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Abstract.

A novel approach for structural system optimal design considering life cycle cost is developed.
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Specifically, a performance-based multi-objective design optimization framework for
nonlinear/hysteretic multi-degree-of-freedom (MDOF) structural systems subject to evolutionary
stochastic excitation is formulated. In the core of the stochastic structural analysis component of
the proposed framework lies an efficient approximate dimension reduction technique based on the
concepts of statistical linearization and of stochastic averaging for determining the non-stationary
system response amplitude probability density functions (PDFs); thus, computationally intensive
Monte Carlo simulations are circumvented. Note that the approach can readily handle stochastic
excitations of arbitrary non-separable evolutionary power spectral density (EPSD) forms that
exhibit strong variability in both the intensity and the frequency content. Further, approximate
closed-form expressions are derived for the non-stationary inter-story drift ratio amplitude PDFs
corresponding to each and every DOF. In this regard, considering appropriately defined damage
measures structural system related fragility curves are determined at a low computational cost as
well. Finally, the structural system design optimization problem is formulated as a multi-objective
one to be solved bg genetic algorithm based approach. A building structure comprising the
versatile Bouc-Wen (hysteretic) model serves as a numerical example for demonstrating the

efficiency of the proposed methodology.

Keywords. Nonlinear stochastic dynamics, Evolutionary power spectral density, Hysteresis,
Statistical linearization, Performance-based earthquake engineering, Stochastic averaging, Multi-

objective optimization

1 INTRODUCTION
Most structures and civil infrastructure systems are subject to excitations that exhibit strong
variability in both the intensity and the frequency content. Clearly, a realistic system analysis and

design necessitates the representation of this class of loads by non-stationary stochastic processes



[1,2,3]. Further, structural systems under seegoitations, such as earthquakes, can behave in a
nonlinear manner exhibiting a hysteretic restoring force-displacement characteristic.aThus,
sustained challenge in the area of structural dynamics has been the efficient analysis and design of
nonlinear/hysteretic systems/structures under evolutionary stochastic excitation.

Performance-based earthquake engineering (PBEE) aims at providing information for
facilitating risk-based decision-making via performance assessment and design methods that
properly account for the presence of uncertainties [4,5]. In general, the PBEE framework includes
four basic stochastic analysis components (see section 3) which address the issue of stochastic
structural design in a comprehensive and consistent manner. Considering the last component of a
PBEE analysis, that of stochastic loss analysis, the seismic life-cycle cost is usually employed as
a decision variable [6]ndicatively, in [7], Kongand Frangopol addressed the bridge maintenance
schedule optimal design problem and estimated the life-cycle cost performance. Further, adopting
a median global Park-Ang damage index, Ang and Lee [8] considepad costs for various
ground motion intensity levels for the case of reinforced concrete building®-10], a
probabilistic multi-objective optimization framewowkas applied for the life-cycle cost optimal
seismic design of steel structur&surther, Taflanidis and Beck [11] focused on assessing the
performance of passive dissipative devices by utilizing an efficient simulation approach within a
performance-based seismic design framework that optimized the expected life cycle cost of
structural systems. Next, Takashi et al. [i&lled ona Monte Carlo simulation approach for
assessing the life-cycle cost of a structural system equipped with damping devices.

Focusing on the stochastic structural/damage analysis components of a PBEE framework,
several approaches have been developed for relating the seismic hazard to the system fragility and

for producing corresponding fragility curves, i.e. probabilities of exceeding specified damage



states giveran intensity measurelN1) value. These range from the ones that employ a limited
number of nonlinear time-history analyses with prescribed IM level compatible scaled real
earthquake records 3}, to the ones that employ standard or efficient Monte Carlo simulation
(MCS) based methodologies such as importance/line sampling, and subset simulation [14,15,16
Nevertheless, note that there are cases where the computational cost of the MCS based techniques
can be significaty high; thus, rendering their use computationally cumbersome, or even
prohibitive. Clearly, there is a need for developing approximate analytical and/or numerical
techniques for determining efficiently the response and reliability statistics of nonlinear systems
subject to stochastic excitation [1,2,17-19]. Nevertheless, although there is a considerable body in
the literature referring to the development of such techniques there are limited results related to
adopting and implementing such techniques for efficient fragility analysis applications. An
interesting contribution in this regard is the work by Der Kiureghian and FujifQfavhere an
efficient tail-equivalent linearization based approach was applied for fragility analysis of
nonlinear building structure.

