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Lightweight and Privacy-Friendly Spatial Data

Aggregation for Secure Power Supply and Demand

Management in Smart Grids
Prosanta Gope Member, IEEE and Biplab Sikdar, Senior Member, IEEE

Abstract—The concept of smart metering allows real-time
measurement of power demand which in turn is expected to result
in more efficient energy use and better load balancing. However,
finely granular measurements reported by smart meters can lead
to starkly increased exposure of sensitive information, including
various personal attributes and activities. Even though several
security solutions have been proposed in recent years to address
this issue, most of the existing solutions are based on public-
key cryptographic primitives such as homomorphic encryption,
elliptic curve digital signature algorithms (ECDSA), etc. which
are ill-suited for the resource constrained smart meters. On
the other hand, to address the computational inefficiency issue,
some masking-based solutions have been proposed. However,
these schemes cannot ensure some of the imperative security
properties such as consumer’s privacy, sender authentication,
etc. In this paper, we first propose a lightweight and privacy-
friendly masking-based spatial data aggregation scheme for
secure forecasting of power demand in smart grids. Our scheme
only uses lightweight cryptographic primitives such as hash
functions, exclusive-OR operations, etc. Subsequently, we propose
a secure billing solution for smart grids. As compared to existing
solutions, our scheme is simple and can ensure better privacy
protection and computational efficiency, which are essential for
smart grids.

Index Terms—Privacy, spatial data aggregation, smart grids

I. INTRODUCTION

Smart grids are expected to enhance the efficiency of

current power grids by using advanced digital information

and communication technology. The combined volatility of

both power supply and power demand is a growing problem

that needs to be solved by the smart grids. Unlike water or

gas, electricity is not easily or economically storeable in large

quantities with current technologies. Therefore power grids

are required to maintain a balance between power production

and demand across short time scales. To ensure smart load

balancing between production and demand, the deployment

of smart meters is being pursued by many countries. The

smart meters measure and report power consumption on a

regular basis. This feature facilitates better power consumption

monitoring, control and prediction, which in turn results in cost

savings to both the power suppliers and consumers, as well as

an immense reduction in the carbon dioxide emissions to the
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atmosphere [1]. To achieve these objectives, grid operators

require effective spatial data aggregation schemes, where an

aggregator periodically aggregates the electricity consumption

of a group of consumers in a geographical region, each

equipped with a smart meter. This consumption data may

be used by the utility to dynamically update its prices in

order to implement demand-side management. In addition, the

aggregated consumption data may be used for supply-demand

management, for example, by ramping production up or down

as needed. These management features are particularly im-

portant in the context of increasing penetration of renewable

energy sources (such as solar panels and wind turbines) in

power grids across the world, given their inherent variability.

While smart meters offer some clear benefits, accurate

and fine-grained measurements of household energy con-

sumption trigger serious privacy concerns [2], [3]. In this

regard, fine-grained smart meter data may reveal an user’s

presence/absence in his/her house, which electrical appliances

they are using at any moment, or even their daily habits at

home. Since the usage of smart meters is essential for better

supply and demand management in smart grids, it is important

to develop technologies that reconcile privacy with the desired

utility and functionality of smart meters.

A. Related Work

Over the last decade, some interesting data aggregation

schemes have been proposed under various settings (e.g., smart

metering systems [4-25], and [34-38], vehicle-to-grid networks

[39], and wireless sensors networks [40]). To tackle the privacy

issues in smart grids, a number of research results have been

proposed in recent years. These can be divided into two cat-

egories: public-key-based (such as homomorphic encryption

based) schemes and masking-based schemes. We first consider

the existing public-key-based schemes followed by the existing

masking-based schemes, and elaborate on their strengths and

weaknesses. In 2010, Garcia et al. [4] proposed a multi-party

computation protocol that allows a number of smart meters in

a locality to compute a partial aggregation of their data without

revealing their individual measurements by taking advantage

of Paillier homomorphic encryption [5]. However, this scheme

lacks efficiency in terms of computation and communication

overheads. In addition, due to the malleability of homomorphic

encryption, this scheme is also vulnerable to data forgery

attacks. Similarly, Lu et al. designed a privacy-preserving

data aggregation protocol [6] using the Paillier homomorphic
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cryptosystem, which also causes higher computation overhead

on entities like smart meters. Liang et al. proposed a usage-

based dynamic pricing scheme for smart grids [7] by using

a fully homomorphic technique devised by Naehring et al.

[8]. Fully homomorphic techniques are difficult to implement

with current computing resources which limits the practical

applicability of this scheme. Chia-Mu et al. introduced a ring

signature based scheme to protect users’ usage profile [9].

However, the computational cost increases with the size of

the ring. Liu et al. have proposed an aggregation scheme

based on blind signatures [10]. However, this scheme does not

protect the privacy of the consumer’s usage data profile. Also,

Zhang et al. have proposed a self-certified signature scheme

without considering usage data integrity and consumer’s pri-

vacy [11]. Sui et al. have designed an incentive-based data

aggregation scheme which is constructed with the assumption

of an anonymity network, where the sources of usage reports

are anonymous [12]. Therefore, it is hard to identify any

smart meter or any communication failure. Besides, in this

scheme the aggregator is unable to verify the legitimacy of

the smart meter and the usage data, which may lead to forgery

attacks. Li et al. introduced a hop-by-hop technique for data

aggregation in smart grids [13], [14]. However, aggregation

in the presence of node failures as well as the methodology

to construct the aggregation tree have not been explicitly

addressed. In addition, as shown in [15], the schemes presented

in [13], [14] cannot ensure privacy during smart metering and

reveal the identity of the users. Also, the public key signatures

used in these schemes result in higher computation cost. A

few more homomorphic encryption based schemes have been

proposed in [15]-[19]. However, in these schemes, the smart

meter is not authenticated during data aggregation. Thus, a

dishonest or fake smart meter may falsify the data, leading

to inaccurate aggregation result. Besides, these schemes does

not support consumer’s privacy. Also, the data aggregation

schemes presented in [17] and [18] do not ensure data integrity.

