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A B S T R A C T

Parasequences recognized in clastic sedimentary successions of shallow-marine origin are considered by some
geologists to be the fundamental building blocks of depositional sequences, even though problems in their de-
finition and application have been identified by others, who instead advocate their abandonment as formal
sequence stratigraphic units.

To elucidate the geological significance of clastic parasequences and inform the debate on their use in
stratigraphy, a quantitative characterization of the geometry, facies characteristics and timescale of deposition of
1163 parasequences has been undertaken based on a synthesis of data from outcrop and subsurface studies that
are available in the scientific literature. Through a database compilation, the attributes of the studied para-
sequences are analysed with respect to the interpreted geological origin of the units, and with consideration of
sources of bias and uncertainty.

Particular emphasis is placed on assessing the following: (i) the importance of heuristics, and of data types
and coverage in the recognition of parasequences; (ii) differences in parasequence characteristics observed
across deltaic and shoreface depositional systems, and between the Quaternary and the ancient rock record; (iii)
possible explanations for the range in timescales of deposition of parasequences; and (iv) the role of autogenic
dynamics on the development of deltaic parasequences, partly based on a comparison with the recent evolution
of modern deltas.

The results demonstrate that parasequence definition and physical correlation suffer from subjectivity, and
that significant variability exists in the spatio-temporal and architectural attributes of clastic parasequences. This
gives rise to uncertainty that affects the use of parasequences as a framework for comparison of the architecture
of packages of strata originating via shoreline regression: this uncertainty must be considered when using
analogue data for subsurface predictions or when attempting comparative studies of clastic successions.

1. Introduction

The term parasequence, introduced in the 1980s (Van Wagoner,
1985), refers to “a relatively conformable succession of genetically re-
lated beds or bedsets bounded by marine flooding surfaces and their
correlative surfaces”, where a flooding surface is a surface “across
which there is evidence of an abrupt increase in water depth”, com-
monly marked by non-Waltherian facies shifts (Van Wagoner et al.,
1988, 1990). This definition applies to marine and lacustrine strata
alike (Kamola and Van Wagoner, 1995).

Together with flooding surfaces, internal facies characteristics that
testify to a regressive trend are taken as defining attributes of para-
sequences, and these are used to subdivide clastic successions accord-
ingly. The vertical lithofacies succession within a single parasequence
records conditions of progressive upward shallowing (i.e., shoaling),
whose expression varies depending on location (e.g., relatively more

landward or offshore) and depositional context (e.g., shoreface, tidal
flat, deltaic settings). Parasequences are most commonly recognized in
successions of shallow-water and paralic strata, where they typically
exhibit a generally coarsening-upward Waltherian (Walther, 1894)
profile from offshore to littoral deposits, or a generally fining-upward
profile from subtidal to supratidal deposits (Van Wagoner et al., 1988,
1990). Parasequences are also recognized in some mud-dominated shelf
deposits, when these are carefully examined (cf. Bohacs et al., 2014; Li
and Schieber, 2019). However, the definition of a parasequence renders
these units virtually unrecognizable in continental fluvial and aeolian
successions, except where deposits may be correlated to time-equiva-
lent nearshore stratal packages (Shanley and McCabe, 1994;
Posamentier and Allen, 1999). Where observable, internal architectural
features that are indicative of shoreline progradation (e.g., stratal ter-
minations, clinoforms; cf. Lobo et al., 2001; Hampson et al., 2008), or
ichnological evidence of bathymetric change or rapid flooding events
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(e.g., MacEachern and Pemberton, 1997; Sadeque et al., 2009), are also
considered for the segmentation of clastic successions in parasequences.

Parasequences are of prime importance for sequence-stratigraphic
practice. Groups of parasequences are commonly arranged into ‘para-
sequence sets’. These sets are classified according to stacking patterns
that can be ‘progradational’, ‘aggradational’ or ‘retrogradational’, de-
pending on the overall direction and degree of progressive seaward or
landward dislocation of stratal packages of the same general origin
across parasequences in each set. These stratal patterns develop in re-
sponse to the interplay between the rates of creation of accommodation
and sediment supply (Van Wagoner et al., 1988). In sequence strati-
graphy, the stacking pattern of parasequences is a key diagnostic at-
tribute for the classification of systems tracts (i.e., the preserved record
of linked depositional systems associated with a given relative sea-level
state; Posamentier et al., 1988; Catuneanu et al., 2009), and for the
placement of boundaries between other types of sequence-stratigraphic
units, such as ‘genetic stratigraphic sequences’ (Galloway, 1989; cf.
Frazier, 1974) or ‘accommodation successions’ (Neal and Abreu, 2009;
Neal et al., 2016).

As originally conceived, parasequences should represent the pre-
served expression of changes in the balance between sediment supply
and relative sea-level change, occurring in a manner comparable to that
experienced by depositional systems through a paracycle (sensuVail
et al., 1977): in accord with the nature of paracycles, parasequences
should not bear evidence of relative sea-level fall (Kamola and Van
Wagoner, 1995). Allogenic factors (eustasy, climate and tectonics) are
commonly invoked as forcing mechanisms that cause successions to be
organized into parasequences, through their controls on accommoda-
tion generation and sediment supply (Brenchley et al., 1993; Kamola
and Van Wagoner, 1995; Storms and Swift, 2003; Catuneanu and
Zecchin, 2013; Hampson, 2016). However, it is also argued that in some
cases parasequences represent units whose development may result
from, or be influenced by, autogenic mechanisms. In particular, it is
thought that parasequence tops may record local autogenic flooding,
associated with avulsion of coastal-plain distributaries and delta-lobe
abandonment (e.g., Mitchum Jr and Van Wagoner, 1991; Kosters and
Suter, 1993; Kamola and Van Wagoner, 1995; Emery and Myers, 1996;
Posamentier and Allen, 1999). Moreover, parasequence development
might also be influenced by intrinsic shoreline dynamics related to
temporal variations in sediment-storage capacity across the dip profile
of a delta (cf. Muto and Steel, 1997). Although it is clear that both
autogenic and allogenic factors may play a role in governing the for-
mation of parasequences, their relative dominance still needs to be
elucidated.

Considering that parasequence generation can arise from different
genetic processes, and acknowledging that their definition and diag-
nostic criteria are equivocal, are difficult to apply in practice, and have
been used somewhat inconsistently (see discussions in: Posamentier
and James, 1993; Arnott, 1995; Kamola and Van Wagoner, 1995;
Embry, 2009; Zecchin, 2010; Catuneanu, 2019a, 2019b), it is likely that
the term has been applied to units that are fundamentally different
geologically, in terms of both sedimentological character and origin.
This consideration, compounded with the dubious utility of para-
sequences for scopes of stratigraphic correlation, has led some authors
to suggest discontinuing the usage of the parasequence concept and
terminology (Embry et al., 2007; Zecchin, 2010; Miall, 2016;
Catuneanu, 2019a, 2019b). However, the usefulness of parasequences
as operative units in outcrop studies and as descriptors of heterogeneity
in the characterization of the subsurface has been advocated by others
(cf. Hampson et al., 2008; Vakarelov and Bhattacharya, 2009;
Ainsworth et al., 2018, 2019).

To establish whether the parasequence has still some use as a
paradigm for stratigraphic practice in research and industry, it is de-
sirable to consider the degree to which units that are termed para-
sequences in different contexts are comparable and thereby serve as
analogues to each other. A compound analysis of many instances of the

application of parasequences can offer insight into their significance
and usefulness.