In this paper, a performance-based multi-objective design optimization framework for
nonlinear/hysteretic MDOF structural systems subject to evolutionary stochastic earthquake
excitations is formulated. In the core of the stochastic structural analysis component lies an
efficient approximate analytical dimension reduction approach for determining the system
response evolutionary power spectral density (EPSD) matrix based on the concepts of statistical
linearization and stochastic averaging [18]; thus, computationally intensive Monte Carlo
simulations are circumvented. Note that the approach can readily handle stochastic excitations of
arbitrary EPSD forms, even of the non-separable kind. Further, approximate closed-form

expressions are derived for the non-stationary response amplitude PDFs of the inter-story drift



ratios (IDRs) corresponding to each and every DOF. In this regard, considering appropriately
defined damage measures structural system related fragility curves are determined at a low
computational cost as well. Further, note ttest multi-objective optimization [21] allows for
objectives that exhibit potentially conflicting requirements to be treated simultaneously. In the
present formulation, solving the multi-objective optimization problem typically suggests the
determination of a set of Pareto optimal solutions.

Overall, the novelty of the proposed framework lies in that fact that it appears to be highly
efficient for performing stochastic design optimization, reducing significantly the computational
burden for this task. Specifically, the recently developed approximate nonlinear stochastic
dynamics techniqués appropriately tailored and incorporated in a robust performance-based
framework for addressing the so called life-cycle cost stochastic design optimization problem
thus, circumventing computationally intensive Monte Carlo simulations that are ordinarily utilized
in the literature so far. Further, an additional important feature relates to the utilization of the
expected value of the life-cycle cost. In this manner, the contributions of all structural components
are considered in the formulation herein, in contrast to the commonly adopted in the literature

consideration of the most critical component contribution only.

2 NONLINEAR SYSTEM STOCHASTIC RESPONSE DETERMINATION

2.1 Statistical linearization treatment
In this section the most important elements of an approximate stochastic response determination
technique developed by Kougioumtzoglou and Spanos [18] are included for completeness.

Consider an n-degree-of-freedom nonlinear structural system governed by the equation

Mq + Cq + Kq + g(q,q) = f(v), €Y



whereq, q andq denote the response acceleration, velocity and displacement vectors, respectively,
defined in relative coordinate$4, C andK denote the(n X n) mass, damping and stiffness
matrices, respectivelyg(q, q) is assumed to be an arbitrary nonlin@ax 1) vector function of

the variablegg andq; andf(t)T = (f,(t),f,(v), ..., f,(t) is a(n x 1) zero mean, non-stationary
stochastic vector process defined@3 = —l\7lydg(t), wherey is the unit column vectodi, (t) is

a stochastic non-stationary excitation process (e.g. earthquake excitatid) séadds for the

(n x n) mass matrix defined in absolute coordinates. Fur{ey,possessean EPSD matrix

S¢(w, t) of the form

[ mlzsdg(w, t) 0 0 ]
2 . sse
S;(w, t) = .0 m, .SO(g (w,t) O. ' )
0 0 - my2Sg (@, 1)

while the non-stationary stochastic proc&3 is regarded to be a filtered stationary stochasti
process [22]Note that excitations exhibiting variability in both the intensity and the frequency
content, and thus, possessing a hon-separable EPSD can be considered as well.

In the following, a statistical linearization approd&t®,3]is employed for determining the

response EPSD matr$g (w, t). In this regard, a linearized version of Eq.(1) is given in the form

Md + (C+ Ceq)a + (K + Keq)q = £(0). (3)

Relying next on the standard assumption that the response processes are Gaussian, the time-

dependent elements of the equivalent linear matfggandK,, are given by the expressions

29;
i1 =E {a_q,l-} : (4)

and



d29i
eq __ l
kij =E {_aq,-}' (5)

Next, omitting the convolution of the impulse response function matrix with the
modulating matrix can lead to substantial reduction of computational effort, especially for the case

of MDOF systems [23,24]. In this manner, the response EPSD rSgftix t) for the linearized

system of Eq.(3) is given by
Sq(w, 1) = H(w)S¢(w, Y H™ (w). (6)
whereH(w) is the frequency response function (FRF) matrix defined as
H(w) = (—0?M +i0(C + Ceg) + (K + Keg)) . (7)

