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Abstract. We describe the development of the “Paleoclimate PLASIM-GENIE emulator” PALEO-PGEM and its 

application to derive a downscaled high-resolution spatiotemporal description of the climate of the last five million 15 

years. The 5-million-year time frame is interesting for a range of paleo-environmental questions, not least because 

it encompasses the evolution of humans. However, the choice of time-frame was primarily pragmatic; tectonic 

changes can be neglected to first order, so that it is reasonable to consider climate forcing restricted to the Earth’s 

orbital configuration, ice-sheet state and the concentration of atmosphere CO2. The approach uses the Gaussian 

process emulation of the singular value decomposition of boundary-condition ensembles of the intermediate 20 

complexity atmosphere-ocean GCM PLASIM-GENIE. Spatial fields of bioclimatic variables of surface air 

temperature (warmest and coolest seasons) and precipitation (wettest and driest seasons) are emulated at 1,000 

year intervals, driven by time-series of scalar boundary-condition forcing (CO2, orbit and ice-volume), and 

assuming the climate is in quasi-equilibrium. Paleoclimate anomalies at climate model resolution are interpolated 

onto the observed modern climatology to produce a high-resolution spatiotemporal paleoclimate reconstruction 25 

of the Pliocene-Pleistocene. 

 

1 Introduction 

A high-resolution climate reconstruction of the Pliocene-Pleistocene will provide an unprecedented opportunity 

to advance understanding of many long-standing hypotheses about the origin and maintenance of biodiversity. 30 

Climate is among the strongest drivers of biodiversity and has played an important role throughout the history of 

life on Earth (Svenning et al 2015). Indeed, changes in climate over time have influenced core biological patterns 

and processes such as diversification, adaptation, species distribution and ecosystem functioning (Svenning et al 

2015, Nogués-Bravo et al 2018). However, studies on the relationship between climate and biodiversity are still 

limited by the lack of high-resolution deep-time spatiotemporal paleoclimatic estimates, as the few studies 35 

available are at very sparse time slices (Lima-Ribeiro et al 2015). Thus, a high-resolution spatiotemporal 

paleoclimate data series of the past 5 million years will be useful to address many pressing questions on 

biodiversity dynamics. For instance, did the onset of glacial cycles promote more extinctions than recent climate 

cycles? Do species hold “evolutionary memory” of the warmer temperature of the Miocene? How did biodiversity 

respond to the increase in strength and frequency of glacial cycles during the Pliocene? Such knowledge is 40 

Page 1

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-242

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 8 November 2018

c© Author(s) 2018. CC BY 4.0 License.



essential to understand biodiversity patterns and to forecast how organisms will respond to the current 

anthropogenic climatic change (Nogués-Bravo et al 2018). 

 

Spatio-temporal paleoclimatic estimates are essential to drive process-based models that are capable of exploring 

causal mechanisms (Nogués-Bravo et al 2018). For instance, a recent ecological coupling study using climate 45 

emulation addressed the role of natural climate variability in shaping the evolution of species diversity in South 

America during the late Quaternary (Rangel et al 2018). That study used a paleoclimate emulator (Holden et al 

2015) of the climate model PLASIM-ENTS (Holden et al 2014). The key limitations of the climate emulator were 

the lack of ocean dynamics in PLASIM-ENTS and the simplified emulation approach which only considered 

orbital forcing; large-scale approximations were made to account for the effects of time-varying ice sheets and 50 

CO2.  Here we address these weaknesses by using boundary-condition ensembles of a fully-coupled Atmosphere-

Ocean GCM. However, naïve simulation would not be possible for an application of this ambition. We use the 

computationally-fast low-resolution AOGCM PLASIM-GENIE (Holden et al 2016), but even with this relatively 

simple model a five million-year transient simulation would demand ~300 CPU years of computing, which could 

not readily be parallelised. We overcome this intractability by approximating the climate state as being in quasi-55 

equilibrium with the instantaneous forcing, and using statistical emulation. 

 

Emulators are computationally fast statistical representations of process-driven simulators, most useful when 

application of the simulator would be computationally intractable (Sacks et al 1989, Santner et al 2003, O’Hagan 

2006). Climate applications of emulation have included the exploration of multi-dimensional parameter input 60 

space in order to, for instance, generate probabilistic outputs (Sanso et al 2008, Rougier et al 2009, Harris et al 

2013) or calibrate simulator inputs (Sham Bhat et al 2012, Olson et al 2012, Holden et al 2013). Climate emulators 

have also been developed as fast surrogates of the simulator for use in coupling applications (Castruccio et al 

2014, Holden et al 2014). In addition to Rangel et al (2018), coupling applications have included climate change 

impacts on energy demands (Labriet et al 2015, Warren et al 2018) and adaption to sea-level rise (Joshi et al 65 

2016). 

 

Our statistical methodology is Gaussian process (GP) emulation (Rasmussen 2004) of dimensionally-reduced 

representation of various climate fields. GP emulators are non-parametric regression models that have become 

widely used tools in a variety of scientific domains. We train the emulators using boundary-condition ensembles 70 

of paleoclimate simulations, driven by variable orbital, CO2 and ice-sheet forcing, in order to predict spatial fields 

of bioclimatic variables. This builds on previous studies that have emulated two-dimensional climate fields from 

CO2 forcing (Holden and Edwards 2010, Holden et al 2014), orbital forcing (Bounceur et al 2015, Holden et al 

2015), from combined CO2 and ice-sheet forcing (Tran et al 2016) and from combined orbital and CO2 forcing 

(Lord et al 2017). Lord et al (2015) additionally considered two ice-sheets states (modern and a reduced Pliocene 75 

configuration) but, to our knowledge, these three Pliocene-Pleistocene forcings have not previously been varied 

together except in the emulation of scalar indices (Araya-Melo et al 2015). Ice-sheet forcing complicates the 

emulation problem because ice sheets are three-dimensional input fields. Although climate emulators with 

dimensionally reduced input and output fields have been developed (Holden et al 2015, Tran et al 2018), we 
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simplify the problem by assuming there is an approximate equivalence between the ice sheet state and global sea-80 

level. This reduces the emulation to the more usual problem of relating scalar inputs to high-dimensional outputs.  