In [19] Jo et al. proposed two data aggregation schemes based

on Paillier homomorphic encryption and elliptic curve digi-

tal signature algorithms (ECDSA), respectively. While their

ECDSA-based scheme can ensure sender authentication, the

usage report transmitted by each smart meter SM i reveals it’s

identity IDSMi
, which is fixed for all transactions. Therefore,

an adversary can easily identify if the usage data is from the

same consumer’s end and link IDSMi
to an actual user. Thus,

the scheme presented in [19] cannot ensure anonymity of a

consumer. Apart from the schemes above, a few more public-

key-based data aggregation protocols have been introduced in

recent years [30], [31]. In [30] a discrete logarithm problem

(DLP)-based data aggregation scheme is introduced, in which

the authors allows a substation to access private data using a

shared key. Hence, this scheme cannot ensure strong privacy.

Abdullah et al. proposed a lattice based homomorphic data

aggregation scheme [31]. However, lattice-based encryption

systems incur a huge computational and communication cost.

Besides, the scheme presented in [31] does not support indi-

vidual sender authentication and consumer’s privacy features.

Hence, the security solution in [31] is not suitable for smart

grids. Koo et al. [34] investigated some of the state-of-the-art

Table I
NOTATIONS AND CRYPTOGRAPHIC FUNCTIONS

Symbol Definition

PS Power Supplier

HAN Home area network

SM Smart meter

TPA Third-party aggregator

PIDi Pseudo identity of SMi

TIDi Temporary identity of SMi

IDSMi
Identity of smart meter SMi

IDA Identity of the TPA

ki Secret key of the SMi

Kas Shared secret key between TPA and PS

khi Shared integrity key between SMi and TPA

Ek[x] Plaintext x encrypted using key k

data aggregation schemes in smart grids, where they found that

most of the existing solutions cannot ensure authenticity of the

metering data and consumer’s privacy. Vahedi et al. [35] re-

cently proposed a privacy preserving data aggregation scheme

for smart grids using ECDSA. Even though their scheme

can guarantee authentication of the source and integrity of

the usage data. However, in their scheme consumers reveal

their identity, and hence cannot ensure consumer’s privacy.

The solution in [36] preserves the usage privacy thanks to

the property of bilinear pairings. However, this solution incurs

high communication and computational overheads due to the

generation and distribution of keys and of the encrypted

measurements of each involved entity. Additional overheads

come from random public parameters that should be signed to

ensure their integrity and authenticity.

Next, we consider the existing masking-based data aggre-

gation schemes. In 2011, Kursawe et al. suggested a set of

masking-based schemes for privacy in smart grids [20]. In their

schemes, the authors utilized the concept of Decisional Diffie-

Hellman (DDH) groups and bilinear mapping for checking the

correctness of the shared masking value, which are computa-

tionally expensive and ill-suited for resource constrained smart

meters. Besides, it lacks the ability to deal with a dishonest

or malicious smart meter that falsifies usage data in order to

make the final aggregation result incorrect. Also, during data

aggregation, the smart meters reveals their identity, which is

fixed for all sessions. Thus, this scheme cannot ensure con-

sumer’s privacy, where an adversary can easily comprehend

and target a specific user and reveal the consumer’s activity

through human-factor-aware data aggregation (HDA) attacks

[25]. , Shi et al. presented a method that combines masking and

distributed differential privacy using noise [21]. However, in

their scheme the aggregator can do partial decryption of the

meter reading. Hence, the scheme presented in [21] cannot

ensure the desired privacy. In [22], Danezis et al. proposed

another masking-based scheme where their objective was to

examine the usage of complex functions on smart meters by

splitting them into Boolean circuits. However, their approach

costs more computing rounds and also negatively affects the

bandwidth and latency. Moreover, in this scheme each smart
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meter sends its usage data without any integrity protection.

Furthermore, the schemes presented in [21] and [22] cannot

guarantee sender authentication and the consumer’s privacy.

Recently, Knirsch et al. proposed a masking-based approach

for data aggregation [23]. Their scheme utilizes the concept

of homomorphic hashing for checking the correctness of the

shared secrets. However, this construction has a couple of is-

sues. First, it is complicated to implement and computationally

expensive to compute. Second, it cannot ensure security of the

hashed data, and an attacker can compute the original message

block by taking the logarithm of the hash for that block. Third,

it can be shown that the data aggregation scheme presented

in [23] is vulnerable to collusion attacks. In this case, when

the aggregator (DC in [23]) colludes with a smart meter SM2,

then the aggregator can know the usage data of another smart

meter SM1, which is a serious privacy issue. Apart from [20]-

[23], a masking-based multi-hop data aggregation scheme has

been proposed in [24]. During data aggregation, each smart

meter needs to select n proxies and add masking values to

meter readings. Proxies remove these masking values to obtain

an aggregated reading. However, this scheme is difficult to

implement in practice, cannot ensure the integrity protection

of the usage report, and does not provide sender authentication.

Recently, Baloglu et al. proposed a solution [37] that combines

masking using noise with Decisional Diffie-Hellman (DDH)

based encryption, where DDH is used for the encryption of the

noisy usage data. In their scheme, metering data is transmitted

to at least two aggregators to maintain the integrity and to

increase the reliability. This solution incurs high setup and

communication cost. Moreover, the proposed solution in [37]

cannot ensure sender authentication and consumer’s privacy

properties.

Motivation: Even though several solutions have been pro-

posed for privacy-preserving data aggregation in smart grids,

most of the existing works are based on computationally ex-

pensive operations such as homomorphic encryption etc. These

are not suitable for resource constrained smart meters, which

typically have limited computational capability. For example,

a smart meter from Atmel’s family with ARM Cortex-M4 pro-

cessor can provide a maximum CPU speed of 780 MHz [33].

As such, this smart meter may not be suitable to perform any

computationally expensive operations. Also, since smart grid

systems are mostly operated in a large scale, computationally

expensive operations may impair the efficiency of the system.

