 mmol/cell-h for isobutanol and 9.1 mmol/cell-h for hexadecanol under auto-
trophic cultivation. The metabolic modeling and analysis presented in this study could potentially serve as a valuable 
guidance for future metabolic engineering of C. necator H16 for an eicient  CO2-to-biofuels conversion. 

Keywords: Elementary mode analysis, Flux balance analysis, In silico eicient strain design, Genetic deletion 
simulation, Genetic overexpression simulation
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Introduction
he concept of upgrading  CO2 waste into metabolites 

of interest via biological conversion routes is gaining 

increasing attention from both academia and industry to 

mitigate climate change as well as to promote the sustain-

able concepts of bioprocessing (hakur et al. 2018; Psar-

ras et al. 2017). Cupriavidus necator H16 (also known as 

Ralstonia eutropha), a lithoautotrophic bacterium, is one 

of the recommended microbial platforms for  CO2 bio-

conversion due to its high  CO2 ixation eiciency, ver-

satile genetic manipulation, and ease of operation and 

lexibility (Yu 2018; Tee et al. 2017). he organism is also 

considered as a valuable expression platform for many 

recombinant products. During autotrophy, C. neca-

tor H16 can ix  CO2 via the Calvin–Benson–Bassham 

cycle (CBB) and utilize it as carbon source for support-

ing growth and producing a number of bioproducts, e.g., 

polyhydroxybutyrate (Fukui et  al. 2014), organic acids 

(Lee et  al. 2016) and alcohols (Li et  al. 2012; Lu et  al. 

2012), while  H2 is oxidized as energy source. Its ability 

to capture and utilize  CO2 for bioproducts makes the 

organism suitable for a number of biotechnological appli-

cations. Improving the eiciency of C. necator H16 for 

 CO2-to-bioproduct conversion is, therefore, necessary. 

One strategy for improving strain performance is systems 

metabolic engineering by utilizing metabolic modelling 
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and pathway analysis tools for guiding in silico strain 

design (Chae et al. 2017; Blazeck and Alper 2010).

Analysis of metabolic characteristic and optimizing cel-

lular phenotype at systems level could be achieved using 

pathway analysis tools. he metabolic pathway analysis 

techniques commonly used for characterizing cellular 

metabolism are lux balance analysis (FBA) and elemen-

tary mode analysis (EMA). Readers are referred to previ-

ous publications (Schuster et  al. 2000; Orth et  al. 2010) 

for detailed description of these computation tools. Both 

techniques  are based on the balance of stoichiometric 

reactions within the reaction network of cellular metabo-

lism and pseudo-steady-state assumption. FBA utilizes 

convex analysis and imposes an objective function to 

determine a pathway solution for cellular metabolism. 

EMA, on the other hand, identiies all possible pathway 

solutions existing in a metabolic network without impos-

ing any objective function or any ixed luxes. Metabolic 

modelling has been proven as an efective approach for 

characterizing cell’s metabolic capabilities and predicting 

cellular phenotype in response to various environmen-

tal and genetic changes as continuously demonstrated in 

numerous studies (Curran et  al. 2012; Zhao et  al. 2013; 

Henson and Hanly 2014). he pathway topology and its 

metabolic capability identiied by EMA and FBA have 

provided supporting information for systems metabolic 

engineering to enhance strain performance (Chae et  al. 

2017).

Although a number of metabolic pathway analysis 

for C. necator H16 have been reported, these analy-

ses focused mainly on the metabolic network when the 

organism was cultivated in heterotrophic mode in which 

organic compounds were used as carbon source (Park 

et  al. 2011a, b; Lopar et  al. 2014; Ternon et  al. 2014; 

Alagesan et al. 2018). On the contrary, this work aims at 

analyzing the organism’s metabolism under autotrophic 

growth with  CO2,  H2 and  O2 gas input mixture as carbon 

and energy sources, respectively. he pathway structure 

of C. necator H16 growing on  CO2,  H2 and  O2 substrates 

is assessed by EMA and FBA tools for systematically 

designing eicient strain. As case studies, two mutants 

optimized for the production of short-chain (isobutanol) 

and long-chain (hexadecanol) alcohols, respectively, from 

 CO2 at high yield and high productivity are designed by 

the pathway analysis tools. hese alcohols are chosen 

as products of interest since they can be used as drop-

in biofuels to replace fossil fuel for ground and aviation 

transportation (Li et  al. 2012; Guo et  al. 2016). Specii-

cally, EMA is exploited to identify target gene for dele-

tion and cultivation condition, while FBA is utilized to 

determine target gene for overexpression for pushing and 

pulling metabolic luxes of C. necator H16 towards target 

products.