 

The motivation for our approach is to generate spatiotemporal climate fields for use in dynamic coupling 

applications that need temporal variability and therefore cannot use snapshot AOGCM simulations. To this end, 

we need forcing time series that extend back 5 million years and have sufficient temporal resolution to capture 85 

orbitally forced climate variability. For PALEO-PGEM v1.0 we use the sea-level reconstructions of Stap et al 

(2017) for the whole period and their CO2 reconstruction prior to 800,000 BP (when ice core records are not 

available).  

 

2 The model PLASIM-GENIE 90 

PALEO-PGEM was built from quasi-equilibrium simulations of the intermediate complexity AOGCM PLASIM-

GENIE (Holden et al 2016), a coupling of the spectral atmosphere model Planet Simulator (PLASIM, Fraedrich 

2012) to the Grid-Enabled Integrated Earth system model (GENIE, Lenton et al 2006). The component modules, 

coupling and preindustrial climatology are described in detail in Holden et al (2016). PLASIM-GENIE is not flux 

corrected. The moisture flux correction required in the Holden et al (2016) tuning was removed during a 95 

subsequent calibration (Holden et al 2018). PLASIM-GENIE has been applied to studies on Eocene climate 

(Keery et al 2018) and climate-carbon cycle uncertainties under strong mitigation (Holden et al 2018). 

 

We applied PLASIM-GENIE at a spectral T21 atmospheric resolution (5.625 degrees) with 10 vertical layers, and 

a matching ocean grid with 16 logarithmically spaced depth levels. We enabled the ocean BIOGEM (Ridgwell et 100 

al 2007) and terrestrial ENTS (Williamson et al 2006) carbon-cycle modules, as described in Holden et al (2018). 

We do not consider ocean biogeochemistry outputs here, but these are available should applications arise.  

 

The 2000-year spun-up simulations required for emulation were performed with atmosphere-ocean gearing 

enabled (Holden et al 2018). In geared mode, PLASIM-GENIE alternates between conventional coupling (for 1 105 

year) and a fixed-atmosphere mode (for 9 years), reducing spin-up time by an order of magnitude, to roughly four 

days CPU. 

 

3 Experimental overview 

We first provide a summary of the entire approach in five steps, as illustrated schematically in Figure 1. Each step 110 

is described in more detail in Section 4. 

 

i) Ensemble calibration: We previously developed a 69-member ensemble of plausible parameter sets using 

‘history matching’ (see, e.g., Williamson et al 2013).  Applying any of these parameter sets to PLASIM-GENIE 

gives a reasonable climate-carbon cycle simulation of the present day, as evaluated by ten large scale metrics; all 115 

69 parameter sets produce simulated outputs that lie within the ten history match acceptance ranges listed in Table 

1. This step has been published elsewhere (Holden et al 2018). 
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ii) Model selection: We do not address parametric uncertainty in PALEO-PGEM, and so required a single 

favoured PLASIM-GENIE parameter set. One of the 69 history matched parameter sets was identified by picking 120 

the parameter set whose simulator output had the largest likelihood (defined in Section 4.1) and this “optimised” 

parameter set was used in all subsequent simulations. We require PALEO-PGEM to describe glacial states and 

so, as part of the calibration, we performed an additional ensemble with the 69 parameter sets forced by Last 

Glacial Maximum (LGM) boundary conditions. The calibration considered simulated LGM cooling in addition 

to the ten present day metrics (Table 1). 125 

 

iii) Paleoemulator construction: PALEO-PGEM was constructed via a two-stage process, in both stages 

applying Gaussian process emulation to a singular value decomposition of the outputs of a PLASIM-GENIE 

simulation ensemble (c.f. Wilkinson 2010, Bounceur et al 2015, Holden et al 2015, Lord et al 2017). The first 

stage emulated the simulated climate response to variable orbital and CO2 forcing, while the second stage 130 

emulated the incremental climate anomaly due to the presence of glacial ice sheets. The motivation for this two-

stage approach was to impose physical meaning on the decomposition by isolating the ice-sheet forced 

components from the orbital and CO2 forced components. Note that we do not assume a linear superposition of 

the forcing components, and interactions between ice sheets, CO2 and orbit are represented in the second stage 

(see Section 4.2). All simulations used the optimised parameter set, and varied only the climate forcing. 135 

 

iv) Paleoclimate emulation: Forcing time series of orbital parameters, atmospheric CO2 concentration and sea-

level (as a proxy for ice-sheet volume) were applied to the two-stage emulator to generate emulated climates at 

the native climate model resolution. 

 140 

v) Downscaling. The emulated climates were converted to anomalies with respect to the emulated preindustrial 

state and interpolated onto a high-resolution grid. These interpolated anomalies were applied to the observed 

climatology to derive a high-resolution paleoclimate reconstruction at 1000 year intervals from 5MaBP. 