This work aims to assess the geological significance and practical
value of shallow-water parasequences in clastic successions, through a
quantitative analysis of their characteristics in a wide range of studies.
Specific objectives are as follows: (i) to determine the importance of
biases and uncertainty in the definition of parasequences; (ii) to
quantify differences in parasequence characteristics with respect to
their origin and geological boundary conditions (e.g., deltaic vs shore-
face systems, Mesozoic greenhouse vs Quaternary icehouse sea-level
behaviours), including their temporal significance and the time-scale
dependency of their properties; (iii) to assess the role of autogenic
dynamics on deltaic-parasequence development; (iv) to consider scales
at which stratigraphic compartmentalization is captured in subsurface
studies of shallow-marine siliciclastic aquifers and hydrocarbon re-
servoirs.

We present results of quantitative analyses of parasequence char-
acteristics with some interpretations, and then discuss the implication
of these findings for their use in stratigraphic studies. What we do not
treat in this paper is the role of accommodation and sediment supply in
determining parasequence architectures. This is an important subject,
because it relates to the use of parasequences for subsurface prediction
and for interpretation of the rock record, but is beyond the scope of this
paper and requires a comprehensive analysis that is best discussed se-
parately. This is the subject of ongoing work.

2. Data and methods

This work is based on a synthesis of sedimentological and strati-
graphic data from many published case studies. The data were collated
from published sources and unpublished dissertations, and were stored
following a defined standard in a SQL relational database, the Shallow-
Marine Architecture Knowledge Store (SMAKS; Colombera et al., 2016).
SMAKS stores data on sedimentary units of different types, for shallow-
water and paralic depositional systems, and on the depositional context,
geological boundary conditions, and metadata of each dataset and
system.

64 case studies detailing 1163 parasequences were considered in
total for the analyses presented in this work, as summarized in Table 1.
A SMAKS case study is made of one or more datasets on a depositional
system, as presented in a given published source or set of related
publications. Different datasets are merged in the same case study if
they were intended to be complementary by the original authors. The
data were extracted from 132 literature sources (Table 1).

Units that are termed ‘parasequences’ by the original authors and
that have been defined in a way that aligns with the definition of Van
Wagoner et al. (1990) are coded in SMAKS following the interpretations
provided in the original literature sources. No attempt has been made to
define flooding surfaces, parasequences or other types of sequence
stratigraphic units, based on reinterpretation of the original datasets;
this means that only publications that postdate the coining of the term
‘parasequence’ have been considered. Whenever the attribution of parts
of a succession to parasequences in a dataset released over multiple
publications vary across the published sources, more recent inter-
pretations are favoured over older ones (cf. Simpson and Eriksson,
1990vsEriksson et al., 2019; Holgate et al., 2013vsHolgate et al., 2015).
Although new interpretations are not imposed on a dataset, original
interpretations are discarded if they contrast with definitions that form
the database standard; so, for example, stratigraphic units originally
termed ‘parasequences’ but recognized to record shallowing-deepening
cycles (cf. Bowman, 2003) or displaying deepening-upward trends (cf.
Blondel et al., 1993) are not considered in the subsequent analyses.

In SMAKS several attributes are used to describe clastic para-
sequences (Fig. 1), including alternative genetic classifications of their
deposits.

The parasequences are classified on the interpreted type of
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formative shoreline, according to two separate schemes, and relying on
corresponding original interpretations when made in the same terms. A
classification is made of the interpreted depositional environment of
parasequences and of their associated shallow-water sandstones.
According to this classification, the units are classified as (i) ‘deltaic’,
(ii) ‘shoreface’ – a term that is here applied sensu lato to describe the
preserved expression of non-deltaic linear coasts, such as those asso-
ciated with strandplains or barrier systems – or (iii) as ‘deltaic-shore-
face’ – a term used where both previous types of shoreline-shelf systems
are interpreted to have formed the units. These terms are not applied to
deposits of uncertain attribution, which are instead left unclassified.

The parasequences are also classified on the interpreted dominant
process regime under which they accumulated. This categorization is
made on classes that define the interpreted relative importance played
by wave, tidal and fluvial processes in shaping parasequences and their
shallow-water sands or sandstones. The domain of this attribute in-
cludes the 15 discrete categories defined in Ainsworth et al. (2011). For
example, ‘F’ = fluvial dominated; ‘Wf’ = wave dominated, fluvial in-
fluenced; ‘Twf’ = tide dominated, wave influenced, fluvial affected.
Moreover, three more generic categories are used when only the main
dominant process is inferred: ‘W-’ = wave dominated, ‘T-’ = tide
dominated, ‘F-’ = fluvial dominated, each possibly recording the in-
fluence of other processes that themselves remain unspecified.

Qualitative attributes are also used to record the range of sub-
environments covered by the observation window over which the
parasequence is described, along its dip profile, and the type of vertical
facies succession observed at the location where the parasequence
thickness is measured. The interpreted subenvironments used to record
the down-dip and vertical coverage of a parasequence are classified as
‘onshore’, ‘nearshore’, or ‘offshore’; the term ‘nearshore’ refers to sub-
aqueous nearshore environments (e.g., delta front, foreshore/shoreface,
barrier-lagoon systems); the term ‘offshore’ refers to mud-dominated
environments that occur offshore of sand-prone shoreface or delta-front
environments, and as such does not have a specific bathymetric con-
notation; the term ‘onshore’ refers to environments that occur landward
of the shoreline and which are mostly subaerial.

Quantitative parameters are used to characterize the spatial and
temporal characteristics of each parasequence. These are assigned
based on data extracted from the published sources, as derived from
text and tables or as measured from figures. These attributes include the
thickness of a parasequence, the thickness and downdip length of its
shallow-water sand belt, and quantities that track the regressive evo-
lution of the parasequence, consisting of its progradation distance (i.e.,
the amount of shoreline progradation recorded in the parasequence), its
stratigraphic rise (i.e., the amount of aggradation at the shoreline) and
the resulting progradation angle (defined as the angle of the direction of
progradation of the parasequence relative to a datum that approximates
the palaeo-horizontal; i.e., a solely regressive shoreline trajectory;
Helland-Hansen and Martinsen, 1996). The temporal significance of the
parasequences is recorded in terms of estimated length of time during
which they were accumulated (duration) and/or corresponding time-
scale expressed as order of magnitude; both attributes are assigned
based on inferences reported in the original sources. For attributes that
specifically relate to the parasequence sand belts, i.e., to facies belts
corresponding to littoral or delta-front sands or sandstones, the sand-
mud boundaries placed in the original works were considered, even
though it is recognized that this transition is typically not sharp. Geo-
metric parameters are classified by observation type, as ‘real’, ‘ap-
parent’, ‘partial’ (when the location of termination of a unit at one end
is unknown), or ‘unlimited’ (when the location of termination of a unit
at both ends is unknown; Geehan and Underwood, 1993). No correction
has been applied to the thickness of sedimentary units to account for
sediment compaction, which can vary significantly across Quaternary
and ancient successions.

The total data pool is based on studies that have global distribution,
and that are based on outcrop and/or subsurface analyses, and differentTa
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combinations of data types (Table 1, Fig. 2). The case studies cover
Phanerozoic successions of different ages, but with an evident bias for
Upper Cretaceous successions of the Western Interior Seaway of North
America, and with limited representation of Paleozoic examples
(Table 1, Fig. 2). It must be noted that other datasets on the sedi-
mentology and architecture of clastic parasequences exist in the pub-
lished literature, and that in this study the coverage of the geological
record is not as comprehensive as it would have been had all available
data been included: the selection of datasets for inclusion in this study
has been made based on their suitability to the problems treated in this
article.

In a limited number of cases, the studied parasequences might be
composed of mixed siliciclastic–carbonate deposits with a subordinate
calcareous component (e.g., Gruenwald, 2001). In two cases, the stu-
died successions were accumulated in lacustrine basins (see Tab. 1).

Statistical analyses of the data were conducted in R 3.5.1 (R Core
Team, 2018).