Besides, homomorphic encryption based differential privacy

does not guarantee the correct summation result [23]. On the

other hand, existing masking-based approaches suffer from the

following weaknesses:

• In existing masking-based approaches, a smart meter is

not authenticated during data aggregation. In other words,

the identity and the legitimacy of the smart meters are not

verified. Consequently, a dishonest or fake smart meter

may falsify the data, which will cause an inaccurate

aggregated result.

• In existing masking-based schemes, computationally ex-

pensive operations such as DDH group and Bilinear

mapping, or homomorphic hashing are used for verifying

Figure 1. System model for smart grid metering.

the correctness of the masking secrets, which are not

suitable for the resource-limited smart meters.

• None of the existing schemes (including homomorphic-

encryption-based schemes) ensure anonymity of the con-

sumer. In this case, each smart meter reveals it’s identity,

which is fixed for all transactions. Therefore, an adversary

can easily understand that the usage data is from the

same consumer’s end and reveal the consumer’s activity

through HDA attacks [25].

B. Our Contribution

This paper first proposes a spatial data aggregation scheme

which provides up-to-date and accurate aggregated consump-

tion information to the power grid about any group of con-

sumers. Subsequently, we propose a secure billing solution. In

this regard, we only utilize lightweight cryptographic primi-

tives like one-way hash functions, exclusive-or operations, etc.

In the proposed scheme, no information about the individual

consumers is disclosed. However, the power grid can still

monitor the total amount of power needed by its customers

situated in a specific region or locality, without compromising

the privacy of any individual customer.

The rest of the paper is organized as follows. In Section II,

we explain the underlying smart grid model, security goals,

and the preliminaries that are relevant to this article. In Section

III, we present the proposed spatial data aggregation scheme

with a secure billing solution for smart grids. Security of the

proposed scheme is analyzed in Section IV. In Section V,

we formally analyze the privacy of our proposed scheme. A

discussion on the performance of the proposed scheme is given

in Section VI. Finally, the conclusion is drawn is Section VII.

The symbols and cryptographic functions used in this paper

are defined in Table I.

II. SYSTEM AND ADVERSARY MODEL AND SECURITY

GOALS

In this section, we first briefly describe the network archi-

tecture of the proposed privacy-preserving data aggregation
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mechanisms for smart grids and also present the adversary

model. Subsequently, we define the security goals of the

proposed scheme.

A. System Model

Figure 1 shows the system model considered in the paper

for smart grid metering, which also forms the foundation of

the proposed data aggregation scheme. Our system model

consists of four major entities: a power supplier (PS), a third-

party aggregator (TPA) employed by the power supplier, a set

of smart meters (SMs), and numerous home area networks

(HANs). In our system model, the PS is responsible for the

distribution of electricity to each HAN. The TPA periodically

aggregates the electricity consumption of a group of HANs in

a geographical region, and provides the data to the PS. The PS

may use this data to adjust its electricity prices for demand-

side management and also to provide appropriate feedback

to its power generating stations or suppliers. In this way, the

TPA plays a crucial role in maintaining the balance between

power production and demand. Each HAN is composed of a

SM and a set of home appliances. The SM sends its periodic

readings to the TPA through an in-home network (e.g. WiFi).

The TPA and PS communicate through the public Internet (a

cellular network based Internet access is shown as an example

in Figure 1).

B. Adversary Model

In our adversary model we consider the PS as a trusted

organization (e.g. owned by the government, such as Singapore

Power in Singapore and National Grid in United Kingdom).

On the other hand, the TPA is owned by a private company

whose main responsibility is to assist the PS. Therefore, in

our system model we consider the TPA as a honest-but-

curious entity, who may want to know the consumption data

of each HAN and subsequently may try to sell the usage

information to another company, e.g. for marketing materials

for home appliances. On the other hand, here we assume

that various elements inside the core network may also act

as adversaries and be interested in private details of the

power consumption of each HAN. A compromised network

and its various elements (like a router or a switch) may

alter or fabricate the meter’s consumption data. Hence, any

communication through the network may not be secure. Also,

any SM may be the adversary and be interested to know the

consumption data of another SM from a different HAN. An

outside attacker may also try to impersonate as a legitimate

entity (e.g. a SM or the TPA) to send data under its name.

For instance, a dishonest or fake SM could falsify the data for

causing inaccurate aggregation result. In addition, the outside

attacker may eavesdrop on the network transmission media

for obtaining the power consumption data and may also try to

alter or re-transmit them.

C. Security Goals

• Authentication: Before aggregating any data, the TPA

needs to authenticate each SM. This will prevent any

inaccurate aggregation results. Similarly, before obtain-

ing any relevant information from the PS through the

insecure public communication channel, the TPA needs

to authenticate the PS.

• Usage Data Confidentiality: The secrecy of the end-to-

end communication during meter data collection is vital.

Therefore, the electricity consumption data is required

to be kept secret from any third party for protecting the

privacy of the customer. In this regard, even if an outside

or an inside adversary like other SMs from different

HANs or the TPA obtains the messages with electricity

consumption information, then he/she should not be able

to comprehend the encrypted message.

• Usage Data Integrity: The TPA should be able to verify

the integrity of the data received from the SM of each

HAN. Similarly, the TPA needs to verify the integrity of

the relevant information received from the PS during data

aggregation.

• Consumer Privacy: The TPA should not be able to know

the real identity of a HAN user. Only the PS should have

the ability to know a consumer’s real identity. In addition,

after eavesdropping the usage data, an outside adversary

should not be able to comprehend that the data is from

a particular consumer or if two meter readings are from

the same user.

III. PROPOSED PRIVACY-FRIENDLY SPATIAL DATA

AGGREGATION SCHEME

In this section, we propose our privacy-friendly spatial

data aggregation scheme for smart grids, which consists of

two phases: authenticated initialization and data aggregation.

Assume that there are n HANs in a locality which obtain their

power supply from the PS. In the authenticated initialization

phase, smart meter SMi and the aggregator TPA prove their

legitimacy to the PS and subsequently establish a key khi and

a set of temporary identities between them. Besides, this phase

also helps both the SMi and the TPA to update their secret

key khi and establish a new set of temporary identities. In

the data aggregation phase, the TPA periodically aggregates

the electricity consumption of a group of HANs in a locality

without knowing the power consumption of each individual

HAN.