Note that Eq.(6) can be regarded as a quasi-stationary approximate relationship which, in general,
yields satisfactory accuracy in cases of relatively stiff systems [23,24]. Considering next Egs.(2)
and (6) yields the time-dependent variance of the response displacement and velocity for the i-th

degree of freedom
o5 (D) = j (IHiz (0)[*my2 + -+ + [Hjp (w)[>my,?) Siig(w, Ddw, (8)

and
[ee]

o (O) = f 02(|Hi; (@)[2my? + -+ [Hin(@)[2my2) S, (@, Ddo. 9)

— 00

Egs.(8) and (9) hold true in the approximate quasi-stationary sense delineated earlier. Clearly,
EqQ.(6 can be used in conjunction with Egs.(4-5) and (7-9) to form a nonlinear system of algebraic
equations to be solved for determining the MDOF system response covariance matrix at a low

computational cost [18]; thus, circumventing computationally intensive Monte Carlo simulations



2.2Dimension reduction approach
Following next the dimension reduction/decoupling approach developed in [18], an auxiliary

effective linear time-variant (LTV) oscillator corresponding to thleDOF can be defined as
Qi + Baux,i(t)qi + wgux,i(t)qi = fi(t)' i= 1r -y Ngof) (10)

where the time-varying equivalent stiffnea§,, ;(t) and dampingB,,y;(t) elements can be
determined by equating the variances of the response displacement and velocity expressed utilizing
the quasi-stationary FRF of Eq.(10) with the corresponding ones determined via Egs.(8-9); this

yields

02 (t) :fw< 1 >m.25“ (o, Ddeo (D
o —o0 (wgux,i(t) - (1)2)2 + (Baux,i(t)(l))z 1 =gt ’

and

o

2 — 2 !
(0= f_m N <(w§ux,i<t> = )% + Bauxi (D)7

> miZSdg (w, t)dw. (12)

Clearly, Egs.(11) andL@) constitute a nonlinear system of two algebraic equations to be solved

2
aux,1

for the unknownswg,, ;(t) and B,y i(t). Further, relying primarily on the assumption of light
damping, a stochastic averaging technique is applied for casting the second-order stochastic
differential equation (SDE) of Eq.(10) into a first-order SDE [25,26] governing the evolution in
time of the response amplitude procegs) defined as

. 2
ai2(t) = g2 (D) + (q—“)> . (13)

(*)aux,i (t)

Furthermore, associated with the above-mentioned first-order SDE is the Fokker-Planck partial

differential equation governing the evolution of the non-stationary response amplitude PDF



p(a;, t) corresponding to the i-th degree of freedom. Next, the system non-stationary response

amplitudeq; is assumed to follow artiedependent Rayleigh distribution of the form [18,27]

9 oy
p(ay,t) = mexp (— ZGi(t)>' (14)

Substituting Eq.(14) into the Fokker-Planck partial differential equation, yields a first-order

ordinary differential equation of the form

A _ T[Sf((*)aux,i (t): t)
ei(t) - _Baux,i(t)ei(t) + wgux,i(t) ’

(15)

to be solved via standard numerical integration schemes such as the Runge-Kutta; see also [26-
28]. Overall, it can be readily seen that the approximate analytical technique presented in section

2 not only determines the original MDOF system response amplitudepRpF) for each and

every DOF in an efficient manner by circumventing computationally demanding MC simulations,

but also decouples the original system providing with effective time-varying stiffness and damping
elements corresponding to the i-th DOF. The latter feature is especially important for a number of
reasons such as determining peak system response estimates based on design spectrum compatible
excitation power spectra [29], tracking and avoiding moving resonance phenomgnanfB80
developing efficient approximate techniques for determining nonlinear system survival
probabilities and first-passage PDFs [31,32].

Further, the herein considered damage states are expressed in terms of the inter-story drift ratio
(IDR) that is defined as the difference of the horizontal displacements between two successive
stories, normalized by the inter-story heightConsidering in the ensuing analysis the IDR
amplitudeA;(t), a direct transformatiof83] of the response amplitude PDFa;,t) yields the

non-stationary IDR amplitude PDF in the form



2
;xApozzhz_éLexp<_}FAi>. (16)
0;(t) 26;(1)

Further, of particular interest from a reliability assessment perspective is the time instant where
the IDR amplitude reaches its most critical value,p&(A;) = p(A;, t = t..). In the following,

this is assumed to be the time whér&) reaches its peak value, and thus, the PDF of Eq.(16
takes its most broad-band form yielding higher failure probabilities. Specifically, the failure
probability P, defined as the probability of exceeding various levels of dadageonditioned

upon the peak ground acceleration (PGA), is expressed as

)
Hmmjzﬁwzﬂmm=a%ﬂ=1—fgﬂ&&WﬁAz%yﬁm (17)
0

Considering Eq.(16), and integrating analytically Eq.(17) yields

h?8?
HM(026“=6HGA=a%ﬂ=em<—za“9. (18)

It is deemed appropriate to note that in the herein proposed framework, only failure definitions of
the form of Eq.(18) are considered, whereas incorporation of first-passage [31,32,34] kind failure

criteria is identified as a topic of potential future work.