Materials and methods
Metabolic model construction of C. necator H16 growing 

autotrophically

A recombinant metabolic network of C. necator H16 was 

constructed based on the previously published literatures 

on its metabolism (Schäferjohann et  al. 1993; Pohlmann 

et al. 2006; Bruland et al. 2010; Kohlmann et al. 2011; Park 

et al. 2011a, b; Ternon et al. 2014), and available pathway 

databases (Kyoto Encyclopedia of Gene and Genomes, 

KEGG (http://www.genom e.jp/kegg); Biocyc Database 

Collection project, BioCyc (http://www.biocy c.org)). he 

constructed model represented C. necator H16 growing 

autotrophically on  CO2,  H2 and  O2 gas mixture. Reaction 

describing PHB biosynthesis was excluded from the model 

presuming PHB-negative strain of C. necator H16 was 

used as host for synthesis of recombinant biofuels (Raberg 

et  al. 2014). he recombinant production of two target 

biofuels, isobutanol and hexadecanol, served as the basis 

for the model simulation case studies. For all the simula-

tions of isobutanol-producing C. necator, the recombinant 

pathway for hexadecanol was constrained to zero and vice 

versa. hat is the isobutanol-producing C. necator contains 

only a recombinant plasmid expressing isobutanol bio-

synthesis pathway; whereas, the hexadecanol-producing 

C. necator contains only a recombinant plasmid express-

ing hexadecanol biosynthesis pathway. Figure 1 shows the 

recombinant metabolic map of the biofuels-producing C. 

necator analyzed in this study. Details on the constructed 

metabolic model are described in Additional ile  1. For 

simplicity, linear series of reactions were lumped together 

as one. hus, the reactions might not necessarily repre-

sent one gene or enzyme. Information on reaction revers-

ibility was taken from the databases. External metabolites 

involved in the reaction network serving as source or sink 

were  CO2,  H2,  O2, ethanol, acetate, lactate, acetone, succi-

nate,  NH4
+ and recombinant products (isobutanol, hexa-

decanol). hese metabolites could be accumulated; hence, 

their net synthesis/consumption rates were not restricted 

to zero. All internal metabolites, however, were deined as 

metabolites with no accumulation; hence, their net synthe-

sis/consumption rates were being constrained by steady-

state assumption.

he biomass synthesis pathway, reconstructed by 

accounting for metabolite drain from the central meta-

bolic pathways, was based on reaction stoichiometry 

reported in Ternon et  al. 2014, representing the molar 

requirements of biosynthetic precursors and redox cofac-

tors required for the production of cell components, 

e.g., amino acids, nucleotides, lipids, and carbohydrates 

(see Additional ile  1 for details). Energy requirements 

for biomass production, including polymerization and 

synthesis of biosynthetic precursors, were also included. 

he maintenance energy represented by excess ATP to be 

http://www.genome.jp/kegg
http://www.biocyc.org
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consumed for maintenance processes was treated sepa-

rately. he synthesis pathways for isobutanol and hexade-

canol were based on the recombinant pathways reported 

in Li et  al. 2012 and Guo et  al. 2016, respectively. he 

synthesis pathway for isobutanol was a combination of 

valine biosynthesis and recombinant expression of keto-

acid decarboxylases and alcohol dehydrogenases. he 

hexadecanol biosynthesis was diverted from fatty acid 

biosynthesis via recombinant expression of fatty acyl-

CoA reductase and hexadecanol dehydrogenase.

Metabolic network analysis

he recombinant network was analyzed by elementary 

mode analysis (EMA) and lux balance analysis (FBA) 

based on stoichiometric and thermodynamic constraints.