3. Variability and uncertainty in parasequence identification

First, we present a quantitative assessment of factors that affect the
recognition of parasequences in stratigraphic successions, and of asso-
ciated measures that describe the context within which they were re-
cognized. The purpose of this is twofold: to offer a dataset that can
inform any discussion of the significance of the parasequence term, and
to provide a measure of the biases and uncertainty that are inherent in
any tentative comparison of these units across studies and in their ap-
plication (e.g., to the subsurface).

3.1. Facies successions and observation window

The types of subenvironments recorded in the facies belts of a
parasequence (Fig. 3A), both vertically where its maximum observed
thickness was recorded and along its depositional dip profile (dip
coverage), are expected to reflect different factors, including: (i) the
breadth of data coverage, (ii) the ability to correlate across facies belts,
(iii) the possible lack of facies belts because of non-preservation (e.g.,
due to ravinement), (iv) the possible lack of a facies belt because it did
not develop as part of the sedimentary unit. An example of this last
situation is given by deposits that do not represent full shoaling to
subaerial conditions, but rather progradation of facies belts under fully

subaqueous conditions and that are physically decoupled from corre-
lative subaerial deposits (e.g., so-called subaqueous deltas; cf. Holgate
et al., 2015; Patruno et al., 2015).

Out of the studied 1163 parasequences, the range of subenviron-
ments recorded across the full mapped extent of the units could not be
determined in 19% of the cases, the majority of which are from sub-
surface studies. Most commonly, for 36% of all studied parasequences,
offshore to nearshore facies belts are recognized along their dip profile,
with no record of onshore deposits (Fig. 3B). The full spectrum of off-
shore to onshore facies belts was only identified in 20% of all para-
sequences, and in 25% of those for which subenvironments could be
interpreted (Fig. 3B). For parasequences within which subenvironments
could be interpreted, the location of maximum observed parasequence
thickness occurs most commonly (50% of the cases) where the vertical
facies succession is represented by offshore to nearshore deposits and
does not include onshore deposits. The same offshore-nearshore vertical
facies succession is also the most common for the subset of para-
sequences with a dip coverage that encompasses onshore to offshore
facies belts (43% of these; Fig. 3B), followed by a full offshore-to-on-
shore shallowing-upward succession (25%; Fig. 3B).

Parasequences that only display onshore deposits where they are
thickest, are thicker on average than others with the same facies-belt
dip coverage (Fig. 3C). Implicit in this is the recognition that para-
sequences that show the full offshore-to-onshore coverage are thicker
on average in their onshore part, and not where they display sand-prone
nearshore deposits. This suggests that the role played by accommoda-
tion in controlling preserved parasequence thickness may overwhelm
that of sediment compaction. This might in part reflect the nature of
accommodation generation in commonly backtilting foreland basins,
where the majority (59%) of the studied parasequences have been re-
cognized.

Parasequences that display only nearshore deposits where they are
thickest are on average thinner than others with the same dip coverage
(Fig. 3C). Implicitly, in cases where the dip coverage is limited to the
nearshore facies belt, parasequences are on average thinner than others
(mean values: 9.6 m vs 15.4 m). This might relate to limited pre-
servation of parasequence deposits associated with transgressive con-
ditions, since 43% of parasequences with dip coverage on nearshore
deposits only are contained in retrogradational parasequence sets,
against 25% of other parasequences (N = 414). Correspondingly, 36%
of parasequences that display a vertical facies succession that
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with aggradation PS

pD

sR (+)α

Forced regressive evolution
PS

sR (–)
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Fig. 1. Definition diagram of parasequence attributes. The diagram illustrates (i) the attributes employed in SMAKS (Colombera et al., 2016) to categorize para-
sequences, presented in the form of example classifications of the interpreted origin and recorded process dominance of shallow-water parasequence deposits, and (ii)
the parameters used to describe the anatomy of parasequences and associated shallow-water sand belts.
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exclusively includes nearshore deposits at their thickest section are
contained in transgressive systems tracts, compared to 10% of para-
sequences with a vertical profile of any other type (N = 288).

Differences in thickness statistics as a function of parasequence dip
coverage will in part reflect differences in the extent of the observation
windows. Differences in thickness statistics seen in relation to the type
of vertical facies succession will also reflect the variable amount of
aggradation along depositional dip. Any evaluation and comparison of
the geometry of parasequences, including this and previous studies
(e.g., Ainsworth et al., 2018, 2019), is affected by this variability, i.e.,
by uncertainty regarding the representativeness of local observations.

3.2. Parasequence recognition in different data types

In subsurface datasets, the physical correlation of sub-seismic
parasequences and bounding surfaces is necessarily uncertain, and can
therefore result in a number of equally acceptable reconstructions that
vary with respect to parasequence numbers and geometries (Burton and
Walker, 1999; Bhattacharya, 2011). We can assess the impact of this

uncertainty on resulting parasequence interpretations by comparison
with data from outcropping successions. The studied parasequences
were originally recognized in outcrop and/or subsurface datasets, the
latter including different combinations of data from wells (cores, cut-
tings, wireline logs – including image logs), reflection-seismic surveys
(of different vintages, and including high-resolution shallow acquisi-
tions) and ground-penetrating radar (Fig. 2C). For purposes of analysis,
the datasets were grouped into three classes, based on whether the
underlying data are from outcrop only, from the subsurface only, or
from a combination of outcrop and subsurface observations (Table 1).

Across these three groups, we analysed variations in the distribu-
tions of the thickness of parasequences and of the thickness and dip
length of the associated shallow-water sands or sandstones (Fig. 4).
Parasequences recognized in subsurface studies are, on average, thicker
than those recognized in outcrop (mean values: 19.0 m vs 13.6 m,
N= 1064; Fig. 4A), to a degree that is statically significant (two-sample
t-test: T = −5.32, d.f. = 367, p-value < 0.001). When interpreted in
subsurface studies, parasequence components composed of sand belts of
shallow-water origin are, on average, thinner than those identified in
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outcrop (mean values: 7.8 m vs 10.0 m, N = 647; Fig. 4B; two-sample t-
test: T = 2.99, d.f. = 254, p-value = 0.003), presumably because of
the number of apparent observations from well data, but also sig-
nificantly longer on average along their dip extent (mean values: 39.7
km vs 11.2 km, N = 488; Fig. 4C; two-sample t-test: T = −5.46,
d.f. = 56, p-value < 0.001). The dip length of parasequence sand belts
seen in subsurface studies is larger, on average, than that of out-
cropping parasequences even in cases where the full dip extent of the
units can be mapped (Fig. 4D), suggesting that this difference is likely
to reflect the effect of over-correlation, rather than that of a larger
observation window, in subsurface datasets.

These results suggest that, as might be expected, the amalgamation
of regressive units is under-recognized in subsurface studies. More
specifically, data on parasequence sand belts suggest that parasequence
identification might be rendered particularly difficult by amalgamation
through dominantly lateral stacking, with limited vertical offset, rather
than by vertical stacking of units displaying sand-on-sand contacts and
significant vertical offset. The higher resolution and continuity of out-
crop observations from areas with uninterrupted rock exposure and
limited tectonic disturbance makes it possible to discern internal ar-
chitectures and lithological contrasts and to trace surfaces across such
outcrops. This enables distinction of laterally equivalent units. In con-
trast, over-correlation of parasequences across well arrays is likely to be
common in subsurface studies of shallow-marine successions, because
of undersampling of the complexity of their parasequence organization.
Even where a parasequence-bounding surface can be readily recognized
in 1D well data, multiple parasequences can peel off from this capping
surface due to offlap and lateral overlap, and these units can be missed
or miss-correlated (Bhattacharya, 2011).