3 SEISMICLIFE-CYCLE COST EVALUATION

The PBEE methodology serves as a potent stochastic framework for assessing the performance
of engineering structural systems subject to various hazards via an appropriately defined decision
variable. Following a standard PBEE framework, as proposed by the Pacific Earthquake
Engineering Research (PEER) center [35,36], the evaluation of a decision variable typically
depends on a number of analysis components such as (i) stochastic hazard analysis treating the

uncertaintyin the seismic input intensity measures (IMs); the seismic hazard is usually described



by the annual probabilities of exceeding various levels of IMs, (ii) stochastic structural analysis
associated with the uncertainty of the engineering demand parameter (EDP) used to monitor the
structural response conditional on the IMs; the IBR commonly selected EDP for building
structures, (iii) stochastic damage analysis relating the EDPs to damage states, which in tur
describe the generated damage, and (iv) stochastic loss analysis reflecting the effect of the
underlying uncertainties on a quantifiable decision variable.

The uncertainty in seismic ground motions is normally described in terms of the probability
distribution of a seismic intensity measure, such as the peak ground acceleration (PGA). In this

regard, the seismic hazard is presented as a mean seismic hazaidi(aygy® which provides

the annual probability of exceeding specified levels of PGA [37]; that is,
H(tpga) = P[PGA = apga]. (19)

In various PBEE studies [9,10] as well as in the ensuing analysis, discrete damage states are
considered. The non-stationary IDR amplitude&) serve as global EDPs while the employed
relationship between the EDP and the damage states, provided herein for illustration purposes, is
based on the work by Ghobarah [38] related to ductile reinforced concrete (RC) moment resisting
frames (see Table. 1). Note that IDR constitutes one of the most reliable measures of structural
damage due to its close relationship to plastic rotation demands for individual beam-column
connection assemblies. Typically, the damage states for reliability analysis purposes are defined
in terms of the overall inelastic deformation or the maximum inter-story drift of the structural

system [4.



Damage State Inter-Story Drift (%)  Cost (% Gn)

(N-None 0.0 < IDRyax < 0.1 0
(I)-Slight 0.1 <IDRpyax <02 05
(I)-Light 02 <IDRyax <04 5
(IV)-Moderate 0.4 < IDRyax < 1.0 20
(V)-Heavy 1.0 < IDRyax < 1.8 45
(VI)-Major 1.8 < IDRyax < 3.0 80
(VI)-Destroyed 3.0 < IDRyax 100

Table 1. Damage states, Inter-story drift limits and associated costs.

Further, the seismic fragility curves serving as a quantitative tool of the structure vulnerability
are evaluated for various damage levels. Specifically, the seismic fragility curves aeatbffic
determined by simply integrating the critical non-stationary response IDR amplitudge.RBP
for the time instant,..; see Eqs.(16-17). In this regard, the probability of-tile DOF exceeding
various levels of damage given a specified PGA valuepR,[£;(t) = 6,45 = 8|PGA = Opgal, CAN
be efficiently computed via Eq.(18).

Notably, the fragility curves corresponding to each and every DOF for various damage levels
are determined at a minimum computational cost via Eq.(18). Next, considering the i-th DOF of
the MDOF system, the annual probability of exceeding a given state of damage can be defined as

dH(O‘pga)

P, = j P[Ai(D = 845 = §|PGA = g, i
pga

dapga- (20)

In the current study, the earthquake occurrence is assumed to follow a Poisson process [39]
Further, the expected value of the life-cycle cost (LCC) due to seismic hazard can be expressed in

the form

1
E[Lcc(A;(x B)] = m(l —exp (—ATy)) X ...



Ndof Nds

D (“Co i (1= R, (A1®) > 8) = In (1= Py, (A1) > 8me)]), 1)

i=1 m=1

whereny is the total number of damage states considergg;is the number of degrees of
freedom of the MDOF system, is a constant discount rate/yedy is the design life of the
structure,C,, is the cost associated with theth damage state, given in Table.1 as a percentage
of the initial costp, 1, refers to thé-th DOF and represents tifig-year probability of exceeding

them-th damage state given by the expression

Pi,Td =1- exp(—Pi’aTd). (22)

Furthermore, it is assumed that the structure is restored to its initial undamaged state after each
earthquake occurrence and losses due to fatalities and building downtime are ignored.