Elementary mode analysis

EMA decomposed the recombinant network into all pos-

sible, unique and balanced metabolic pathways, allowing 

for the calculation of a phenotypic space from all the 

pathways. EMA was simulated using publicly available 

program METATOOL (http://pingu in.biolo gie.uni-jena.

de/bioin forma tik/netwo rks/metat ool/) and network 

characteristics were examined by sorting and iltering 

through all identiied paths based on relative lux inputs 

and/or product yields using Microsoft Excel spreadsheet 

(Microsoft). Pathway iltering was performed (1) during 

genetic perturbation by selecting for remaining pathways 

after each gene deletion, and (2) during diferent gas 

input by selecting for remaining pathways after restrict-

ing relative gas input. Yield was deined as the mass 

lux ratio of the amount of product produced per  CO2 

substrate consumed. he predicted yields were sorted 

to identify maximum metabolic capacity of the studied 

network and the eiciency of each identiied metabolic 

pathway. Phenotypic plot was made on the basis of rela-

tive gas uptake, computed as the value of the gas input 

rate per the value of total gas input, sum of  CO2,  H2 and 

 O2 uptakes. Reaction requirements of eicient pathways, 

maximum yielding paths, were categorized as either (1) 

core reactions, ones necessary for product synthesis dur-

ing growth and/or non-growth autotrophic conditions, 

or (2) inactive reactions, ones not requiring for product 

synthesis. he core reactions were analyzed in gene over-

expression simulation, while the inactive reactions were 

analyzed in gene deletion simulation.

Fig. 1 Recombinant network model of C. necator H16 under autotrophic growth utilizing  CO2,  H2 and  O2 as carbon and energy sources, 
respectively. The recombinant pathways for synthesizing isobutanol and hexadecanol were included for investigation

http://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/
http://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/
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Flux balance analysis

FBA of the recombinant strains of C. necator H16 was 

performed by solving pseudo-steady-state stoichiomet-

ric balance equations (S*v = 0, where S  is a stoichiomet-

ric coeicient matrix of metabolites in each reaction and 

v is the lux of each reaction within the network.) using 

linear programming (LP) optimization based on MAT-

LAB (Mathworks, Natick, MA, USA) and Mosek optimi-

zation toolbox (Mosek ApS, Copenhagen, Denmark). A 

lux solution of intracellular and extracellular metabolites 

was obtained based on maximization of growth constrain 

which was used as the objective based on the evolution-

ary pressure on the cell growing under autotrophy. he 

changes of metabolic luxes under various genetic pertur-

bations were examined by lux correlation (FC), to iden-

tify targets for overexpression. he FC was calculated as

which is the relative efect between increasing lux (Ri) 

through gene overexpression simulation and observed 

phenotype through predicted product synthesis rate (qP) 

by FBA. he reaction with maximum FC value would be 

considered as bottleneck within the recombinant net-

work, hence being targeted for overexpression to enhance 

product synthesis.

Results and discussion
Construction of C. necator metabolic network model

he metabolic network model of C. necator H16 under 

autotrophic growth was based on PHB-negative strain 

used as host organism for recombinant production of 

isobutanol and hexadecanol; therefore, native PHB bio-

synthesis pathway was excluded. Figure  1 presents the 

constructed model, composed of 21 reversible reac-

tions, 57 irreversible reactions, 75 intracellular metabo-

lites and 11 extracellular metabolites exchanged through 

cell membrane. To simulate autotrophic growth, the 

metabolic network model includes  CO2 ixation via 

Calvin–Benson–Bassham cycle,  H2 and  O2 oxidation 

via membrane-bound soluble hydrogenases and oxida-

tive phosphorylation, respectively (Schwartz et  al. 2003; 