3.3. Subjectivity in parasequence interpretations

The subdivision of strata into parasequences and the recognition of
flooding surfaces are subjective and heuristic processes. In particular,
the identification of flooding surfaces on the basis of facies dislocations
and/or other proxies for bathymetric change is fundamentally un-
certain (Klug, 1993; Hampson, 2000; Zecchin and Catuneanu, 2013),
especially in borehole data and where sand-rich portions of separate
parasequences are amalgamated (e.g., Fitzsimmons and Johnson,
2000). The uncertainty in parasequence definition is highlighted by the
fact that attributions change through time, because of reinterpretation
or as new data become available (cf. Simpson and Eriksson,
1990vsEriksson et al., 2019; Schattner et al., 2010vsSchattner and
Lazar, 2016; Holgate et al., 2013vsHolgate et al., 2015; Pattison,
1995vsPattison, 2019a). Additionally, stratal patterns that can be for-
malized in parasequences are sometimes recognized to develop at dif-
ferent scales, as reflected in parasequences of different hierarchies that
occur nested within each other, despite their supposed scale-dependent
nature (e.g., Devine, 1991; Ilgar, 2015; Lin et al., 2019).

The subjectivity and resulting uncertainty in parasequence attribu-
tion are particularly evident in well-studied successions where multiple
interpretations by different groups, underpinned by intensive research
efforts, are available. One such example is offered by the Campanian
Blackhawk Formation, which crops out exquisitely for tens of kilo-
metres along a depositional-dip profile in the Book Cliffs of Utah (USA).
This succession lends itself to this type of comparison (cf. Hampson,
2000) thanks to the number of sedimentological studies that have been
undertaken to investigate its parasequence organization. Here we
compare three alternative sets of interpretations, respectively from (i)
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Reynolds (1999), itself a compilation of primary data from work by
Balsley (1983), Taylor and Lovell (1992), Van Wagoner (1992), and
O’Byrne and Flint (1993); (ii) Hampson and co-workers (as presented
in: Hampson and Storms, 2003; Hampson and Howell, 2005; Hampson
et al., 2008; Charvin et al., 2010; Hampson, 2010); (iii) and Pattison (as
presented in: Pattison, 2010, 2018, 2019a, 2019b).

For these studies, the number of recognized parasequences and the
geometry of their associated shallow-marine sandstones are separately
compared for the Aberdeen, Kenilworth, Sunnyside, and Grassy mem-
bers of the Blackhawk Formation (Fig. 5). This comparison demon-
strates differences across the datasets that reflect variability in the
stratigraphic frameworks and in the way lithological boundaries are
characterized and placed. It is significant that the datasets that are
being compared do not even represent the full range of available in-
terpretations (cf. Taylor and Lovell, 1992, 1995; O’Byrne and Flint,
1995; Pattison, 1995; Van Wagoner, 1995), some of which vary con-
siderably from the ones reported here; for instance, a total of 22
parasequences were identified in the Grassy Member by Van Wagoner
(1995), instead of two to four (Fig. 5). It appears that these sequence
stratigraphic interpretations vary because of discrepancies between the
authors’ views on parasequence definition and because of differences in
the inferred significance of certain surfaces and in stratal correlations,
themselves likely affected by the lack of a reliable datum (Pattison,
2019a) and by density and location of observations (i.e., vertical
measured sections) as causes for parasequence aliasing (Lin et al.,
2019).

Expectedly, differences in the preferred stratigraphic framework
translate to differences in parasequence sand-body characteristics.
Interpretations envisaging a larger number of parasequences in the
Sunnyside Member (Reynolds, 1999; Fig. 5) result in the recognition of

parasequence sandstones of shallow-marine origin that are on average
less extensive along their depositional dip (Fig. 5). This observation
highlights that the uncertainty in attempting to resolve laterally stacked
units is not limited to the subsurface, as it also affects studies of well-
exposed outcrop successions. Even where there are convergent views on
parasequence attribution (e.g., Hampson, 2010vsPattison, 2019a; cf.
O’Byrne and Flint, 1995), differences are seen with regards to how
sandstone bodies are mapped.

The uncertainty associated with variability in parasequence inter-
pretations and lithological attributions will affect any tentative com-
parisons between successions, including those made in this article, and
the application of outcrop-analogue studies for reservoir characteriza-
tion.

4. Parasequences and timescales

Parasequences are commonly assumed to reflect sediment accu-
mulation at 103 to 105 yr timescales (Van Wagoner et al., 1990;
Mitchum Jr and Van Wagoner, 1991; Swift et al., 1991), but it is re-
cognized that units classified as parasequences in Quaternary succes-
sions have developed over shorter timescales, as low as 102 yr
(Catuneanu, 2019b, and references therein). This notion is supported by
the data on parasequence duration that are available for successions in
which temporal constraints exist (Fig. 6), which cover five orders of
magnitude in timescale (102 to 106 yr). It is likely that the wide range of
timescales of parasequence development reflects both an inability to
effectively resolve durations in deep time, because of age extrapolation
being attempted without accounting for hiatuses (cf. Sadler, 1981), and
some degree of scale independence in sedimentary architecture (cf.
Schlager, 2004, 2010; Catuneanu, 2019b), whereby different formative
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processes and controls operating over markedly different durations give
rise to similar patterns, including shallowing-upward regressive units.

With regards to the last point, the observed separation in the dis-
tribution of durations for parasequences of Quaternary and pre-
Quaternary (almost exclusively Upper Cretaceous) age is compatible
with the view that Quaternary parasequences largely record minor re-
lative fluctuations or stillstands in sea level (e.g., stadials) and possibly
pulses of sediment supply or autogenic dynamics (particularly avulsion
periods; see below), whereas ancient parasequences are more likely to
represent units that develop in response to orbitally driven eustatic

cycles. For the distribution in durations of parasequences from the rock
record, a mode centred on 17 kyr (and therefore relatively close to the
periods of climate precession for the Upper Cretaceous; Waltham, 2015)
and secondary modes close to 40 kyr and 100 kyr are identified
(Fig. 6B). These modes could be loosely tied to the periodicity of Mi-
lankovitch cycles and interpreted as forcing by precession cycles being
possibly dominant in determining parasequence generation. This is an
interpretation that necessitates the assumption that discrepancies are
due to geochronometric error and/or to approximations introduced by
the extrapolation of durations based on limited temporal constraints (cf.
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Garrison Jr. and van den Bergh, 2004; Runkel et al., 2007; Zhu et al.,
2012). Although any inference of orbital forcing would need sub-
stantially more data to be corroborated, it can generally be argued that
the timescales associated with ancient parasequences are compatible
with lengths of time at which external controls operate to determine
relative sea-level change, but the relative importance of the ultimate
allogenic driver – be it eustatic, tectonic, or climatic – remains un-
certain. Almost all (N = 89) examples of pre-Quaternary parasequences
considered here are from the Late Cretaceous (Plint, 1991; Garrison Jr.
and van den Bergh, 2004; Zhu et al., 2012). Because of the magnitude
and periodicity of eustatic changes for the greenhouse climate of the
Late Cretaceous (cf. Miller et al., 2005, 2011; Kominz et al., 2008; Haq,
2014; Hay, 2017), it is difficult to demonstrate whether these units are
more likely to represent true paracycles or rather high-frequency se-
quences. Yet, given the postulated presence of ephemeral continental
ice sheets (cf. Miller et al., 2011) and the possible role of aquifer eustasy
in controlling global sea level (Wendler et al., 2016) at the time, it is
plausible that formative shorelines and shelves experienced eustatic
sea-level falls over 104 to 105 yr timescales. Eustatic sea-level changes
might have been of modest magnitude, but possibly rapid enough to
outpace tectonic subsidence and thereby result in overall relative sea-
level falls. It is also conceivable, though perhaps not likely, that para-
sequences were generated in response to cyclical variations in rates of
sediment supply, which could have been determined by the effect of
orbital climate oscillations on precipitation and sediment yield ex-
perienced at the latitudes of the Western Interior Basin of North
America in the Late Cretaceous (Swift et al., 1991).