A. Authenticated Initialization

Consider the scenario where the PS is interested in the

aggregated power consumption of a group of n HANs that

are its customers. During the installation of the smart meter

SMi of each household HANi , the PS randomly generates a

pseudo identity PIDi and a secret key ki using the meter’s

pseudo random number generator (PRNG) and assigns them

to SMi . The PS records PIDi and ki for future communication

with SMi . This phase of the proposed scheme consists of the

following steps:

Step AU1: The smart meter SMi generates a random

number Ns and calculates V0 = h(PIDi ||Ns ||ki). Then, SMi

composes a message MA1
: {PIDi ,Ns ,V0} and sends it to

the TPA.
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Figure 2. Authenticated initialization process.

Step AU2: After receiving the request message MA1
, the

TPA generates a nonce Na and calculates a hash-integrity

output V1 = h(IDA||Na ||Kas). Then the TPA composes a

message MA2
: {(PIDi ,Ns ,V0)||(IDA,Nq ,V1)} and sends

it to the PS.

Step AU3: Upon receiving message MA2
, the PS tries

to map the identity PIDi to the real identity of a user,

and then computes and verifies V0 and V1. If the verifi-

cation is successful then the PS generates a new pseudo

identity PIDnew
i and computes T = h(IDSMi

||ki||Ns),
x = h(ki||T ||Ns) ⊕ h(Kas||Na), y = h(T ||Ns||ki) ⊕ Na,

z = h(T ||IDSMi
||ki) ⊕ PIDi

new, V2 = h(Kas||Na||x), and

V3 = h(T ||y||z||ki). After that, the PS composes a response

message MA3
: {x, y, z, V2, V3} and sends it to the TPA.

Step AU4: After receiving the response message MA3
,

the TPA first computes and validates the parameter V2. If

the validation is successful, then the TPA first calculates

TK = x ⊕ h(Kas||Na) and khi = h(TK ||Na||Ns). Then

the TPA generates a set of temporary identities TIDiq =
{tidi1, tidi2, · · · , tidiq} and derives TID∗

iq = Ekhi
[TIDiq ]

and V4 = h(TIDiq ||khi ||IDA). Finally, the TPA composes a

response message MA4
: {(y, z, V3)||(TID

∗
iq ||V4)} and sends

it to SMi .

Step AU5: Upon receiving message MA4
, SMi first com-

putes T = h(IDSMi
||ki||Ns) and verifies V3. If the verification

is successful, then SMi derives Na = h(T ||Ns||ki) ⊕ y,

TK = h(ki||T ||Ns), khi = h(TK ||Na||Ns), and PIDnew
i =

h(T ||IDSMi
||ki) ⊕ z. Hereafter, SMi decrypts TIDiq from

TID∗
iq and stores {TIDiq , khi} for data aggregation. The

details of this phase are depicted in Figure 2.

B. Data Aggregation

Our data aggregation process consists of the following steps:

Step AG1: To maintain proper balance between power

production and demand, the power supplier PS periodically

(say, every 1 or 2 hours) needs to know the electricity

consumption of the group of n HANs. In order to do that, for

each time interval Tj , the PS picks a set of n random integers

Rj = {r1 , r2 , · · · , rn} from a cryptographic pseudo random

number generator that fully exploits the range {0, · · · , d− 1}
of a uniform distribution, where d ≫

∑n

i=1
Mi , where Mi

is the meter reading of SMi . Hereafter, the PS selects a

random integer ri ∈ Rj for each smart meter SMi and calcu-

lates ∆i = Eki
[IDSMi

||ri||ki||Tj ] and Hi = h(∆i||ki||Tj).
In this way, for all smart meters of n HANs, the PS

derives (∆∗,H ∗) = {(∆1,H1 ), (∆2,H2 ), · · · , (∆n,Hn)}.

Hereafter, the PS generates a timestamp tps and calcu-

lates RSum =
∑n

i=1
(ri mod d), ∆PS = EKas

(RSum ||Tj ),
and HPS = h(∆PS ||Kas ||tps), and sends R

∗ =
{(∆∗,H ∗)||(RSum ,∆PS , tps)} to the TPA for using at pre-
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Figure 3. Pictorial representation of step AG1 of the proposed data aggregation scheme.

defined time interval Tj . After receiving message R
∗, the

TPA first checks tps and HPS , and then obtains RSum from

∆PS . Subsequently, at the time interval Tj the TPA generates

a timestamp ta and for each smart meter SMi , it computes

δi = h(∆i||Hi ||khi ||ta) and finally distributes (∆i,Hi , δi, ta)
to each smart meter SMi . Upon receiving (∆i,Hi , δi, ta),
smart meter SMi first checks ta , δi, Hi , and then decrypts

∆i and verifies the time interval Tj . This verification prevents

the TPA from repeatedly using the same ∆i for two different

time intervals. If the verification is successful, SMi decrypts

∆i and obtains the random integer ri . Details of this step are

shown in Figure 3.

Step AG2: After obtaining the random integer ri , SMi

generates a timestamp ti and selects an unused temporary

identity tidij ∈ TIDiq and calculates its blinded measurement

Xi = Mi + ri mod d, computes Hi = h(X1 ||khi ||ti), com-

poses a message {tidij ,Xi ,Hi , ti}, and sends it to the TPA.

Finally, SMi deletes tidij from TIDiq . Once all the temporary

identities are used up, SMi needs to ask for a new set from the

TPA. In that case, SMi and the TPA execute the authenticated

initialization phase again. Now, upon receiving the usage data

from each smart meter, the TPA first locates and validates the

temporary identity tidij and key-hash integrity output Hi . If

the validation is successful, the TPA computes
∑n

i=1
Xi (i.e.,∑n

i=1
Mi+

∑n

i=1
ri mod d−RSum =

∑n

i=1
Mi ). In this way,

the TPA obtains the aggregated power consumption data of n

HANs. Details of this step are shown in Figure 4. Note that

if any check in the aforementioned steps is invalid, then this

phase of the proposed scheme is aborted. Also, to ensure more

efficient performance of the above data aggregation scheme,

the PS can pre-compute R
∗ = {(∆∗,H ∗)||(RSum ,∆PS )}

for several sessions and send them to the TPA. In this way,

we can expedite the data aggregation process. Now, for the

correctness of our protocol, all the smart meters need to

participate during the data aggregation process. To avoid the

failure report problem (i.e. the absence of reports when a smart

meter fails), the TPA needs to do ping tests with the smart

meters on a regular basis. In case the TPA does not receive

any response from smart meter SMi , it informs the PS to take

necessary actions. In this context, the PS first abstains from

creating any ri for that particular smart meter and then initiates

technical support steps to resolve the issue.