Kohlmann et al. 2011). he metabolic model for support-

ing growth and energy synthesis also consists of known 

central pathways of the organism including glycolysis, 

gluconeogenesis, pentose phosphate pathway, anaple-

rotic, tricarboxylic acid cycle, glyoxylate shunt, energy 

generating reactions accounting for maintenance energy 

and ATP hydrolysis, mixed acid fermentation for etha-

nol, acetone, acetate, succinate and lactate,  NH4 assimila-

tion and exchanged reactions. Biosynthesis pathways for 

amino acids, nucleotides, phospholipid, carbohydrates, 

cofactors and vitamins were lumped together based on 

(1)FC =
dqP

dRi

,

reaction stoichiometry reported in Ternon et al. 2014. To 

construct isobutanol/hexadecanol-producing C. necator 

metabolic model, the biosynthesis pathways of isobutanol 

through valine biosynthesis, and hexadecanol through 

fatty acid biosynthesis were incorporated into the auto-

trophic model of C. necator, which was used as the host 

for synthesizing the short-chain and long-chain alcohols 

(Fig.  1). Detailed synthesis pathways for isobutanol via 

recombinant expression of keto-acid decarboxylases/

alcohol dehydrogenases and hexadecanol biosynthesis via 

recombinant expression of fatty acyl-CoA reductase/hex-

adecanol dehydrogenase were provided in Li et al. 2012 

and Guo et  al. 2016, respectively. Metabolic network 

model with corresponding enzyme and gene for each 

reaction is given in Additional ile 1.

Growth phenotypes comparison: model prediction vs. 

experiment

Flux balance analysis under growth constraint was irst 

performed to validate the metabolic model by compar-

ing predicted value of cell growth with experimental 

observations reported in previous literatures (Fig. 2). he 

constructed model in Fig. 1 was simulated for both auto-

trophic and heterotrophic growths. Under heterotrophy, 

fructose was used as sole carbon source. Fructose trans-

port and conversion reactions were incorporated into the 

model to simulate heterotrophic growth as follows,

For simulation of heterotrophic growth, the uptake 

rates of  CO2 and  H2 were constrained to zero and reac-

tions related with  CO2 ixation cycle and  H2 oxidation 

were inactivated. In the simulation, the uptake rate of 

fructose was set at diferent values; then speciic growth 

rates and cell yields under diferent fructose uptake rates 

were predicted by the constraint-based FBA. he in sil-

ico results were then compared with experimental data 

of chemostat culture under varying dilution rates (Park 

et al. 2011a, b). Likewise, for autotrophic growth on  CO2/

H2/O2 gas mixture, speciic growth rates and yields were 

compared between in silico analysis and experimental 

data reported in Ishizaki and Tananka 1990, 1991. he 

simulation results could successfully represent growth 

phenotypes of C. necator under both heterotrophy and 

autotrophy, hence validating the constructed metabolic 

model in this study.

(F1) fructose transport: fructose (extracellular)

→ fructose (intracellular)

(F2) fructose conversion: fructose

→ fructose 6 − phosphate.
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he model was also capable of accurately predicting cell 

vitality under genetic perturbation. For example, GG8r 

(phosphoglycerate mutase) was predicted by constrain-

based FBA as an essential gene, with its deletion leading 

to cell death under autotrophic growth, which agrees well 

with previous experimental study by Reutz et  al. 1982. 

Double deletion of GG4b and CAL4 (fructose-1,6-/sedo-

heptulose-1,7-bisphosphatase) was also predicted to be 

lethal during autotrophy, consistent with experimental 

data (Schwartz et al. 2009). he validated stoichiometric 

model was then further analyzed in the next section for 

recombinant production of isobutanol and hexadecanol.

Determination of phenotypic space and pathway eiciency

he network model of C. necator H16 grown on  CO2,  H2 

and  O2 gas mixture was analyzed by EMA to determine 

all possible pathways existing in the cell metabolism and 

their metabolic capabilities. he analysis was based on 

predicted yield range for the production of isobutanol 

and hexadecanol as summarized in Table  1. Analysis 

of pathway topology inherent to the cell metabolic net-

work also identiied the most eicient paths for the prod-

uct synthesis during autotrophy. EMA yielded a total of 

8940 existing pathways in the recombinant network for 

isobutanol synthesis, and 9264 existing pathways in the 

recombinant network for hexadecanol synthesis. Each 

pathway represented a unique, possible path with bal-

anced metabolites and cofactors and a non-negative lin-

ear combination of these identiied pathways formed 

possible phenotypic space of a cell, known as functioning 

metabolism. Figure  3a, b show available phenotypes of 

the recombinant strains for isobutanol and hexadecanol 

production as a function of relative  CO2,  O2 and  H2 gas 

input with the product yield ranges of 0–0.42 g/g and 

0–0.34 g/g for produced isobutanol and hexadecanol per 

consumed  CO2, respectively. Cell yield under autotrophic 

growth was predicted at 0.22–0.57 g of biomass produced 

per gram of  CO2 consumed.