Parasequences contained in transgressive systems tracts and ex-
pressed as retrogradational parasequence sets might be expected to
embody a shorter length of time, typically, than others, since para-
sequences of this type should represent episodic regressions punctu-
ating conditions of overall transgression (e.g., because of stasis in re-
lative sea-level rise, or increases in sediment-supply rate). However,
parasequences associated with transgressive systems tracts or those
arranged in retrogradational stacking patterns return estimated dura-
tions that are larger on average than the ones associated with pro-
gradational or aggradational stacking patterns or contained in other
types of systems tracts (mean values: 31.1 kyr vs 25.0 kyr; standard
deviations: 36.5 kyr vs 42.4 kyr; N = 19 vs N = 67). Differences in
mean duration cannot be discriminated statistically (two-sample t-test:
T = 0.40, d.f. = 33, p-value = 0.691), suggesting the possible dom-
inance of a common control, irrespective of the longer-term sea-level
behaviour. It is also hypothesized that parasequences associated with
falling-stage or lowstand systems tracts may record typically longer
lengths of time than those associated with transgressive or highstand
systems tract, because the entrenchment of the fluvial systems feeding
the shorelines, driven by forced regression, would hinder river diver-
sion (Bhattacharya et al., 2019; Wang et al., 2019, 2020). Yet, the idea
that in a context of forced regression and lowstand the limited effec-
tiveness of river avulsion may result in longer-lived shoreline regres-
sions capable of generating parasequences is not supported by data on
parasequence duration, which tends to be shorter on average for
parasequences contained in falling-stage or lowstand systems tracts
(mean value of 26.6 kyr vs 35.1 kyr for highstand and transgressive
parasequences; standard deviations: 50.2 kyr vs 42.9 kyr; N = 29 vs
N = 80; two-sample t-test: T = 0.81, d.f. = 43, p-value = 0.425).

Distributions in parameters that describe the anatomy of clastic
parasequences can be compared by the timescale over which they have
developed (Fig. 7). When distributions in parasequence thickness are
compared, a difference in average thickness is seen across the 102–103vs
104–106 yr timescales (10.8 m vs 14.0 m), which is statistically sig-
nificant (two-sample t-test: T = −2.72, d.f. = 117, p-value = 0.008).
This difference is seen despite the likely counteracting effect of sedi-
ment compaction, given that units developed over temporal scales of
102–103 yr are in large part Quaternary (51% vs <1% at 104–105 yr).
These results suggest that the different timescales attributed to the units

do not merely relate apparent durations arising from the so-called Sa-
dler effect (Sadler, 1981; see below), and that units classified as para-
sequences in Quaternary successions are more likely to be unresolved in
the rock record. A comparison of the down-dip lengths of shallow-
marine parasequence sand belts indicates that the average sand/sand-
stone dip length differs markedly across the 102–103vs 104–106 yr
timescales (7.1 km vs 24.8 km; N = 232) to a statistically significant
level (two-sample t-test: T =−8.48, d.f. = 228, p-value < 0.001). This
difference is paralleled by an increase in the average parasequence
progradation distance with timescale (2.9 km, 8.4 km and 11.8 km,
from 103 to 105 yr; N = 82; Fig. 7). These differences in sandstone dip
extent and progradation distance reflect the variable length of time over
which shoreline progradation took place, and possibly the variable
degree to which lateral amalgamation of shallow-marine sands is re-
solved and associated parasequence flooding surfaces are recognized.

Because of the range of timescales covered by the parasequences
analysed here, it is reasonable to assume that estimations of durations
of parasequence development and associated rates of accretion are af-
fected by the Sadler effect (cf. Paola et al., 2018; Bhattacharya et al.,
2019). The average length of breaks in sedimentation contained within
the parasequences – or, equivalently, the likelihood for parasequences
of recording a ‘significant’ hiatus – is expected to increase with time-
scale (Sadler, 1981). This will affect estimated rates of aggradation and
progradation. Additionally, for parasequences whose duration is ex-
trapolated by averaging lengths of time for groups of units between
dated horizons, gaps in sedimentation at parasequence boundaries can
cause overestimation of the duration of the parasequences themselves,
in turn leading to underestimation of aggradation and progradation
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rates. As a result, both aggradation and progradation rates are expected
to vary as a function of the time over which they are estimated (cf.
Sadler and Jerolmack, 2015). For parasequences for which estimations
of durations exist, based on available geochronometric constraints, an
assessment of Sadler effects on parasequence-scale aggradation and
shoreline progradation can be made (Fig. 8). Negative relationships are
indeed seen between the length of time over which parasequences de-
veloped and both their aggradation rate in nearshore areas (Pearson
correlation coefficient of log-transformed values: R = −0.562, p-value
< 0.001; Fig. 8A) and their shoreline progradation rate (Pearson cor-
relation coefficient of log-transformed values: R = −0.736, p-value <
0.001; Fig. 8B). No significant correlation is seen between parasequence
duration and positive progradation angles (Fig. 1), i.e., normal re-
gressive parasequence shoreline trajectories recording the relative rates
of shoreline progradation and aggradation (R = −0.122, p-
value = 0.410, N = 48). The time dependency of parasequence pro-
gradation rates reflect different mechanisms that govern the punctua-
tion of shoreline progradation, through episodic deposition, stasis,
erosion and reactivation, at different timescales. Shoreline progradation
rates are time-dependent even on human timescales (Dolan et al.,
1991), and this relates intuitively to the unsteadiness in local shore
progradation seen for modern strandplains, barriers and deltas (cf.

Coleman, 1988; Stapor Jr et al., 1991; Taylor and Stone, 1996; Brooke
et al., 2008; Muñoz-Salinas et al., 2018). On geological timescales, it is
likely that both autogenic (e.g., avulsion-driven relocation of dis-
tributary mouths) and allogenic (e.g., wind-direction change) factors
play a role in developing gaps in time of variable magnitude within
parasequence shoreline-shelf deposits.

5. Parasequences and depositional environment

The origin of clastic sedimentary units interpretable as para-
sequences in littoral and shelf environments can be varied (Van
Wagoner, 1985), but archetypal parasequences are portrayed as coar-
sening-upward successions resulting from basinward progradation of
beach-to-shelf profiles and deltas (Van Wagoner et al., 1990). Looking
at parasequences that are classified according to the interpreted de-
positional context and dominant process regime under which they were
deposited can shed light on the relative dominance of types of formative
environments, and can help determine whether there exists a pre-
ferential setting that generates stratal patterns interpretable as para-
sequences.

The interpreted depositional environment of parasequences is clas-
sified as representing ‘deltaic’, ‘shoreface’ sensu lato, or mixed ‘deltaic-
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shoreface’ systems, the latter term being used when both types of
shoreline-shelf systems are interpreted from the parasequence deposits
(e.g., Forzoni et al., 2015). Only a small part (14%; Fig. 9A) of the
studied parasequences were not classified according to the type of
shoreline depositional environment. Parasequences are left unclassified
either when an interpretation is not given, and this might be because
distinguishing between a shoreface and a delta-front environment is not
straightforward (e.g., Bassetti et al., 2008), or when a parasequence is
thought to have formed in a different environmental setting (e.g., as the
product of progradational facies belts in an estuary-mouth setting; cf.
Dam and Surlyk, 1995). Assuming that our sample is representative and
that interpretations given in the primary data sources are sound,
shoreface environments are preserved in parasequence deposits slightly
more frequently than deltaic environments (42% vs 34%; Fig. 9A).