 

4 The simulation ensembles 145 

4.1 The optimised parameter set �∗ 

Given computational constraints we chose to neglect parametric uncertainty in PALEO-PGEM, and selected a 

single ‘optimised parameter set’ for all simulations. Earlier work (Holden et al 2018) had developed a calibrated 

ensemble of 69 plausible PLASIM-GENIE parameter sets through a history matching approach. In summary, 

these authors built and applied emulators of seven scalar metrics (items 1-7 in Table 1) to search for plausible 150 

input space. They considered hundreds of millions of potentially valid model parameterisations, each selected 

randomly by drawing from priors for 32 varied input parameters (Table 2). Each of these 32-element parameter 

vectors were applied to the seven emulators in turn and 200 of them were selected to maximize a criterion that 

combined the distance of candidate points to the other points already in the design (to ensure the design points 

fully span the input space) and the probability (according to the emulator) of reasonably simulating the 155 

observational targets: global average surface air temperature, global vegetation carbon, global soil carbon, 

Atlantic overturning circulation strength, Pacific Ocean overturning circulation strength, global average dissolved 

ocean oxygen concentration and global average calcium carbonate flux to the ocean-floor. The 200 parameter sets 
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were applied to simulation ensembles of the preindustrial state and transient historical CO2 emissions-forcing 

(1805 to 2005).  Finally, 69 of these parameter sets were selected as acceptable on the basis of the seven pre-160 

industrial metrics and three additional metrics that relate only to the transient simulations (items 8-10 in Table 1): 

emissions-forced CO2 concentration in 1870 and 2005, and transient warming (from 1865 to 2005). 

 

In addition to these ten plausibility tests of Holden et al (2018), we also required the optimized model to exhibit 

a reasonable response to glacial ice sheets. We therefore performed an additional 69-member PLASIM-GENIE 165 

ensemble, applying Last Glacial Maximum forcing of 180ppm CO2 concentration, ‘ICE-5G’ LGM ice sheets 

(Peltier 2004) and the LGM orbital configuration of Berger (1989), with eccentricity 0.0019, obliquity 22.949° 

and longitude of the perihelion at vernal equinox 114.4°.  

 

For each of j=1, …, 69 parameter combinations, we calculate a score �∃ which indicates how successful simulation 170 

j was, in terms of matching the observations for each of the eleven metrics. These are tabulated in the “Calibration” 

column of Table 1, where �& denotes the observational estimate for metric i and �& an estimate of uncertainty, 

cognizant of both observational and model error. 

 

�∃ = �∗ +, −. ∗/,
0
12,

0

&34,44           (1) 175 

 

where �& �∃  is is the output of the simulator corresponding to the ith metric when it is run at parameter setting 

�∃. The optimised parameter set �∗ was selected to be the ensemble member with the highest score, equivalent to 

minimizing a weighted sum of squared errors. This optimised parameter set was used in all simulations that follow. 

The optimized output metrics are provided in Table 1, and the input parameter values in Table 2.  The most notable 180 

bias is the cold LGM when compared to observational target, though the optimised model lies within the 3.1 to 

5.9°C ranges simulated by the CMIP5/PMIP3 and PMIP2 ensembles (Masson Delmotte et al 2013). 

 

4.2 Ensemble design 

Our approach to emulating climate output fields relies on dimension reduction using the singular value 185 

decomposition. This is a statistical technique which rotates the data onto a new orthogonal coordinate system, so 

that the first coordinate is in the direction of maximum variance in the data, the second coordinate is then in the 

direction of maximum variance conditional on being orthogonal to the first coordinate, etc. The new coordinates 

are often called principal components (or empirical orthogonal functions), and whilst they are orthogonal, they 

are not expected to cleanly isolate distinct physical processes. In order to impose a physical separation of the 190 

components, and therefore to enforce a clean response to a distinct forcing, we chose to build the emulator as a 

two-stage process. We first decomposed and emulated the smoothly varying climate response to changing orbit 

and CO2 concentration with fixed present-day ice sheets (the ‘E1’ emulator). We then separately emulated the 

incremental climate response to a change in ice-sheet state under the same orbital and CO2 forcing (the 

‘E2’emulator) so that the final emulation is the sum of these two components. 195 

 

To build the E1 and E2 emulators, two separate 50-member boundary-condition ensembles were performed (BC1 

and BC2) with the optimized parameter set. The statistical design of both ensembles was the same 5x50 maximin 
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latin hypercube (MLH,) varying the three orbital parameters, the CO2 concentration and the ice sheet state. The 

only difference between the two ensembles was that the fifth hypercube variable, reserved for ice sheets, was 200 

ignored for the BC1 ensemble and the present-day ice-sheet configuration imposed for all BC1 simulations. The 

BC1 ensemble is designed to simulate the model response to orbit and CO2 forcing only, while the BC2 ensemble 

simulates the different response driven by the presence of glacial ice sheets under the same set of choices of orbital 

and CO2 forcing. 

 205 

The sampling strategy for the orbital variables (eccentricity �, the longitude of the perihelion at the vernal equinox 

� and obliquity �) followed Araya-Melo et al (2015), uniformly sampling � sin� and � cos� in the range -0.05 

to 0.05 and � in the range 22° to 25°. This transformation was chosen because the insolation at any point in space 

and time of year is generally well approximated as a linear combination of these terms. Carbon dioxide was varied 

uniformly in log space, in the range log(160 ppm) to log(1000 ppm). For ice sheets, relevant only to the BC2 210 

ensemble, four states were allowed in the training ensemble, being the Peltier Ice-5G ice sheets (Peltier 2004) at 

10, 13 15 and 20ka. These times were chosen as they correspond to well-spaced ice-volume intervals as evidenced 

by benthic �18
O (Lisiecki and Raymo 2007). These times correspond to sea-level falls of 29, 45, 64 and 107m 

relative to modern in the Stap et al (2017) reconstruction that we use to force the time series emulation (Section 

6). 215 

 

In contrast to Araya-Melo et al (2015), we did not restrict input space to exclude combinations of high CO2 and 

high glaciation levels, preferring instead to use all BC1 ensemble members (i.e. including those with high CO2) 

in the BC2 ice sheet anomaly ensemble. This maintained the maximin and orthogonal properties of the MLH 

design, and moreover avoided any risk of extrapolation outside of training input space during the Pliocene. Present 220 

day (~400ppm) CO2 levels can be associated with significant (~50m) sea-level falls according to the Stap et al 

(2017) reconstructions (see Figure 2). However, the trade-off for this simplicity is that realistic input space during 

glacial periods was less well sampled than it would be for a more targeted ensemble of the same size (c.f. Araya-

Melo et al 2015).  