Privacy Enhancement Under Collusion: In the system

model considered so far, the PS is assumed to be a trusted

entity (e.g. owned by the government). However, this assump-

tion may not be valid for all scenarios. In this context, if the PS

colludes with the the TPA, then the TPA will be able to know

the individual measurements of the smart meters. However,

this issue can be easily addressed with a few changes to the

proposed scheme. In this regard, some changes are required

in step AG2 of the proposed scheme. In this new scenario,

we assume that each smart meter can directly communicate

with its neighboring smart meters and each meter SMi has

a secure line with its adjacent neighbor SMi+1 . Now, after

obtaining the masking value ri from the TPA, each smart

meter SMi picks a random number si (called its “share”)
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Figure 4. Pictorial representation of step AG2 of the proposed data aggregation scheme.

from a large space and adds this share to its measurement

value Mi yielding Xi , i.e., Xi = Mi + si + ri mod d, which

is then sent directly to the TPA. Additionally, SMi adds si to

the accumulated share value Si−1 that it has received from

SMi−1 and calculates Si = si + Si−1 . SMi then sends

Si to its next adjacent neighbor SMi+1 through the secure

line. This continues up to the last smart meter SMn which

computes Sn = Sn−1 + sn , which equals
∑n

i=1
si. Finally,

SMn encrypts Sn and the timestamp tn with khn and sends

it to the TPA. The TPA computes
∑n

i=1
Xi − (Rsum + Sn)

yielding
∑n

i=1
Mi , which gives the desired aggregated load.

The details of the revised step AG2 are depicted in Figure 5.

C. Secure Billing

We assume that each smart meter SMi maintains a parame-

ter βi for billing. Initially, during meter installation, the value

of βi is set to 0. Now, for each time interval Tj , when SMi

sends its blinded measurement Xi to the TPA for spatial data

aggregation, then SMi also updates βi = M j
i + βi and stores

βi in its memory, where M j
i denotes the meter reading of SMi

at time Tj . Finally, at the end of the month (or any desired

interval), SMi generates a timestamp t and selects an unused

temporary identity tidi and then computes Eki [βi||PIDi],
νi = h(Eki [βi||PIDi]||ki||t), and composes a message

Billi = {“Billing”, tidi, Eki [βi||PIDi], νi, t} and sends it to

the TPA. After receiving the message Billi , the TPA first finds

PIDi corresponding to tidi and then composes a message

Bill∗i = {“Billing”, EKas
[PIDi], Eki [βi||PIDi], νi, t} and

then sends it to the PS. Upon receiving Bill∗i , the PS first

decrypts EKas
[PIDi] and then checks the timestamp t and

νi. If they are valid then the PS decrypts and obtains βi

for PIDi. Then the PS defines an acknowledgment ACKi

and generates a timestamp t∗ and a valid key-hash response

λ = h(ACKi ||ki||t
∗), and subsequently sends (ACKi , λ, t

∗)
to SMi through the TPA. When SMi receives the acknowl-

edgment ACKi , it first checks the timestamp t∗ and and the

key-hash response λ. If they are valid, then SMi informs its

owner and sets βi to 0; otherwise, it requests the PS for the

acknowledgment.

IV. SECURITY ANALYSIS

This section demonstrates that the proposed scheme ensures

all the security goals listed in Section II.

A. Accomplishment of Authentication

In the authenticated initialization phase of the proposed

scheme, the PS authenticates SMi by verifying the pseudo

identity PIDi and the parameter V0 in request message MA2
,

where only a legitimate SMi can generate the valid key-hash

output V0. The PS authenticates the TPA by using the request

parameter V1, which must be equal to h(IDA||Na ||Kas). On

the other hand, both SMi and the TPA authenticate the PS

by using the response parameters V2 and V3, respectively.

Now, in the data aggregation phase of the proposed scheme,

before aggregating the usage data, the TPA authenticates each

smart meter SMi by using the timestamp ti and the response

Hi . Moreover, in this phase of the proposed scheme, the

TPA authenticates the PS by using hash-response parameter

HPS . Furthermore, in the proposed data aggregation scheme,

if an adversary tries to perform any replay attempt, the

receiving end can easily comprehend such activities by using



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY , VOL. XX, NO. X, XXX 2019 8

Figure 5. Pictorial presentation of the revised step AG2 for addressing collusion attacks between PS and TPA

the timestamps ti , ta , and tps . On the other hand, during the

billing phase, if an adversary (even TPA) attempts to forge

the billing value βi, then the PS will be able to detect that

by using the key-hash response νi. In this way, the proposed

scheme can detect any forgery attacks..

B. Accomplishment of Secure Key-Establishment

In the authenticated initialization phase of the proposed data

aggregation scheme, each smart meter SMi and the TPA need

to securely establish a key khi , which will protect against dis-

honest or fake smart meters from falsifying data. In this regard,

only the legitimate TPA who knows the secret key Kas can

calculate TK = x⊕ h(Kas ||Na) and khi = h(TK ||Na ||Ns).
Similarly, only an authentic smart meter SMi with the in-

stalled secret key ki can derive T = h(IDSMi
||ki ||Ns),

TK = h(ki ||T||Ns), and khi = h(TK||Na ||Ns). Therefore, the

security of the shared secret key khi depends on the secrecy

of the keys Kas and ki , where it is assumed that the respective

entities (PS, TPA, and SMi ) will not reveal their shared secret

to anyone.