The majority of parasequences that are classified according to the
inferred dominant process regime (67%) are interpreted to have accu-
mulated in wave-dominated environments (Fig. 9B, C), and these in-
clude wave-dominated deltas (6% of all parasequences). River-domi-
nated and tide-dominated parasequences represent 24% and 9% of all
the studied examples, respectively (Fig. 9B), and are both considerably
more frequent in association with deltaic systems.

Any comparisons between deltaic and shoreface parasequences is
biased by the fact that 44% of studied shoreface parasequences are from

the Cretaceous Western Interior Seaway (compared to only 18% of
deltaic parasequences), where they developed on the ramp of a shallow
epeiric sea in a backtilted foreland basin under greenhouse climate.
Distributions of true and apparent thicknesses of deltaic and shoreface
parasequences are similar (Fig. 9D), with mean thicknesses of 16.7 m
and 15.3 m respectively (N = 796), which do not differ statistically
(two-sample t-test: T = 1.51, d.f. = 793, p-value = 0.132). Distribu-
tions of true and apparent thicknesses of river- and wave-dominated
parasequences are also similar (Fig. 9E), with mean values of 15.0 m
and 15.8 m respectively. In the limited number of cases where thickness
values are thought to represent true maximum thicknesses, deltaic
parasequences appear thicker on average (27.1 m vs 21.1 m, N = 99),
but this difference is not significant at α = 0.05 (two-sample t-test:
T = 1.88, d.f. = 83, p-value = 0.063). The thickness of shoreline-shelf
parasequences will largely reflect any pre-existing accommodation on
the area of shelf in which they build out and the amount of accom-
modation generated through the parasequence history (Posamentier
and Allen, 1999; Ainsworth et al., 2018). The fact that deltaic para-
sequences tend to be thicker could be explained by the higher sediment
supply rates that might be expected for river-fed coastlines, which
would favour faster progradation into deeper shelf areas and more
rapid sediment compaction due to loading, or by the possible role of
growth faulting. The assumption that parasequence thickness might
reflect furthest shore progradation is at odds with the observed differ-
ences in recorded shoreline progradation distance, which is larger on
average for shoreface parasequences (mean values: 12.7 km vs 4.7 km,
N = 91).

The geometry of shallow-marine sand belts can also be character-
ized for parasequences classified on depositional environment and
dominant process regime (Fig. 9F, G). The thickness – true or apparent –
of parasequence sands or sandstones or shallow-marine origin is larger,
on average, for shoreface parasequences compared to deltaic ones
(mean values: 11.6 m vs 8.9 m, N = 502), to a level that is statistically
significant (two-sample t-test: T = −3.98, d.f. = 495, p-value <
0.001), and for wave-dominated compared to river-dominated ones
(mean values: 12.2 m vs 11.2 m, N = 434), but not to a statistically
significant level in this case (two-sample t-test: T = −1.06, d.f. = 200,
p-value = 0.289). These observations could be interpreted as a sig-
nature of the relationship between wave climate and the depth of sand-
mud transition on inner continental shelves (cf. Dunbar and Barrett,
2005; George and Hill, 2008), but could also merely reflect an increased
difficulty in resolving amalgamated units in wave-dominated shoreline-
shelf successions compared to deltaic ones. This would be in agreement
with the observed – albeit weak – positive relationship between sand-
belt thickness and length seen in shoreface parasequences (Pearson’s
R = 0.300, p < 0.001, Fig. 9F), and with the fact that shoreline pro-
gradation distances tend to be longer for these compared to their deltaic
counterparts.

The possible unrecognized amalgamation of shoreface para-
sequences might also be indicated by observations on estimated para-
sequence durations, which are on average longer for shoreface para-
sequences (mean = 120.0 kyr, standard deviation = 285.4 kyr,
N = 26), compared to deltaic ones (mean = 9.2 kyr; standard devia-
tion = 7.0 kyr; N = 38). This difference in timescales between
shoreface and deltaic parasequences is also seen in the subset of ancient
(pre-Quaternary) examples, for which it is statistically significant
(mean shoreface parasequence duration = 124.6 kyr, N = 25; mean
deltaic parasequence duration = 14.5 kyr, N = 22; two-sample t-test of
log-transformed values: T = −5.08, d.f. = 27, p-value < 0.001).
Correspondingly parasequences classified as wave dominated tend to
embody on average longer temporal durations (mean = 101.1 kyr,
standard deviation = 228.5 kyr, N = 42) than river-dominated ones
(mean = 14.7 kyr, standard deviation = 8.0 kyr, N = 34).

Observations on deltaic parasequences – which record shorter
lengths of time, contain less extensive sand belts, and display smaller
progradation distances than shoreface ones – raise the question as to
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Fig. 8. Timescale-dependency of aggradation and progradation rates. A)
Scatterplot of the aggradation rate of parasequences versus the length of time
under which they are inferred to have developed (Pearson correlation coeffi-
cient of log-transformed values: R = −0.562, p-value < 0.001). Aggradation
rates are evaluated for the sedimentary record of nearshore environments. B)
Scatterplot of the shoreline-progradation rate of parasequences versus the
length of time under which they are inferred to have developed (Pearson cor-
relation coefficient of log-transformed values: R = −0.736, p-value < 0.001).
‘N’ indicates the number of parasequences.
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whether mechanisms driving the emergence of stratal patterns inter-
pretable as parasequences vary depending on the depositional context
of origin. In deltaic settings – where sediment distribution at the
shoreline is governed by drainage reorganization and delta-lobe aban-
donment, which can cause local marine flooding – the generation of
parasequences may be more punctuated than it is for strandplains, for
example, which might be expected to undergo relatively more steady
progradation. In part, differences between river- and wave-dominated
parasequences could be interpreted as a signature of the effectiveness of
wave climate as a control on river-avulsion frequency: increased wave
energy can suppress the avulsion of coastal distributaries through the
effect of longshore transport as an inhibitor to stream lengthening and
aggradation (Swenson, 2005; Bhattacharya et al., 2019) and through
the construction of strandplains by accretion of sets of elevated beach
ridges that may act to confine channels (Syvitski and Saito, 2007). With
this in mind, it might seem reasonable to interpret our data in terms of
differences that may exist in the relative likelihood of recording the
effect of allogenic controls, across deltaic and shoreface systems. The
view that more punctuated parasequence development might be asso-
ciated with deltaic systems, possibly in relation to inherent coastal
morphodynamics, is a view that can be substantiated with additional
insight from preserved sedimentary architectures in the shallow sub-
surface of modern deltas, as considered next.

6. Deltaic constructional units and parasequences

The notion that delta-lobe switching acts as a parasequence-gen-
erating mechanism is reflected in interpretations of the rock record (cf.
Bhattacharya and Walker, 1991a; Kosters and Suter, 1993; Bridge and
Willis, 1994; Bohacs and Suter, 1997; Helland-Hansen, 2010; Chen
et al., 2014; Grundvåg et al., 2014), and is fostered by results of nu-
merical (e.g., Dalman et al., 2015) and physical (e.g., Straub et al.,
2015) experiments. Accordingly, a deltaic parasequence would re-
present the preserved expression of a delta lobe. However, interpreta-
tions are also made of parasequences that may contain more than one
delta lobe (cf. Bhattacharya and MacEachern, 2009; Amorosi et al.,
2017; Ghinassi, 2007; Jouët, 2007; Ainsworth et al., 2018; Fanget et al.,
2014; Hampson, 2016), in some cases associated with different feeder
rivers (Olariu et al., 2012), or even of delta lobes that contain more
than a single parasequence (Boyer et al., 2005). A comparison with
Quaternary deltas can give some perspective on the possible origin of
deltaic parasequences, and on the likelihood of interpretations of the
stratigraphic record.