 225 

5 Emulator construction 

Emulators were built for four bioclimatic variables: the mean temperature of the warmest and coolest quarters and 

the mean daily precipitation of the wettest and driest quarters. Each variable was calculated on a grid-point basis 

as the maximum and minimum of the DJF, MAM, JJA and SON seasons. These emulated variables were chosen 

as being of bioclimatic relevance (c.f. Rangel et al 2018), and suitable for a wide range of ecological and impact 230 

coupling applications, defining the extremes of climate experienced over each grid-cell during a (decadally-

averaged) annual cycle.  Emulators of DJF and JJA temperature and precipitation were also built for validation 

purposes (Section 6.1). 

 

We derived emulators from inputs of � sin�, � cos�, �, log(CO2) and sea level �, each normalized on the range 235 

-1 to 1. Sea level provides a proxy for ice-sheet volume, and hence ice-sheet state (under the assumption of an 

invariant correspondence between ice-sheets and sea level). This neglects the asymmetry of ice sheets under 

glaciation and deglaciation. The E1 emulator was built from the outputs of the BC1 ensemble (after centering the 
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data, by subtracting the ensemble mean field � from each simulation before singular value decomposition). The 

E2 emulator was built from the anomaly outputs BC2-BC1. For E2, we appended the training data with a synthetic 240 

50-member ensemble with the hypercube inputs repeated except that sea level was randomly assigned to be 

between -25m and +100m. In these synthetic data, no simulations were performed, but instead all the climate 

anomalies were set to zero, equivalent to performing a second ice-sheet forced ensemble with a present-day ice 

sheets (and therefore with no anomaly by construction). This was needed so that the ice-sheet anomaly emulator 

can be used when glacial ice sheets are absent (i.e. sea level greater that -25m) i.e. when the ice-sheet emulated 245 

anomaly (E2) is trained to be zero and the emulation is determined only the orbit and CO2 emulator (E1). Note 

that this approach neglected the loss of Antarctic and/or Greenland ice compared to modern that is implicit when 

paleo sea level exceeded the present day. 

 

All emulators were built following the “one-step emulator” algorithm described by Holden et al. (2015), 250 

summarized briefly here. For each ensemble member, we formed the 2048-element vector which describes the 64 

× 32 output field to be emulated. The vectors for the N ensemble members were combined into a (2048 × N) 

matrix Y describing the entire ensemble output of that variable. The matrices Y used to train the E1 emulators 

comprised decadal-averaged outputs of the BC1 ensemble, and these matrixes were centered by subtracting the 

ensemble mean field. The matrices for the E2 emulators were constructed from the decadal-averaged anomalies 255 

BC2-BC1.  This separation of the forcing elements is a key difference with earlier work; every BC1 member has 

an identical BC2 member with the same inputs except for the incremental ice-sheet forcing, which cleanly isolates 

the emulation of ice-sheet forcing from the orbital and CO2 forcing. 

  

Singular value decomposition was performed to reduce the dimensionality of the simulation fields: 260 

 

� = ���Φ           (2) 

 

where L is the (2048×N) matrix of left singular vectors (“components”), D is the N × N diagonal matrix of the 

square roots of the eigenvalues and R is the N × N matrix of right singular vectors (“component scores”). This 265 

decomposition produced a series of orthogonal components, ordered by the percentage of variance explained. We 

truncated the decompositions, considering only the first ten components. Each of the ten retained sets of scores 

thus comprised a vector of N coefficients, representing the projection of each simulation onto the respective 

component. As each simulated field is a function of the input parameters, so are the coefficients that comprise the 

scores, so that each component score can be emulated as a scalar function of the input parameters to the simulator. 270 

 

We used Gaussian process (GP) emulation (Rasmussen 2004) in preference to stepwise linear regression. The 

principal motivation for using this more sophisticated approach was that GPs are highly flexible non-parametric 

regression models which have greater modelling power than linear models. An additional motivation was that GP 

emulation provides both a central estimate and an estimate of uncertainty, and therefore provides us with a means 275 

to generate uncertain climate emulations in the absence of parametric uncertainty. It is important to note that 

emulator uncertainty is entirely distinct from (and therefore incremental to) parametric uncertainty. 

 

Page 7

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-242

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 8 November 2018

c© Author(s) 2018. CC BY 4.0 License.



Gaussian Process models are generalized models, but nevertheless require some user choices, the most important 

being the choice of covariance function. In order to evaluate the optimal covariance function, we considered the 280 

metric P, see Section 4.3.1 of Holden et al (2014): 

 

� = �Η
1

Η34,4Ι �Η           (3) 

 

where �Η
1 is the cross-validated R-squared score of the emulator of principal component c, and �Η is the variance 285 

explained by that component, summed across the leading ten components. The metric is designed to quantify the 

percentage of the spatial variance explained by the emulator, capturing the unexplained variance due to principal 

component truncation (only ten components are considered) and to the emulation itself (i.e. unexplained variance 

of the simulated component scores under cross-validation). 