C. Accomplishment of Usage Data Confidentiality

The amount electricity usage in HANi is blinded with the

random integer ri from a large space, i.e., Xi = Mi + ri

mod d. Therefore, the TPA can only know the blinded mea-

surement of each SMi . Besides, after calculating
∑n

i=1
Xi −

RSum , the TPA can only obtain the aggregated spatial (i.e.,

a group of HANs’) usage data. This prevents analysis of a

single customer’s data. Also, since the masking integer ri

is chosen randomly, even if the usage of electricity for two

consumers is the same, an adversary (even the TPA) cannot

comprehend it from the blinded measurements. Thus, the pat-

tern of the electricity consumption is protected from detection

by any eavesdropper. Furthermore, for ensuring privacy under

collusion attacks between the PS and the TPA, each smart

meter SMi uses a random share si for obtaining Xi , i.e.,

Xi = Mi + si + ri mod d. Therefore, even if the PS and

the TPA collude, since they do not know the value of si , they

will not be able to obtain the desired Mi . Hence, the proposed

scheme can ensure privacy even under collusion attacks.

D. Accomplishment of Usage Data Integrity

In the proposed scheme, before doing data aggregation, the

TPA first checks whether it has received the same data as that

was sent by each smart meter SMi . For that, the TPA computes

H ∗
i = h(Xi ||khi ||ti) and checks whether H ∗

i is equal to Hi or

not. This approach facilitates the detection of any manipulation

of the aggregated usage data during communication.

E. Accomplishment of Consumer Privacy

In the proposed data aggregation scheme, no one except for

the PS can gain knowledge of any private information such

as the real-identity of a HAN user. The TPA only knows the

pseudo identity PIDi of an user based on which it accumulates

the reading of each smart meter SMi . We also note that while

sending the usage data, SMi is not allowed to use the same

temporary identity tidij twice. No one except the TPA can

recognize that. Therefore, an outsider cannot guess whether
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the usage data for two consecutive sessions are from the same

HAN. This approach of the proposed scheme is useful for

achieving privacy against eavesdropper (PAE) [32].

V. FORMAL PRIVACY ANALYSIS

In this section, we formally analyze the privacy of the

proposed scheme.

A. Privacy Model

We now consider Ouafi and Phan’s privacy model [29].

In this model, attacker A can eavesdrop on all the channels

between the smart meters and TPA and he/she can also

perform any active or passive attacks. A is allowed to run

the following queries:

• Execute (M, T PA, i): This query represents the passive

attacks. In this context, the attacker can eavesdrop all the

transmitted messages between the smart meter M and

the aggregator T PA in the i-th session. Consequently,

the attacker obtains all the exchanged data between the

T PA and meter M.

• Send(U, V,m, i): This query models the active attacks in

the system. In this query, attacker A has the permission

to impersonate an aggregator U in the i-th session, and

forwards a message m to a smart meter V . Besides,

the attacker has the permission to block the exchanged

message m between the smart meter and the aggregator.

• Corrupt(M,K): In this query, the attacker A has the

permission to access secret information K stored in the

smart meter’s memory.

• Test(M0,M1, i): This query is the only query that does

not correspond to any of A’s abilities or any real-world

event. This query allows to define the indistinguishability-

based notion of untraceable privacy. If the party has

accepted and is being asked a Test query, then depending

on a randomly chosen bit b ∈ {0, 1}, A is given Mb from

the set {M0,M1}. Informally, A succeeds if it can guess

the bit b. In order for the notion to be meaningful, a Test

session must be fresh in the sense of Definition 2.

Definition 1 (Partnership and Session Completion): An

aggregator instance T PAj and a meter instance Mi are

partners if, and only if, both have output Accept(Mi ) and

Accept(T PAj ), respectively, signifying the completion of the

protocol session.

Definition 2 (Freshness): A party instance is fresh at the

end of execution if, and only if (i) it has output Accept with

or without a partner instance and (ii) both the instance and its

partner instance (if such a partner exists) have not been sent

a Corrupt query.

Definition 3 (Indistinguishable Privacy (INDPriv)): It

is defined using the game G played between a malicious

adversary A and a collection of smart meters and reader and

aggregator instances. A runs the game G whose setting is as

follows.

• Learning phase: A is able to send any Execute and Send

query and interact with the aggregator T PA and smart

meter M0 and M1 that is chosen randomly.

• Challenge phase: The attacker selects two meters M0

and M1 and forwards a Test query (M0,M1, i) to

challenger C. After that, C randomly selects b ∈ {0, 1}
and the attacker determines the meter Mb ∈ {M0,M1}
using Execute and Send queries.

• Guess phase: The attacker A finishes the game G and

outputs a bit b′ ∈ {0, 1} as guess of b. The success of

attacker A in the game G and consequently breaking the

security of INDPriv is quantified via A’s advantage in

recognizing whether attacker A received M0 or M1, and

is denoted by Adv INDPriv
A

(k) = |Prb
′

= b]−1/2|, where

k is a security parameter.

Proposition 1: The proposed scheme satisfies Indistinguish-

able Privacy.

Proof. In the proposed scheme, each meter reading is

masked with a new random integer rj . Besides, the tempo-

rary identity TID changes in each session. Therefore, it is

difficult for an adversary to perform any traceability attack by

performing the following phases:

• Learning phase:: In the j-th round, the attacker A
sends an Execute query (T PA,M0, j) and obtains the

parameters {tidM0

j ,XM0

0,j ,H0 ,j}.

• Challenge phase: A selects two meters M0 and M1 and

sends a Test query (M0,M1, j + 1). Next, according to

the randomly chosen bit b ∈ {0, 1}, the attacker is given

a meter Mb ∈ {M0,M1}. After that the attacker A
sends an Execute query (T PA,Mb , j + 1) and obtains

{tidMb

j+1 ,X
Mb

0,j+1 ,H0 ,j+1}.