Before any comparison between parasequences and delta lobes can
be made, however, it is necessary to consider how a delta lobe is de-
fined. The term has been used for many decades in application to the
recent and ancient stratigraphic record (e.g., Rusnak, 1960;
Dondanville, 1963), and its usage has become entrenched in the dis-
cipline, yet a formal definition of ‘delta lobe’ does not seem to exist
(Bhattacharya et al., 2019). The term has been applied to refer to
geological entities that can be fundamentally very different, such as
genetically related subaerial parts of a delta (Nijhuis et al., 2015) or

delta-front sand-prone lobate units (Deveugle et al., 2011), for example.
A commonly shared view is that a delta lobe is a sedimentary body that
represents the product of progradation of a portion of a delta during a
constructional phase, in relation to a certain state of river drainage, and
that is typically made of cogenetic prodeltaic, delta-front and delta-top
deposits (cf. Frazier, 1967; Coleman et al., 1998; Roberts et al., 2004;
Wang et al., 2016; Fig. 11A). In this work we include data on units that
are termed delta lobes and match with this definition. However, even
when the term is used in this sense, specific recognition criteria can
vary (e.g., facies trends, geometries, stacking pattern, internal archi-
tecture and stratal terminations), in part based on available data types.
Also, deltaic units of this type can be variably related to the config-
uration of river drainage, to the point that the same ‘lobe’ definition
could be applied to units at different scales, depending on the scale at
which foci of sediment accumulation and changes in sediment dispersal
are identified. This is reflected in attempts to erect a hierarchy of deltaic
units (Frazier, 1967; Coleman, 1988; Xue, 1993; Roberts, 1997; Somoza
et al., 1998; Vakarelov and Ainsworth, 2013), whereby multiple hier-
archies are related to different scales at which drainage reorganization
occurs, expressed for example in the drainage order or location at
which stream avulsion or distributary activation takes place. A varied
nomenclature is used for higher-order deltaic constructional units made
of coalescing ‘delta lobes’, which includes terms like ‘lobe complex’,
‘superlobe’ or ‘progradational unit’ (Frazier, 1967; Xue, 1993; Somoza
et al., 1998).

Here a comparison is made between deltaic parasequences and
deltaic constructional units from published studies of the shallow sub-
surface of active deltas, based on a range of data types, including cores,
well logs, shallow seismic surveys, geoelectrical surveys, and GPR
surveys, integrated with observations on delta geomorphology. The
data are from six deltas, linked to rivers of variable size and developed
under different environmental conditions (Tab. 2, Fig. 10). Sedimentary
bodies originally described as ‘delta lobes’ or representing higher-order
units made of amalgamated delta lobes were coded in SMAKS
(Colombera et al., 2016) as architectural elements (N = 84), which are
characterized in terms of hierarchy and spatial and temporal scales.
Bearing in mind the considerations made earlier, which highlight the
uncertainty as to whether these units are even comparable between
them, a comparison is attempted of the spatiotemporal scale of recent
deltaic constructional units at different orders with that of deltaic
parasequences (Fig. 11).

Necessarily, the timescale of development of delta lobes is shorter
on average (mean value: 644 yr) than the duration of the higher-scale
constructional units (e.g., channel complexes, superlobes) they form
(mean value: 1488 yr). However, both types of units have a duration
that is, on average, shorter than the duration of deltaic parasequences
(mean value: 9211 yr). The difference in mean duration between
parasequences and higher-scale deltaic units is statistically significant
(two-sample t-test of log-transformed values: T = 9.64, d.f. = 79, p-
value < 0.001), but the interquartile range of duration for deltaic units
fall within the range of duration estimated for parasequences
(Fig. 11B).

Table 2
Summary of the six SMAKS (Colombera et al., 2016) case studies of modern deltas considered in this work.

Delta Location Drainage area (km2) Delta-lobe width range Sources

Burdekin Queensland, Australia 130,000 8–38 km (N = 13) Fielding et al. (2005a, 2005b, 2006)
Ebro Spain 85,000 15–22 km (N = 4) Somoza et al. (1998)
Mississippi Louisiana, USA 3,345,000 23–115 km (N = 16) Frazier (1967); Roberts (1997)
Po Italy 74,000 19–48 km (N = 5) Correggiari et al. (2005a, 2005b)
Rhône France 98,000 4–30 km (N = 8) Jouët (2007); Fanget et al. (2014)
Yellow River China 752,000 27–66 km (N = 10) Xue (1993); van Gelder et al. (1994); Wang et al. (2016)

A case study is a dataset on a particular succession, by some author(s) or research group, as presented in one or more related publications. The consulted literature
sources that contain data on sedimentary bodies that represent deltaic constructional units (delta lobes and elements of higher hierarchy) are reported. Data on the
range in longshore lateral extent of the units exclusively refer to sedimentary bodies that were originally termed ‘delta lobes’.
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Deltaic parasequences (mean value: 16.7 m) are, on average, thicker
than delta lobes (mean value: 10.7 m), to a statistically significant level
(two-sample t-test: T = 5.38, d.f. = 81, p-value < 0.001), despite
being subject to greater sediment compaction overall (Fig. 11C). In-
stead, the average thickness of larger-scale deltaic constructional units
is the same as the mean thickness of parasequences (16.7 m), and larger
than the mean thickness of parasequences developed at the 102–103 yr
timescale (14.5 m).

Differences in unit durations could be explained in part by the dif-
ficulty in constraining the duration of time gaps (e.g., associated with
flooding surfaces) in the ancient rock record, which is consistent with
observations of Sadler effect in parasequences (Fig. 8). Notwith-
standing, combined data on the spatial and temporal significance of the
units indicate that the majority of deltaic parasequences, at least when
recognized in the rock record, are likely to contain multiple coalescent
‘delta lobes’, as commonly defined and recognized in modern deltas. On

Fig. 10. Case studies of modern deltas and delta lobes. A) Geographic distribution of the six SMAKS (Colombera et al., 2016) case studies of the sedimentary
architecture of modern deltas considered in this work (see Table 2). B) Scatterplot of mean tidal range versus mean annual significant wave height for the studied
deltaic systems. The fields for wave- (W), mixed- (M), and tide-dominated (T) regimes (Hayes, 1979) are indicated. C-H) Planform shape of the recognized delta
lobes, presented for each delta, based on their extent as mapped in the original source works (Table 2); variability in the mapped planforms might in part reflect
differences with regards to the consideration of prodelta deposits and the ability to correlate delta lobes laterally. Full lobe planforms are mapped in C, D, F, and H,
whereas shoreline extents only are mapped for delta lobes in E and G.
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this basis, it seems more likely that delta-lobe switching might have a
role in controlling the internal architecture of parasequences – in terms
of compensational stacking of bedsets – rather than driving para-
sequence-scale flooding-surface formation. If the lithological and ar-
chitectural motifs associated with deltaic parasequences are dominantly
autogenic in origin, they appear more likely to reflect higher-scale
deltaic constructional units, associated with major reconfigurations of
fluvial drainage.

Data on deltaic units have implications for using observations from
recent delta-lobe deposits to make inferences of scales of stratigraphic
compartmentalization in deltaic successions: stratigraphic compart-
ments of sand-prone deposits are likely to develop at a scale that is
below the scale of the parasequences, as commonly recognized in the
subsurface. The data also suggest that interpretations of the possible
autogenic origin of deltaic parasequences (e.g., Emery and Myers,

1996) should be attempted with consideration of scale, especially given
that drainage reorganization and the resulting abandonment of parts of
a delta might be controlled by sea-level change (cf. Lowrie and Hamiter,
1995; Nijhuis et al., 2015), particularly at the temporal scale that might
be relevant for the development of units that are recognized as para-
sequences.