 290 

Table 3 tabulates the cross-validated metric P for the eight emulators (i.e. four bioclimatic variables, two forcing 

categories) considering a series of different covariance functions, which are the alternatives available in the 

DiceKriging R package (Roustant et al 2012). The power exponential and exponential were found to give the best 

performance when averaged across the eight emulators. We chose the power exponential covariance function as 

the default as it consistently outperformed the exponential covariance function in the (more difficult) precipitation 295 

emulators.  

 

6 Emulator application 

The emulators generate a paleoclimate as 

 300 

� �, �, �, ��1, � = � + 	�1 �, �, �, ��1 + �2 �, �, �, ��1, �      (4) 

 

where � is the simulation mean field that was subtracted to center the ensemble before decomposition (Section 

5). To generate a paleoclimate time series, we therefore require time series of the boundary condition 

inputs	�, �, �, ��1 and �. 305 

 

For the orbital parameter inputs, we applied the 5 million-year calculation of Berger and Loutre (1999). We used 

CO2 from Antarctic ice cores for the last 800,000 years (Luethi et al 2008). Prior to 800,000 BP, and for the entire 

sea-level record, we used the CO2 and sea-level reconstructions of Stap et al (2017). These authors used a zonally 

averaged energy balance model coupled to a 6-level ocean model, a thermodynamic sea-ice model and to one-310 

dimensional mass-balance modules for each of the five major Cenozoic ice sheets (East and West Antarctica, 

Greenland, Laurentide and Eurasian). The Stap model is forced with benthic �18
O records, and uses an inversing 

routine to de-convolve the temperature and ice-volume components of the isotope signal and generate a self-

consistent time series of CO2 and sea-level (ice volume).   

 315 

Figure 2 plots the forcing time series and an illustrative application of the emulator, for which we emulated time-

varying annual mean surface air temperature field and plot its area-weighted global average through time. 
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6.1 Validation of emulation of spatial fields 

In order to validate the emulators, we performed a series of ensemble experiments with Mid-Holocene (MH) and 320 

Last Glacial Maximum (LGM) CO2, ice-sheets and orbital forcing. These time slices have been well-studied in 

Paleo-Modelling Inter-comparison Projects (PMIP) and are well suited to explore variability driven by all three 

forcings. The MH response is dominantly forced by orbit, while the LGM response is dominantly forced by CO2 

and ice-sheet state. To assist comparison with readily available PMIP2 data (Braconnot et al 2007), we here 

emulate seasonal (DFJ and JJA) fields rather than seasonal (MAX and MIN) fields. 325 

 

In each of the comparisons (Figures 3 and 4) we consider emulators with two and ten principal components (for 

each of the E1 and E2 emulators). The appropriate number of components to include is a somewhat subjective 

choice, although it can be useful to optimize by maximizing the explained variance under cross-validation (c.f. 

Holden et al 2015). Here, we did not attempt to optimize the number of components, but instead treat the truncation 330 

as a variable input, so that model complexity can be varied, thereby enabling different emulator realizations 

(Figures 3 and 4) which may be useful to introduce additional uncertainty in coupling applications.  

 

A further source of uncertainty arises from the emulation of the component scores. Gaussian process emulation 

quantifies this by providing a mean prediction and an estimate of the uncertainty associated with that prediction. 335 

We generated two 200-member emulation ensembles with respective (MH or LGM) forcing. The 200 ensemble 

members differ because we do not assume the mean prediction for the emulated component scores, but instead 

draw randomly from the posterior distributions. In figures 3 and 4 these ensembles are summarised with mean 

and standard deviation fields.  (We note that for applications in which climate uncertainty is not addressed, it is 

appropriate to use the mean predictions of principal component scores to generate the best estimate.) 340 

 

Fig 3 top panels compare emulated MH surface temperature (anomalies relative to preindustrial) with the PMIP2 

OAV (coupled atmosphere-ocean-vegetation) ensemble. In northern winter DJF, high latitude warming is 

apparent in the emulated ensemble mean, although of uncertain sign (variability > mean). Cooling is apparent 

over all other land regions. In northern summer JJA, robust warming is apparent at mid to high latitudes, while 345 

changes of variable signs are apparent in the tropics, with cooling apparent over the Sahel, India and SE Asia. 

Each of these features is also found in the PMIP ensemble.  

 

Fig 3 lower panels compare emulated MH precipitation with the PMIP2 OAV ensemble. In DJF, significant drying 

is emulated over central and northwestern South America, southern Africa, eastern Asia and northern Australia, 350 

while wetter conditions are emulated over northeastern South America. In JJA the largest changes are seen as a 

strengthening of the Asian monsoon precipitation, and significantly wetter conditions are also seen over the Sahel 

and western South America. These changes all reflect a general agreement with PMIP2. 

 

Fig 4 upper panels compare the emulated Last Glacial Maximum temperatures with the PMIP2 OA (ocean-355 

atmosphere) ensemble. We neglect the OAV LGM ensemble because it has only two simulations. LGM cooling 

is dominated by cooling of up to ~40°C over the northern hemisphere glacial ice sheets. The most significant 

differences are apparent in the emulated uncertainty, which is understated by a factor of roughly two relative to 
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PMIP. This is expected because the emulator is built from a single parameterization of PLASIM-GENIE and 

therefore does not capture uncertain climate sensitivity. We note that by applying the principles of invariant 360 

temperature pattern scaling (Tebaldi and Arblaster, 2014), the temperature uncertainties due to neglected climate 

sensitivity could be approximated by inflating the variance of the principal component scores.   