• Guess phase: In the Learning phase the meter M0 up-

dates its masking secret rj . Therefore, for the two subse-

quent sessions j and j+1 the parameter (XM0

0,j ,XMb

0,j+1 )

and (HM0

0,j ,HMb

0,j+1 ) are calculated as follows: X
M0

0,j =

M0,j + rM0,j mod d, X
Mb

0,j+1 = Mb,j+1 + rMb,j+1

mod d, HM0

0,j = h(XM0

0,j ||khM0
||tM0,j ), and H

Mb

0,j+1 =

h(XMb

0,j+1 ||khMb
||tMb ,j+1 ). Since rM0,j 6= rMb,j+1,

tM0,j 6= tMb ,j+1 , tid
M0

j 6= tid
Mb

j+1 , and h(·) is an ǫ-
secure pseudorandom function, the adversary thus needs

to make a random guess. In this context, the advantage of

the adversary at recognizing M0 or M1 can be denoted

by Adv INDPriv
A

(k) = |Pr[b
′

= b]− 1/2| ≤ ǫ.

VI. PERFORMANCE ANALYSIS AND COMPARISON

The objective of the proposed spatial data aggregation

scheme is not only to fulfill several security requirements

for smart meters, but also to ensure that the computational

overhead during the data aggregation process is reasonable.

To manifest the advantages of the proposed scheme, in this

section, we first compare the performance of the proposed

scheme with the following previously proposed non-masking-

based data aggregation schemes for smart grids: [4], [5],

[10], [11], [12] [18], [19], [35], and [36]. Table II shows the

security properties that each scheme supports, and we can

see that the proposed scheme and the schemes presented in

[4], [5], [11], [12], [18], [19], [35], and [36] can guarantee

data confidentiality but [10] cannot. In this regard, during

data aggregation, the scheme presented in [10] reveals the

consumer’s usage profile to the aggregator and the outside
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Table II
PERFORMANCE BENCHMARKING BASED ON SECURITY PROPERTIES WITH RESPECT TO NON-MASKING-BASED SOLUTIONS

Scheme Data Confidentiality Data Integrity Sender Authentication Consumer’s Privacy

Garcia et al. [4] Yes No No No

Liang et al. [5] Yes No No No

Liu et al. [10] No Yes No No

Zhang et al. [11] Yes No Yes No

Sui et al. [12] Yes No No Yes

Wang et al. [18] Yes Yes No No

Jo et al. [19] Yes Yes Partial No

Vahedi et al. [35] Yes Yes Yes No

Zhang et al. [36] Yes Yes Yes No

Proposed Scheme Yes Yes Yes Yes

Table III
COMPUTATION COST OF DIFFERENT CRYPTOGRAPHIC OPERATIONS

Machine Paillier

Encryption

[4][5][18][19]

Paillier

Decryption

[4][5][18][19]

Pairing

Time

[10][12][36]

ECDSA

Signature

Generation

[11][19][35]

ECDSA

Signature

Verification

[11][19][35]

SHA-256

[Proposed

Scheme]

2.60 GHz CPU

(Operating as TPA

/PS)

18.62 ms 31.45 ms 161.82 ms 23.81 ms 17.56 ms 0.12 ms

798 MHz CPU

(Operating as SM)

89.70 ms 152.6 ms 685.3 ms 837.92 ms 768.20 ms 0.43 ms

Table IV
VARIATION IN AGGREGATION TIME FOR VARIOUS NUMBER OF SMS

Schemes Number of Smart Meters Aggregation Time

Paillier-based Schemes ([4][5][18][19])

50 1570 ms

80 2175 ms

120 3290 ms

Pairing-based Schemes ([10][12][36])

50 8091 ms

80 12945 ms

120 19418 ms

ECDSA-based Schemes ([11][19][35])

50 878 ms

80 1404 ms

120 2107 ms

Proposed Scheme

50 6.28 ms

80 9.98 ms

120 14.83 ms

adversary. Table II also shows that the some of these schemes

do not support data integrity during data aggregation. This

allows an adversary to alter the usage data and cause an

incorrect aggregated result without the aggregator detecting it.

Next, from Table II we see that most of these non-masking-

based schemes do not support sender authentication. As a

result, a dishonest or fake smart meter may falsify the usage

data, leading to an incorrect aggregation outcome. In [19],

the authors have proposed two data aggregation schemes,

only one of which ensures sender authentication (discussed

in Section IA). Hence, [19] only partially supports sender

authentication. Furthermore, almost all of the existing schemes

allow the transmission of the identity of a smart meter in

plain-text. As a result, an outside attacker can target the

smart meter of a particular HAN and reveal the consumer’s

behavior through HDA attacks. Hence, these schemes cannot

ensure a consumer’s privacy. Sui et al. [12] have considered

this issue and designed their scheme with the assumption of

an anonymity network. However, their scheme needs to bear

the additional computational overhead for establishing such a

network.

To show the effectiveness of our proposed scheme with
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Table V
PERFORMANCE BENCHMARKING BASED ON SECURITY PROPERTIES WITH RESPECT TO MASKING-BASED SOLUTIONS

Scheme Data Confidentiality Data Integrity Sender Authentication Consumer’s Privacy

Kursawe et al. [20] Yes Yes No No

Shi et al. [21] No Yes No No

Danezis et al. [22] Yes No No No

Knirsch et al. [23] Partial Yes No No

Baloglu et al. [37] Yes Yes No No

Proposed Scheme Yes Yes Yes Yes

Table VI
PERFORMANCE COMPARISON BASED ON METHODOLOGIES WITH RESPECT TO MASKING-BASED SOLUTIONS

Scheme Masking Method Utilized Method for Masking Data Integrity

Kursawe et al. [20] Addition of random values Decisional Bilinear Diffie-Hellman

Shi et al. [21] Noisy Statistics Decisional Diffie-Hellman

Danezis et al. [22] Complex function with Boolean circuits -

Knirsch et al. [23] Addition of random shares (generated from PRNG) Homomorphic hashing

Baloglu et al. [37] Noise and DDH Encryption Decisional Diffie-Hellman

Proposed Scheme Addition of random values (generated from PRNG) Normal secure non-collision hash function

respect to the existing non-masking-based schemes, we con-

ducted simulations of the cryptographic operations used by

various schemes on an Ubuntu 12.04 virtual machine with

an Intel Core i5-4300 dual-core 2.60 GHz CPU (operating as

the TPA or the PS as per the scheme). To simulate a smart

meter, we used a single-core 798 MHz CPU with 256 MB

of RAM, which reflects the capabilities of real smart meters.