As summarized in Table  1, there existed 1068 paths 

supporting isobutanol synthesis equivalent to a 12% of 

all available pathways (P-frac = 12%), and 1392 paths sup-

porting hexadecanol synthesis which was a 15% of all 

available pathways (P-frac = 15%). hese pathways illus-

trated the lexibility of cellular metabolism to adapt itself 

to genetic changes using alternative operational pathways 

that provide optimal itness. Interestingly, there was no 

existing pathway for hexadecanol synthesis during growth 

condition meaning that the product synthesis and cell 

growth could not be coupled. his was expected as hexa-

decanol was derived from fatty acid which has often been 

reported to accumulate during nitrogen-limiting, non-

growth condition (Chen et al. 2015; Marella et al. 2018). 

Analyzing the topological structure of these metabolic 

pathways permitted the prediction of genetic alterations 

in the metabolism that would push and pull metabolic 

luxes towards the production of desired products. Hence, 

the in silico strain design in the next section would focus 

on redirecting cell metabolism via combined gene dele-

tion and overexpression simulations to enforce the cell 

into operating via the most eicient pathways resulting 

in increased percentage of existing pathways for product 

synthesis (P-frac = maximum) and higher product yield 

range (YP = maximum). Assessing the product synthe-

sizing pathways for their yield eiciency revealed non-

essential (inactive) and essential (core) reactions in the 

production of isobutanol and hexadecanol at maximum 

Fig. 2 Validation of C. necator H16 metabolic model. Speciic rates and yields for cell growth simulated by lux balance analysis of the metabolic 
model under heterotrophic or autotrophic growth were compared against reported experimental data. Yields were obtained under diferent 
conditions of substrate uptake (A: qfructose = 0.08 g/g-cell-h; B: qfructose = 0.14 g/g-cell-h; C: qfructose = 0.47 g/g-cell-h; D: qco2 = 0.19 g/g-cell-h; E: 
qco2 = 0.02 g/g-cell-h). Heterotrophy was based on growth on fructose, while autotrophy was based on growth on  CO2 as sole carbon source. 
Consistency between the experimental observation and the model prediction conirms the accuracy of the constructed metabolic model
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Table 1 Existing pathways and  predicted yields performance by  recombinant strains and  designed mutants 

with multiple gene deletions for maximizing isobutanol and hexadecanol synthesis

a Available metabolic pathways for product synthesis

b  Percent of product synthesizing pathways from total available metabolic pathways

c Predicted cell yield during growth condition

d Predicted product yield during non-growth condition

e Genes and enzymes corresponding to deleted reactions are GG5r, triosephosphate isomerase (tpiA); ACT1, acetoacetyl-CoA thiolase/Acetyl-CoA acetyltransferase 

(phaA); AcDH, acetaldehyde dehydrogenase 1/2 (mhpF/acoD); CAL4, fructose/Sedoheptulose bisphosphatase (cbbF)

f fqH2 is fraction of  H2 gas input relative to total gas input of  CO2,  H2 and  O2 mixture

Strains Total pathways P-syn  pathwaysa P-frac (%)b YX (g/g)c YP (g/g)d

Isobutanol (SCA)

 WT-Isobutanol 8940 1068 12 0.22–0.57 0–0.42

 ∆GG5r∆ACT1∆AcDHe 1476 252 17 0.22–0.57 0–0.42

 ∆GG5r∆ACT1∆AcDHe under gas feeding 
control at fqH2 > 0.67f

252 252 100 0.31 0.21–0.42

Hexadecanol (LCA)