The fact that this study involves damage costs makes it important to consider all degrees of
freedom, as opposed to only the critical component that is usually employed in PBEE studies
[4,9,10]. Considering cases where the roof drift is employed as an EDP, the corresponding damage
analysis cannot account for the distribution of damage along the height of the structure, or take
into account soft stories phenomena [38]. Further, in many studies in the literature, the adoption
of the maximum value of the induced inter-story drifts as an EDP leads to a subsequent stochastic
damage analysis based on information corresponding to a specific story only. Thus, information
regarding the response behavior of the rest of the stories and their contribution to damage
disregarded.

Overall, in the herein proposed life-cycle cost formulation the expected value of the seismic

losses given by Eq.(21) serves as the decision variable, whereas the attribute of comsiglering

EDPs is expected to better account for the system overall performance in the formulation of the



multi-objective optimization problem in the following section.

4 MULTI-OBJECTIVE DESIGN PROBLEM FORMULATION

In the field of structural system optimization, most often several conflicting objectives need to
be treated simultaneously. In this regard, a multi-objective optimization problem is formulated
yielding a compromise between various objective functions. A general stochastic multi-objective
optimization formulation for the determination of a vectoof design variables to minimize a

vector of objective functions takes the form
minyep F(X), (23)
where
F(x) = [fi"M(x)] = [f"M(x), ... :gfg, (X)],z=1,...,n0y
x = [xj] = [X1, X2, Xny, T j = 1,..n4y, X €D, (24)
subject to system response level constraints of the form

G = [gp?™)] = [g1"®), -, gheen ()] < 0,p =1, ..., non - (25)

The superscript (ind) denotes the nature of the objective function or constraint which in turn is

indicated by the subscripts (obj) and (con) respectively. In the case of a stochastic objective
functionm§'*°" (x) ando$™°"(x) are employedm{' " (x) andof°"(x) are the maximum over
time non-stationary values of the mean and standard deviation of the objective fupction

respectively, evaluated at the design variables vectdi®t(x) is a deterministic objective
function evaluated at the design variables vegtdn case of a stochastic response constraint,

StOCh(x) uStOCh(x) anchtOCh(x) stand for the maximum over time non-stationary values of the

mean, mode and standard deviation of the response furgfioespectively, evaluated at the



design variables vecta; gget(x) is a deterministic response level constraint evaluated at the
design variables vector; andG(x) is the vector of the constraint functions of the optimization
problem under consideration. D is a given set that contains the boundary constraints for the vector
of design variables.

Further, a weighted linear combination of the aforementioned quantities, which is the case in
most practical applications [21], is considered in the herein work as well. In this regard, a single
parameterized objective functidt(x) under several optimization runs with different parameter

settings is responsible for the generation of the Pareto optimal set [40], i.e.

stoch det

obj Tobj
W w, W,
F(x) = E —Emiet (x) + ZEof oM (x) | + E L flet(x) |, (26)
k=1 S/,L,K SO’,K n=1 Sn

wherew, ., w,, are weights and

L, «» S @re scale factors for the mean and standard deviation

of the stochastic objective componefif$"(x), k = 1, ...,nf)tboj‘:h; w,, ands,, are the weight and

scale factor of the deterministic objective componéfift§(x),n = 1, ...,nggg. Regarding the

weighting factorsv the following normalization is employed

Nobj

ZWZ =1. (27)

The weighting factors can be adjusted appropriately, according to the importance of each objective
and therefore the trade-off between the objectives can be readily studied. Any combination of the
weighting factors corresponds to a single Pareto optimal solution [9,10,21]. Thus, by performing
a set of optimization processes utilizing various weighting factors combinations it is possible to
generate the full set of the Pareto ogtisolutions.

Since the generation of the Pareto optimal set involves performing a number of optimization



procedures, the selection of an optimization algorithm with considerable advantages specifically
tailored to meet the characteristics of the herein problem formulation is of particular importance.
Specifically, an outer loop that systematically varies the weighting factors of the parameterized
objective function and an inner loop that features a standard genetic algorithm based optimization
process are utilized for solving the multi-objective optimization problem. Regarding genetic
algorithms, they belong to the class of Evolutionary algorithms and they appear to be quite robust
in the sense that they are less vulnerableeing trapped in local optima; and thus, more likely to

obtain the global optimum for a non-convex constrained optimization problem [41].