 

Fig 4 lower panels compare emulated Last Glacial Maximum precipitation with the PMIP2 OA ensemble. In DJF, 

the drying apparent in central Africa, northern America and the Amazon are captured by the emulator, while JJA 365 

drying at northern latitudes and in the Asian and African monsoon regions, and increased precipitation in South 

America are common to the emulator and the PMIP2 ensemble. The most significant difference is the increase of 

DJF precipitation emulated in central South America, which is not present in the PMIP ensemble mean, although 

we note that the PMIP2 simulations display change of uncertain sign. 

 370 

7 Downscaling 

A spatial resolution higher than the native resolution of the underlying climate model may be required for paleo-

applications given the scale dependency of many patterns and processes (e.g. Rahbek 2005), such as scale-

dependent climate heterogeneity (Rangel et al 2018). We address this need by interpolating the low-resolution 

climate model anomalies onto fine-resolution climatological data. This approach is widely-used in climate impact 375 

assessment (e.g. Osborn et al 2016), and has also been applied in paleo-applications in anthropology (Melchionnaa 

et al 2018) and ecology (Rangel et al 2018). 

 

Downscaling can be performed in any given grid. Here we illustrate downscaling on a global hexagonal grid build 

on a geodesic dome, because it minimizes geographic distortions in shape, area and distance that are common to 380 

map projections. The hexagonal grid is composed of 17,151 quasi equal-area cells of 6,918 ± 859 km
2
 whose area 

variation is not spatially structured.   

 

The four present-day (preindustrial) emulated bioclimatic variables �0 were linearly interpolated onto the 

geodesic grid. All emulations used the mean prediction and the E1 and E2 emulators were both truncated at ten 385 

principal components. Contemporary observations of the bioclimatic variables �0 were derived from WorldClim 

(Hijmans et al 2005), which provides temperature and precipitation estimates at 1 km
2
 resolution, interpolated 

from temporally averaged measurements (1950 to 2000) from ~15,000-50,000 weather stations globally 

(depending upon the variable). The raw emulated climate data �0 and the difference with observed climatology 

�0 − �0 are illustrated in figure 5  390 

 

The emulated climatology is reasonable, accepting the low resolution of the underlying climate model. Cold biases 

are generally confined to northern-winter high latitudes. Warm biases are more modest, and are most apparent in 

the Tibetan Plateau and Andes; the lapse rate cooling in these narrow mountain chains is poorly resolved by the 

climate model. Excess precipitation bias is mostly apparent in the (wet-season) monsoon regions. Deserts are 395 

generally well resolved in the emulator, a notable exception being the hyper-arid Atacama, which is an orography-

driven feature that cannot be captured at low resolution. Conversely, orography-driven precipitation is understated 

in the Tibetan plateau. Precipitation is also understated in the Sahel. 
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We apply anomaly adjustments to derive downscaled emulated climate fields through time ��. This approach 400 

preserves the high-resolution spatial heterogeneity of climatology. In the case of temperature this is 

straightforward. Emulated anomalies �� − �0 are interpolated onto the hexagonal grid and applied additively, i.e. 

�� = �0 + �� − �0 . For precipitation, the situation is more complex. In arid regions that are not well captured 

by the emulator, a multiplicative anomaly approach is preferable �� = �0× ��/�0 , preserving hyper-arid 

(topographically-forced) desert, and preventing unphysical negative precipitation when �� − �0 < 0. 405 

Conversely, in wet regions that are understated by the emulator, a multiplicative anomaly approach can create 

unphysically high precipitation, but an additive approach ensures a physically reasonable solution. A pragmatic 

solution to this is to apply an additive precipitation anomaly when �0 < �0, and a multiplicative precipitation 

anomaly when �0 > �0. This approach is well-behaved, noting that the additive and multiplicative anomalies are 

equivalent when �0 = �0. Consider, when �0 < �0, 410 

 

�� = �0 + �� − �0 > ��         (5) 

 

and the additive anomaly partially compensates for the low bias in emulated climatological precipitation. 

Conversely, when �0 > �0, 415 

 

�� = �0	×	 ��/�0 < ��          (6) 

 

and the multiplicative anomaly partially compensates for the high bias in emulated climatological precipitation. 

 420 

The present-day climatology and downscaled emulated LGM climate are illustrated in Figure 6. An animation of 

the entire 5,000,000-year reconstruction is provided as supplementary material. 

 

8 Conclusions and summary 

We have used dimensionally reduced emulators of the intermediate complexity AOGCM PLASIM-GENIE, 425 

downscaled onto high resolution observed climatology, to generate a high resolution transient climate 

reconstruction of the last 5 million years. The reconstruction substantially improves on a previous emulated 

reconstruction (Rangel et al 2018) in the following ways 

 

i) The underlying climate model is a fully coupled AOGCM. Rangel et al (2018) used PLASIM-ENTS (Holden 430 

et al 2014) which has a slab ocean and therefore neglected ocean circulation feedbacks.  

ii) The new simulation ensembles considered climate forcing by orbit, CO2 and ice-sheets. Rangel et al (2018) 

considered only orbit forcing, with large scale adjustments to crudely approximate the effects of CO2 and ice 

sheets. 

iii) We use Gaussian process emulation. Rangel et al (2018) used linear regression emulation, which cannot 435 

capture complex (non-linear) relationships between inputs and outputs. 
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These improvements allow us to provide a global emulation; the previous emulation was inappropriate for 

northern hemisphere due to the crude approximation of the response to ice sheet forcing. Additionally, we were 

able to extend the emulation back to 5 million years; the previous emulation was limited by the length of an 440 

existing 800,000-year transient GENIE simulations (Holden et al 2010) for CO2 and ice sheets forcing. Finally, 

the use of GP emulation allows uncertainty estimates that we show in Figures 3 and 4 can be used to provide a 

reasonable proxy for model error, neglected in our single-parameterisation boundary condition ensembles. 