 WT-Hexadecanol 9264 1392 15 0.22–0.57 0–0.34

 ∆CAL4∆ACT1∆AcDHe 3420 972 28 0.22–0.57 0–0.34

 ∆CAL4∆ACT1∆AcDHe under gas feeding 
control at fqH2 > 0.67f

864 864 100 0 0.20–0.34

Fig. 3 Phenotypic space of recombinant C. necator H16 synthesizing isobutanol (a) and hexadecanol (b) determined by elementary mode 
analysis. Each black circle represents individual pathway in which a linear combination of all pathways forms possible phenotypes existing in the 
recombinant strains with diferent product yields shown in colored surface plot. The x and y axes are uptake rate for  H2 and  CO2 of each pathway 
relative to its total gas uptake. c Reaction requirements of eicient pathways for synthesizing isobutanol and hexadecanol by the recombinant 
strains. Shown in green are core reactions necessary for product synthesis during growth and/or non-growth autotrophic conditions. These 
reactions are considered as potential target for overexpression. Reactions highlighted in brown are reactions not required for product synthesis, 
hence could potentially be target for deletion
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yield under growth and non-growth autotrophic culti-

vations (Fig.  3c). hese nonessential reactions that were 

inactive during the product synthesis were examined in 

term of their potential for gene deletion in the in silico 

strain design. Likewise, to identify potential genetic over-

expression, core reactions necessary for eicient produc-

tion of the two products were analyzed.

In silico genetic perturbation simulation

he validated recombinant network was inally used to 

design the strategies via genetic perturbations to identify 

targets for metabolic engineering essential for the most 

eicient production of isobutanol, short-chain alcohol 

(SCA), and hexadecanol, long-chain alcohol (LCA), in C. 

necator H16 growing autotrophically.

Gene deletion target enforcing towards high yield

he pathway information provided by EMA allowed the 

evaluation of gene deletion efects on cell phenotype. 

In silico gene deletion simulations were performed by 

restricting reactions and its corresponding genes for dele-

tion to zero and the phenotype of that speciic knockout 

mutant, which was represented by a non-negative lin-

ear combination of remaining paths when that reaction 

was deleted, was predicted. Figure 4 shows gene deletion 

efects on cell viability (YX, biomass yield), products yield 

(YP, isobutanol and hexadecanol yield) and fraction of 

total remaining pathways, after each deletion of reaction 

and its corresponding genes, that produced products, 

isobutanol and hexadecanol (P-frac, % of total pathways). 

he efects of multiple gene deletions in sequential man-

ner were also reported. In Fig.  4, yield was presented 

either in maximal value or in mean value, an average of 

minimal and maximal yields of all remaining pathways. 

Gene deletion which resulted in zero cell yield (mean 

YX = 0) was considered lethal and therefore, these reac-

tions and their corresponding genes could not be deleted 

from the cell. he process of selecting combination of 

multiple gene deletions was started with analyzing single 

gene deletion. Among the set of all individual deletions, 

a

b

c

d

e

f

Fig. 4 Multiple gene deletion simulation by elementary mode analysis. Single (a, d), double (b, e) and triple (c, f) gene deletion simulation on 
the recombinant strains for isobutanol and hexadecanol synthesis were implemented to identify combination of deleted genes that eliminate 
ineicient pathways for product synthesis, while keeping eicient ones hence redirecting the cell’s phenotypic space towards maximal product 
yield. Three criteria for identifying target genes are (1) product yields (maximal and mean YP g/g, yellow triangle, orange diamond), (2) fractional 
pathways for product synthesis (P-frac %, green square) and (3) biomass yield (mean YX g/g, empty circle) after each gene deletion simulation. Mean 
value is an average of minimal and maximal values. Target genes for deletion (indicated by red arrow) would reshape phenotypic space by pushing 
towards high product yield (max P-frac, max YP), while retain cell viability (YX > 0)
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the target genes were identiied when elimination of that 