The simulations used the JPBC library Pbc-0.5.14 [26], JCE

[27], and the Paillier library libpaillier-0.8 [28] to evaluate the

execution time of different cryptographic operations. Table III

shows the computation time of the cryptographic operations

for 768 bits of data. From Table III, we can see that SHA-

256 leads to significantly lower computation cost as compared

to other primitives, and hence is better suited for resource

constrained smart meters. Table IV shows the variation in the

aggregation time for different numbers of SMs in the proposed

scheme, Paillier homomorphic encryption-based schemes ([4],

[5], [18] and [19]), pairing-based schemes ([10], [12]), [36])

and ECDSA signature-based schemes ([11], [19]), [35]). It can

be seen from Table IV that the aggregation time is significantly

lower in the proposed scheme as compared to the others.

Next, we compare the performance of the proposed scheme

with existing masking-based aggregation schemes for smart

grids: [20], [21], [22], [23], and [37]. Table V shows the

security properties that each scheme supports, and we can

see that our proposed scheme and the schemes presented in

[20], [22], [37] can guarantee data confidentiality, while the

schemes presented in [21] and [23] cannot. In [21], the TPA

is allowed to know the individual meter readings (discussed

in Section IA). The scheme presented in [23] can only ensure

data confidentiality when the aggregator (DC in [23]) does not

collude with a smart meter (discussed in Section IA). Hence,

we say that the scheme presented in [23] can partially ensure

data confidentiality. Table V also shows that although most

of the masking-based schemes (except [22]) can ensure data

integrity, they do not authenticate the sender (smart meter)

during the data aggregation process. Consequently, a dishonest

or fake smart meter may falsify the data, leading to an inaccu-

rate aggregated result. Moreover, similar to the existing non-

masking-based schemes, the schemes presented in [20], [21],

[22], [23], [37] allow the smart meters to send their identity

in plain-text. Hence, these schemes cannot ensure security

under HDA attacks. On the other hand, the proposed scheme

ensures data integrity and sender authentication through one-

way non-collision hash functions. In addition, smart meters use

their temporary identities during the data aggregation process,

and meters are not allowed to use a temporary identity more

than once. Thus, an attacker cannot isolate or identify the

information from any specific HAN.

Next, we compare the existing masking-based schemes

and our scheme with respect to masking and data integrity

methodologies. From Table VI, we can see that both the

proposed scheme and the scheme presented in [23] use the

same approach of masking, where the masking random values

are generated from a cryptographic pseudo random number

generator. Table VI also shows that the proposed scheme uses

the normal secure one-way hash-function for verifying the

masking data integrity. On the other hand, existing masking-

based schemes use computationally expensive operations such

as decisional bilinear Diffie-Hellman, homomorphic hashing

etc. for the same purpose, which result in high computational

overhead on resource limited smart meters. Now, in order to

analyze the performance of the proposed scheme in terms

of computation cost more comprehensively, we compare it

to Knirsch et al.’s scheme [23]. In this context, we conduct

simulations of the cryptographic operations used in [23] (such

as homomorphic hashing) on the same platform that we

used for the performance evaluation of the non-masking-based

schemes: an Ubuntu 12.04 virtual machine with an Intel Core

i5-4300 dual-core 2.60 GHz CPU (operating as the TPA) and
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Figure 6. Variation of aggregation time in terms of number of SMs

a single core 798 MHz CPU and 256 MB of RAM (operating

as a smart meter). The simulations used the GNU MP library

and the JCE library [27] to evaluate the execution time of the

cryptographic operations such as homomorphic hashing, and

naive one-way non-collision hash function (SHA-256). Figure

6 shows the aggregation time as a function of the number of

SMs for the proposed scheme and [23] for aggregating 768

bits of data. In this regard, for ensuring data integrity support

of 768 bits of data for 200 smart meters, the homomorphic

hashing used in [23] takes 88.83 ms and naive one-way non-

collision hash function (used in our proposed scheme) takes

only 23.29 ms. The masking time is 0.77 ms for both schemes.

It can be seen from Figure 6 that the aggregation time is

significantly lower in the proposed scheme as compared to

others. Hence, the proposed scheme can be used for efficient

data aggregation in smart grids.

A. Computation Cost During Billing

In our billing phase, each smart meter needs to perform

one symmetric-key encryption (AES-CBC) and one hash op-

eration, which takes an additional 0.79 + 0.43 = 1.22 ms.

The TPA needs to perform one symmetric-key encryption

and one symmetric-key decryption operation, which takes

0.31 + 0.42 = 0.73 ms. The PS needs to perform one

symmetric-key decryption and two hash operations which take

0.42+2×0.12 = 0.66 ms. Therefore, the overall computation

cost for the billing phase is 2.61 ms.

B. Complexity of the Proposed Scheme

Table VII shows a detailed analysis of the complexity for

our data aggregation scheme where N denotes the number of

smart meters. The complexity value is given for both the smart

meters and the TPA. Here, the operations conducted in each

smart meter is of constant complexity and the smart meters can

do their operations in parallel. For the TPA, the complexity

increases linearly with the number of smart meters. Generally,

while smart meters have limited computational capabilities,

the TPA will have powerful computational resources, and thus

the proposed scheme scales well with the size of the grid.

Table VII
COMPLEXITY FOR ONE ROUND OF SPATIAL DATA AGGREGATION

SMi TPA

Addition O(1) O(N )

Hash O(1) O(N )

Messages in O(1) O(N )

Messages out O(1) O(1)

VII. CONCLUSION

This paper proposed a lightweight and privacy-friendly

spatial data aggregation scheme for securely obtaining the

power demand in a smart grid. Security of the proposed

scheme is analyzed to confirm its robustness against known

attacks. In addition, the privacy of individual meter readings

is analyzed under the honest-but-curious adversary model.

Performance analysis of the proposed scheme with existing

data aggregation schemes shows that the proposed scheme

has significantly lower computational cost as compared to

other approaches and is hence the best option for smart grid

environments.
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