 

The limitations of the reconstruction arise from the underlying climate model (low resolution, intermediate 445 

complexity), the approximated boundary conditions (in particular the use of only five ice-sheet states), 

uncertainties in the forcing time series (especially for sea level and CO2), the assumption of quasi-equilibrium (so 

that e.g. millennial variability is neglected) and the limitations of downscaling. We note that the emulations and 

associated uncertainty compare favorably to existing ensembles of simulations with higher complexity models 

(Figures 3 and 4). We note further that reconstructing climates with different forcing time series is straightforward. 450 

Future improvements are anticipated by including a representation of changing topography. For instance, the 

Andes have uplifted by 25 to 40% of their 3,700m present day elevation over the last 5 million years (Gregory-

Wodzicki 2000) and Himalayan uplift has been associated with intensification of the Asian monsoon about 3.6 to 

2.6 Myr ago (Zhisheng et al 2001). Ensembles that address changing orography, land sea masks and ocean 

gateways, will improve the simulated climate and allow the extension of the emulation further back in time, to 455 

periods in which it would be unreasonable to ignore tectonically driven change. 

 

8 Code availability 

The supplementary information contains the following 

PALEO-PGEMv1.0_5M_1Ka.mp4  Animation of the four bioclimatic variables over 5Ma 460 

PALEO-PGEMv1.0.R   R code to build and run the emulators. 

R input files 

ensemble.dat    ensemble input design for the BC1/BC2 ensembles 

5000_1000_forcing.dat    time series forcing for 5Ma at 1kyr intervals 

MH_forcing.dat     mid Holocene ensemble forcing 465 

LGM_forcing.dat    Last Glacial Maximum forcing 

area.dat     grid cell areas for area weighting 

data subdirectories 

data     outputs of the BC1 PLASIM-GENIE ensemble 

icedata     outputs of the BC2 PLASIM-GENIE ensemble 470 

supporting spreadsheets 

ensemble    supporting calculations for the ensemble design 

5000ka_forcing    supporting calculations for the time series forcing 

 

PALEO-PGEMv1.0.R was saved with settings to emulate DJF temperature and produce a 5Ma time series using 475 

the GP mean prediction (no emulator uncertainty), ten principal components and a power exponential covariance 

function. Each of these settings can be changed as documented in the code. The code outputs the area-weighted 
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average to screen, and three data sets to file: emul.dat (the full spatiotemporal output), mean.dat and SD.dat (the 

mean and standard deviation of the emulated fields, most relevant when code is set to generate an ensemble e.g. 

with MH or LGM forcing). 480 
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Table 1: Simulation output metrics for history matching and maximum likelihood calibration 

  

 

i 

  

Output metric 

 

Observations 

History 

matching 

acceptance 

range 

ML calibration 

(mean, 1sigma) 

��, ±	�� 

Optimized 

simulation 

�� �
∗  

1 Global average surface air temperature (°C) ~14 

Jones et al (1990) 

11 to 17 14 ± 1.5 14.1 

2 Global vegetation carbon (GtC)  450 to 650 

Bondeau et al (2007) 

300 to 800 550 ± 125 696 

3 Global soil carbon (GtC) 850 to 2400 

Bondeau et al (2007) 

750 to 2500 1625 ± 437.5 1170 

4 Maximum Atlantic Overturning (Sv) ~19 

Kanzow et al (2010) 

10 to 30 20 ± 5 17.8 

5 Maximum Pacific Overturning (Sv)  

 

<15 0 ± 7.5 2.4 

6 Global ocean averaged dissolved O2 (µmol kg
-1

) ~170 

Konkright et al (2002) 

130 to 210 170 ± 20 139 

7 Global deep ocean CaCO3 flux (GT CaCO3-C yr
-1

) ~0.4 

Feely et at (2004) 

0.2 to 0.8 0.4 ± 0.15 0.56 

8 Atmospheric CO2 in 1870 (ppm) 288 

Rubino et al (2013) 

N/A 288 ± 12.5 280 

9 Atmospheric CO2 in 2005 (ppm) 378 

Keeling et al (2005) 

353 to 403 378 ± 12.5 380 

10 (1864-1875) to (1994-2005) warming (°C)  ~0.78 

IPCC 2013 SPM 

0.6 to 1.0 0.78 ± 0.1 0.78 

11 Last Glacial Maximum temperature change (°C) 4.0 ± 0.8 

Annan and Hargreaves (2013) 

N/A -4.0 ± 1.2 -5.9 
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Module Parameter Description Units Min Max Prior Optimised 