gene led to

1. Product yield (YP) = maximum, to push towards high 

yield by keeping the most efficient paths for product 

synthesis and eliminating inefficient ones,

2. Percent of fractional remaining paths for product 

(P-frac) = maximum, to redirect phenotypic space 

by retaining the largest possible remaining paths 

towards product synthesis,

3. Biomass yield (YX) > 0, to maintain cell viability.

his approach allowed the determination of gene dele-

tion targets which pushed the largest number of pathways 

towards products synthesis with the highest product 

yield and reasonable cell viability. For example, GG5r 

corresponding to triosephosphate isomerase (tpiA) was 

a target for deletion since deletion of this gene increased 

fractional remaining pathways for isobutanol synthesis 

(P-frac) to 15%, while still supported cell growth and the 

highest yield of product (Fig.  4a). Likewise, for hexade-

canol, CAL4 corresponding to fructose/sedoheptulose 

bisphosphatase (cbbF) was selected as deletion target 

with an increased P-frac to 25% in the knockout mutant, 

while retaining the highest product yield and cell viability 

(Fig. 4d). We applied the screening process in a sequen-

tial manner for selecting an optimal combination of mul-

tiple gene deletion. he identiied target from single gene 

deletion was used as the genetic background in the next 

steps for double gene deletion and continued on (Fig. 4b–

c, e–f).

Table  1 summarizes the number of remaining path-

ways and predicted yields for product and cell growth 

after sequential multiple gene deletions. he gene dele-

tion simulation resulted in targeted triple gene knockout 

for maximizing isobutanol and hexadecanol in C. necator 

under autotrophic growth. he multiple gene deletions 

for eicient production of isobutanol included disrupting 

GG5r (triosephosphate isomerase, tpiA), ACT1 (acetoa-

cetyl-CoA thiolase/acetyl-CoA acetyltransferase, phaA) 

and AcDH (acetaldehyde dehydrogenase, mhpF/acoD). 

For eicient production of hexadecanol, removal of 

CAL4 (fructose/sedoheptulose bisphosphatase, cbbF), 

ACT1 and AcDH was predicted. he combination of 

these gene deletions in the designed mutants as summa-

rized in Table 1 reduced the number of existing paths to 

1476 with 17% of total paths directed to isobutanol, and 

3420 with 28% of total paths directed to hexadecanol. 

he deletion of GG5r (tpiA) was likely to reduce NADH 

production via glycolysis which then leads to less produc-

tion of byproducts associated with NADH oxidation such 

as succinate, lactate and ethanol as reported previously 

by Tokuyama et  al. (2014). Likewise, deletion of ACT1 

(phaA) and AcDH (mhpF/acoD) resulted in lowered fer-

mentative products, acetone and ethanol, respectively, 

which was consistent with the previous reports (Singh 

et al. 2011; Zhou et al. 2011). Blocking CAL4 (cbbF) was 

likely to divert  CO2 ixation through glycolysis instead of 

pentose phosphate pathway, hence increasing availabil-

ity of the precursors derived from the pathway including 

pyruvate and acetyl-CoA.

Phenotypic space of the design mutants for isobutanol 

and hexadecanol in Fig. 5a, b revealed that higher prod-

uct yield could be achieved by the designed mutants 

when its fractional  H2 input (fqH2) relative to total gas 

input was controlled at higher than 0.67. his restriction 

could be simply implemented by manipulating compo-

sition of gas feeding during the autotrophic cultivation 

of the mutants. Combining in silico multiple gene dele-

tions and careful control of gas input composition at its 

optimal level, the predicted phenotypic space was redi-

rected, as depicted by dashed lines in Fig.  5, towards 

eicient pathway options for maximized products at 

relatively high yield. Under the control of gas input 

(fqH2 > 0.67), the designed mutants were able to eiciently 

produce products with yield range for isobutanol at 0.21–

0.42  g-isobutanol/g-CO2, and for hexadecanol at 0.20–

0.34  g-hexadecanol/g-CO2, higher values compared to 

that by the wild-type (Table 1). It should be emphasized 

that the minimal yields achieved by the designed mutants 

under controlled gas feeding was non-zero, meaning that 

multiple gene deletion targets in the mutants pushed the 

cell’s phenotypic space towards product synthesis with 

all existing pathways directed to products. Hence, their 

functioning phenotypes were more eicient compared 

to that of the wild-type which contained many pathway 

options that did not produce products, a zero minimal 

yield of product predicted by EMA.