7. Discussion

The results of this work can contribute to the current debate on the
appropriateness and utility of parasequences for the practice of se-
quence stratigraphy. Parasequences would be most useful if their defi-
nition could be applied consistently and objectively, if they all had a
similar geological origin, and if their characteristics rendered their
physical correlation unambiguous.
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However, inconsistency is seen in the application of the original
definition and of associated diagnostic criteria, which has resulted in
the use of the term parasequence to designate units that are not entirely
comparable. It is notable that, in theory, parasequences should not
contain lowstand deposits, as they were originally envisaged as the
product of paracycles of relative sea-level rise followed by stillstands,
with no relative sea-level fall, or of pulses of sediment supply (Kamola
and Van Wagoner, 1995). In this respect, parasequences are different
from high-resolution sequences. However, this is an element of the
original view of a parasequence that has not always been adhered to in
the application of the term, in part because the assumption of con-
stantly positive accommodation may not be realistic in most geological
contexts (Catuneanu, 2019b). There are cases in which sedimentary
units that match with the definition of a parasequence by Van Wagoner
et al. (1990), and that are classified accordingly, record a forced re-
gressive evolution during relative sea-level fall (e.g., Plint, 1991;
Pattison, 1995; Li et al., 2011a; El Euch-El Koundi et al., 2018; Berton
et al., 2019), cases in which conventional parasequences are seen to
transition laterally to successions that represent high-frequency se-
quences (Mitchum Jr and Van Wagoner, 1991; Ito et al., 1999), and
even cases where the terms ‘parasequence’ and ‘high-resolution se-
quence’ are used interchangeably (cf. Swift et al., 1991; Schwarz et al.,
2018; Pattison, 2019a). Given the timescales of deposition of the ma-
jority of parasequences with temporal control that have been con-
sidered in this study, which fall in the 10 kyr – 300 kyr range (Fig. 6),
the assumption that the studied units only record normal regression
may be unrealistic, even for the greenhouse climates of the Mesozoic
(cf. Miller et al., 2011). Part of the deposits of these units might record
intervals of forced regression – of some magnitude – whose stratal ex-
pression is subtle or not revealed within the observation window.

A consistent usage of parasequences is also rendered difficult by
practical limitations in the primary data, which determine uncertainty
in parasequence correlation between wells or outcrops. The identifi-
cation of parasequences and the erection of resulting stratigraphic
frameworks rely heavily on observations that are expected to vary in
quality, coverage and resolution as a function of data types and di-
mensionality (Fig. 4), and are affected by subjectivity in establishing
the significance of stratal trends and surfaces (Fig. 5). Parasequences
commonly tend to be dominantly stacked laterally, along both deposi-
tional strike and dip (e.g., McIlroy et al., 2005; Vakarelov and
Bhattacharya, 2009; Sadeque et al., 2009; Grundvåg et al., 2014): un-
certainty as to how to resolve laterally amalgamated units affects both
outcrop and subsurface studies, and should be considered when
adopting parasequences for scopes of correlation and identification of
reservoir units in the subsurface.

The compared units are linked to, and interpreted in terms of,
processes operating over a wide range of timescales (Figs. 6 and 7), and
are likely to be of different origin despite apparently conforming to the
definition of parasequence (Fig. 9). In particular, differences in char-
acteristic geometry and duration are seen between deltaic and shore-
face parasequences, which could reflect differences in the dominant
forcing mechanisms responsible for their generation. The timescales of
ancient shoreface parasequences mostly fall in the range of the peri-
odicities of orbital cycles. Autogenic dynamics might account for the
shorter duration of the studied deltaic parasequences, even though a
comparison with constructional units of modern deltas indicate that the
timescale of accumulation of deltaic parasequences is generally longer
than the typical period of lobe-switching events triggered by the in-
ception of new distributaries on delta plains.

These considerations highlight the variability in the geological
characteristics of parasequences, and could be held to support the view
that the parasequence concept should be discontinued (Zecchin, 2010;
Zecchin and Catuneanu, 2013; Miall, 2016; Catuneanu, 2019a, 2019b).
Nevertheless, parasequences are widely employed as operative units for
organizing sedimentological data relating to sandstone tongues, espe-
cially in normal-regressive successions, since, in practice, it is useful to

define units that form compartments or reservoir units with local extent
and that can be tentatively defined with a limited dataset (e.g., wireline
logs only), regardless of whether these units are defined in a way that is
coherent in sequence stratigraphic terms. The value of employing out-
crop and Quaternary analogues for scopes of subsurface predictions is
demonstrated by data on the lateral extent of parasequence sandstones,
which reflect a tendency to underestimate the degree of stratigraphic
compartmentalization in shallow-marine reservoirs (Fig. 4), and by
data on delta-lobe architectures, which might represent a scale of
compartmentalization, in the form of intra-parasequence bedsets, that
can be expected in deltaic successions (Fig. 11). Concurrently, however,
the results presented here provide a measure of the uncertainty that
affects any attempt at comparing parasequence architectures of dif-
ferent successions and the application of analogue studies (e.g.,
Reynolds, 1999; Colombera et al., 2016; Ainsworth et al., 2018, 2019).
This uncertainty derives in part from the misidentification of para-
sequences, for example because sandstone tongues that represent high-
resolution sequences might have identical well-log expression (e.g.,
Plint, 1996), and is in part related to the fact that stratal architectures
that match with parasequences develop over a range of spatiotemporal
scales, presumably in response to very different controls.

8. Conclusions

A quantitative characterization of clastic parasequences has been
undertaken with consideration of their geometry, internal facies char-
acteristics, and temporal significance. These attributes are seen to vary
significantly in relation to the interpreted geological origin of the
parasequences, to the types of datasets in which they are observed, and
to the subjective nature of their recognition.

Notwithstanding a proviso of uncertainty on whether a comparison
of this type can even be attempted, the main findings of this work can
be summarized as follows:

- The amalgamation of sandstones of shallow-water origin is likely
under-recognized in subsurface studies in which the lateral corre-
lation of parasequences is carried out, and may be dealt with in
ways that differ considerably in outcrop studies undertaken by dif-
ferent geologists.

- The temporal scale over which parasequences are thought to accu-
mulate apparently covers five orders of magnitude (102–106 yr), and
Quaternary and ancient parasequences appear to map onto different
timescales of development. Yet, estimations of parasequence dura-
tion are likely to suffer from the inability to constrain the duration
of hiatuses, and so the actual variance in duration may be smaller.

- Significant differences in timescale of deposition are seen between
shoreface sensu lato and deltaic parasequences, suggesting that
corresponding stratal patterns that differ in terms of depositional
context of origin may arise in response to fundamentally different
controls.

- Data from parasequences in the stratigraphic record integrated with
data on the architecture of the shallow subsurface of modern deltas
indicate that the origin of deltaic parasequences is more likely to be
controlled by changes in the state of drainage of coastal rivers, but
over a temporal scale and at a level that are larger than those at
which deltaic constructional units termed ‘delta lobes’ are com-
monly recognized.

- Shoreface parasequences largely develop at timescales that broadly
align with those of Milankovitch cycles, i.e., over lengths of time for
which the assumption of constantly positive accommodation may
not be reasonable in most cases. Some of the studied units may even
represent high-frequency sequences, rather than true parasequences
sensu Van Wagoner (cf. Kamola and Van Wagoner, 1995), which
may therefore have restricted applicability anyway.

The observed variability in origin, timescale and anatomy of clastic
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parasequences, along with inconsistencies in the application of the
parasequence concept, have implications for the application of outcrop
analogues to subsurface studies and for the feasibility of using para-
sequences for comparisons of the stratigraphic architecture of different
clastic successions. Results of this work can be referred to for guiding
the application of existing parasequence data in these contexts and for
communicating the uncertainty associated with these data.
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