�∗ 

PLASIM TDISSD Horizontal diffusivity of divergence days 0.01 10 LOG 0.01245 

 TDISSZ Horizontal diffusivity of vorticity days 0.01 10 LOG 0.04627 

 TDISST Horizontal diffusivity of temperature days 0.01 10 LOG 1.03202 

 TDISSQ Horizontal diffusivity of moisture days 0.01 10 LOG 0.06188 

 VDIFF Vertical diffusivity m 10 1000 LOG 12.9576 

 TWSR1 Short wave clouds (visible)  0.01 0.5 LOG 0.32403 

 TWSR2 Short wave clouds (infrared)  0.01 0.5 LOG 0.03297 

 ACLLWR Long wave clouds m
-2

g
-1

 0.01 5 LOG 0.50152 

 TH2OC Long wave water vapour  0.01 0.1 LOG 0.02357 

 RCRITMIN Minimum relative critical humidity  0.7 1.0 LIN 0.94867 

 GAMMA Evaporation of precipitation   0.001 0.05 LOG 0.00799 

 ALBSM Equator-pole ocean albedo difference  0.2 0.6 LIN 0.44992 

 ALBIS
1
 Ice sheet albedo  0.8 0.9 LIN 0.8 

 APM
2
 Atlantic-Pacific moisture flux adjustment Sv 0.0 0.32 LIN 0.0 

GOLDSTEIN OHD Isopycnal diffusivity m
2
s

-1
 500 5000 LOG 2005.24 

 OVD Reference diapycnal diffusivity m
2
s

-1
 2e-5 2e-4 LOG 1.35386e-4 

 ODC Inverse ocean drag days 1 3 LIN 2.55463 

 SCF Wind stress scaling  2 4 LIN 2.44654 

 OP1 Power law for diapycnal diffusivity profile  0.5 1.5 LIN 1.07740 

BIOGEM PMX Maximum PO4 uptake mol kg
-1

 yr
-1

 5e-7 5e-5 LOG 2.27102e-5 

 PHS PO4 half-saturation concentration mol kg
-1

 5e-8 5e-6 LOG 1.21364e-6 

 PRP Initial proportion POC export as recalcitrant fraction  0.01 0.1 LIN 0.031471 

 PRD e-folding remineralisation depth of non-recalcitrant POC m 100 1000 LIN 802.258 

 PRC Initial proportion CaCO3 export as recalcitrant fraction  0.1 1.0 LIN 0.22708 

 CRD e-folding remineralisation depth of non-recalcitrant CaCO3 m 300 3000 LIN 1315.25 

 RRS Rain ratio scalar  0.01 0.1 LIN 0.076452 

 TCP Thermodynamic calcification rate power  0.2 2.0 LIN 0.510763 

 ASG Air-sea gas exchange parameter  0.3 0.5 LIN 0.46006 

ENTS VFC Fractional vegetation dependence on carbon density͒ m
2
 kgC

−1͒ 0.1 1.0 LIN 0.84249 

 VBP Base rate of photosynthesis  kgC m
−2

 s
−1

 9.5e-8 2.2e-7 LIN 1.2040e-7 

 LLR Leaf litter rate s
-1

 2.4e-9 8.2e-9 LIN 2.4197e-9 

 SRT Soil respiration temperature͒dependence K 197 241 LIN 218.356 

 VPC
3
 CO2 fertilization Michaelis-Menton half-saturation ppm 29 725 LOG 215.368 

 

Table 2: Prior distributions for PLASIM-GENIE varied parameters (uniform between ranges in log/linear space as 655 
stated). Notes. 1) ALBIS ice sheet albedo was fixed at 0.8 in the final ensemble. 2) APM was fixed at zero in the final 

ensemble (no flux correction). 3) VPC was not constrained by the emulator filtering as this parameter has no effect in 

the preindustrial spin up state. The final calibration step, selecting 69 simulations that satisfy present-day plausibility 

after the historical transient was primarily an exercise to calibrate the VPC parameter. Prior distributions are 

discussed and derived from Holden et al (2010, 2013a, 2013b, 2014 and 2016). The final column tabulates the optimised 660 
parameter set. 
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 Matern 3/2 Matern 5/2 Gaussian Exponential Power 

exponential 

Orbit and CO2 emulator 

Max precipitation 81.7% 80.2% 76.9% 81.0% 82.7% 

Min precipitation 81.9% 80.9% 78.3% 81.8% 82.7% 

Max SAT 97.7% 97.3% 96.8% 97.8% 98.1% 

Min SAT 95.1% 95.2% 95.3% 95.2% 95.0% 

Ice-sheet emulator 

Max precipitation 74.7% 72.5% 67.0% 71.9% 75.4% 

Min precipitation 72.1% 69.3% 60.7% 69.4% 73.3% 

Max SAT 94.2% 93.6% 92.3% 95.1% 95.2% 

Min SAT 79.3% 77.5% 74.6% 80.8% 80.9% 

 665 
Table 3. Optimization of the Gaussian process covariance function. The percentage of variance explained is quantified 

by the metric P (Eq. 3, including ten components) for each of the eight emulators, considering various tested covariance 

functions. A power exponential is favored for the final emulator, having similar average performance to exponential 

covariance function, but outperforming it for the more difficult precipitation variables.  

 670 
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Figures 

 

 

Figure 1: Schematic of experimental design 675 
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Figure 2: Emulator time-series forcing and reconstructed global surface air temperature. Orbital forcing 

is Berger and Loutre (1999). Ice-sheet forcing is the sea-level reconstruction of Stap et al (2017). Carbon 685 
dioxide forcing after 800,000 years BP is ice-core data (Luethi et al 2008), using the Stap et al (2017) 

reconstruction in the earlier period. 
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 690 

Figure 3: PALEO-PGEM emulated ensemble comparison with PMIP2 Ocean-Atmosphere-Vegetation Ensemble 

(Braconnot et al 2007) for the mid Holocene. 
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al 2007) for the Last Glacial Maximum. 

 

 

710 Figure 4: PALEO-PGEM emulated ensemble comparison with PMIP2 Ocean-Atmosphere Ensemble (Braconnot et 
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 715 

 

 

Figure 5: Downscaling the emulated climate. Left hand panels are the preindustrial emulations of the seasonal 

bioclimatic variables at native (T21) model resolution, interpolated onto the high-resolution grid. Right hand panels 

illustrate the differences with respect to high resolution climatology (Hijmans et al 2005). 720 
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 725 

 

 

Figure 6: Downscaled emulated climate. Left hand panels are the downscaled emulated bioclimatic variables at the 

Last Glacial Maximum. Right hand panels are the present-day climatology (Hijmans et al 2005). Note that downscaled 

climates are derived by applying emulated anomalies to this present-day climatology. An animation of the complete 5 730 
Ma reconstruction is provided as supplementary material.  
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