Gene overexpression target debottlenecking for high 

productivity

Metabolic lux proiles of the two mutants 

(∆GG5r∆ACT1∆AcDH for optimized isobutanol pro-

duction; ∆CAL4∆ACT1∆AcDH for optimized hexa-

decanol production) designed by EMA gene deletion 

simulation were then analyzed through FBA. he analysis 

aimed at identifying target overexpressed genes involved 

in enhanced productivity of the desired products. In 

silico gene overexpression simulations by FBA were per-

formed by increasing each reaction lux at 1–20-fold(s) of 

the predicted lux values. hen, the predicted phenotype 

in terms of production rate of product synthesis corre-

sponding to the lux increase was examined. To compare 

the efect of gene overexpression, lux correlation (FC) for 

each gene overexpression simulation as deined in Eq. (1) 

was calculated. he FC of each metabolic lux, that was 
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overexpressed, was computed as change in lux towards 

product synthesis (qP) relative to change in reaction lux 

of gene overexpression (Ri). he rate-controlling lux with 

maximal FC, meaning the increased reaction lux (Ri) 

via gene overexpression leading to the most enhanced 

rate of product synthesis (qP), was identiied as target 

overexpressed genes. As shown in Fig.  6, FC compari-

son of all overexpressed reactions within the recombi-

nant network identiied CAL2 (phosphoglycerate kinase, 

cbbK) in the Calvin–Benson–Bassham cycle and PPP6r 

(transaldolase, talB) in the pentose phosphate pathway 

as the rate-limiting luxes, the enzyme with the great-

est lux inluence for high productivity of isobutanol and 

hexadecanol, respectively. hese targeted manipulations 

would reshape phenotypic space of the designed mutants 

by overcoming bottleneck, hence pulling more luxes to 

enhance the products synthesis. With overexpressing 

CAL2 reaction, FBA predicted metabolic characteristics 

of the designed mutants capable of producing isobutanol 

at productivity up to 38.4 mmol/cell-h during autotrophy 

which was a maximum rate based on stoichiometric bal-

ance. he productivity of hexadecanol was predicted at 

9.1 mmol/cell-h, a maximum rate based on stoichiomet-

ric balance, when PPP6r was overexpressed in the mutant 

designed for hexadecanol growing autotrophically. hese 

rates were higher when compared to those achieved by 

the wild-type which contained many pathways that did 

not produce products, zero productivity of the products.

Conclusion
Metabolic pathway analysis of the recombinant C. 

necator H16 has provided insight into pathway topol-

ogy of the organism under autotrophic condition with 

mixed  CO2,  H2 and  O2 gas feeding for the production of 

advanced biofuels, isobutanol and hexadecanol, as case 

studies. Two pathway analysis tools, EMA and FBA, 

were implemented for assessing the cell’s phenotypic 

capabilities under genetic deletion and overexpression 

variables, respectively. Analysis of these pathway pos-

sibilities provides an insight into the structure of the 

C. necator recombinant network that can guide pos-

sible genetic modiication and optimization strate-

gies for improving the product synthesis. A number of 

available pathways identiied by pathway analysis tools 

revealed the complexity and cellular lexibility under 

genetic perturbations. Ultimately, through in silico 

design of eicient C. necator strains by pushing, via tar-

geted gene deletion, and pulling, via target gene over-

expression, more metabolic luxes towards isobutanol 

and hexadecanol synthesis have been accomplished. 

Combination of these genetic manipulations together 

with controlling gas input composition eliminated 

Fig. 5 Phenotypic space of C. necator H16 mutants designed by elementary mode analysis for high yield of isobutanol (a) and hexadecanol (b). 
Each black circle represents individual pathways in which a linear combination of all pathways forms possible phenotypes existing in the designed 
mutant with yields shown in colored surface plot. The x and y axes are uptake rate for  H2 and  CO2 of each pathway relative to its total gas uptake. 
Dashed lines show phenotypic space of the designed mutant under controlled gas input composition at fractional  H2 input (fqH2) > 0.67. After the in 
silico multiple gene deletions, predicted yield space (presented as colored surface plot) was higher compared to that by the wild-type in Fig. 3
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ineicient phenotypic space enforcing the cell to oper-

ate eiciently leading to strains with high yield and high 

productivity of the desired products. he knowledge of 

metabolic pathway analysis presented here could serve 

as basis for future systems metabolic engineering C. 

necator H16 to enhance  CO2-to-biofuels conversion 

eiciency.
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