5 NUMERICAL APPLICATION

5.1 Three-story Bouc-Wen hysteretic building structure

In this section, the proposed methodology is applied to a 3-story reinforced concrete building
which is modeled as a nonlinear/hysteretic 3-DOF structural system subject to evolutionary
stochastic earthquake excitations. All floors are assumed to be rigid and have a constant height
equal to 3m, whereas the maseéshe plates are considered to be constant for all floorsawith
valuempare = 3.5 X 10%*kg. A Youngs modulus ofE = 30 x 10°Pa and mass density @f=
2,5 X 103kg/m3 are considered herei@olumns’ cross-section dimensions for a given floor are
assumed to be equal, and thus, the vector of design varaidessone component for every story,

i.e. the width of the cross-section.
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Figure 1. A general nonlinear/hysteretic MDOF structural system.

The nonlinearity is assumed to be in the form of the Bouc-Wen hysteretic modéh[tia4
regard, considering inter-story drifts q; (q; = X; — Xj_1, 1 =1, ...,ng40¢) as well as the additional

states z;, the 3-DOF nonlinear structural system is governed by Eq.(1) where

qT = (q1 92 93 21 Z3 Z3) (28)
My, M12]
M = 29
M;; My, (29)
where
m; O 0
My, = [mz m; 0 ]. (30)
mz Iz Mg
and
0 0 O
M12 = M21 = Mzz = O 0 0 . (31)
0 0 O
K11 K12]
K= 32
Kz1 Ky (32)

where



ak; —ak, 0

K1 = [ 0 ak _aksl, (33)
0 0 aks
(1-a)k; —(1-a)k, 0
Kz = 0 (1—-ak, —(1-a)ks|, (34)
0 0 (1 —a)ks,
and

0 0 O
K1 =K =10 0 o0f. (35)

0 0 O

In EQgs.(33-34) the parameterstands for the rigidity ratio and can be viewed as a form of post-
yield to pre-yield stiffness ratia = 1 corresponds to the linear systerkurther, the damping

matrix of the structural systeftakes the form

C11 C12]
C= , 36
ot Ca (36)
where
C11 = ¢ " Kiq, (37)
0 0 O
Ci2=C21=10 0 o0f, (38)
0 0 O
and
1 0 O
CZZ =0 1 0] (39)
0 0 1

In Eq.(37) ¢, is taken equal to 0.2 X 1072, Next, the loading vector becomes

F()T = (f,() f,(0) f3(0) 00 0), (40)



and

g(q, CI)T = (0 00 —g1(q1,21) —82(d2,22) —g35(qs, 23))- (41)

In the Bouc-Wen model the additional stajas associated with the inter-story drft via the

nonlinear differential equation
z; = gi(q;,z)), (42)
where
gi(qi,z) = —vlailzilz "™t — Baslz|™ + Ag;. (43)
In Eq.(43) the parameteys3, A andn are capable of representing a wide range of hysteresis loops

[42]. The valuesa=0.15, B=y=0.5, n=1 andA =1 are considered herein. Next, the

equivalent linear matrices take the form [1,3]

Ce 11 Ce 12
C. — [ a a ] 44
eq Ceq21 Ceq22 ( )
where
0 0 O
Ceq11 = Ceq12 = Ceq22 =10 0 0}, (45)
0 0 O
and
Ceq1 0 0
Ceqz1=| 0 Ceqz 0| (46)
0 0 Ceq3
Keqll Keq12
Keq = [ ] 47
ed Kqul KquZ ( )

where



0 0 O
Keq11 = Keq12 = Keq21 =({0 0 0}, (48)
0 0 O
and
keql 0 0
KquZ =0 keq2 0 |. (49)
0 0 keq3

Furthermore, the elements, andk.q, are given by the expressions

| ]
2| E(q,z
Cegq; :\/;ly S +BVE@H|[—A, (50)

Jean

and

2 E .1 i
o= 2| 2822 o

respectivelyRegarding the excitation EPS@g(w, t), it is assumed to have the separable form

Sag (0,8 = 18(D)]*Scp(w), (52)

whereScp(w) represents a stationary process power spectral densitg(gndenotes dime-

modulating function. The envelope functigt) is given by
g(t) = k(e Pt —e7P2t), (53)

whereb, = 0.1 andb, = 0.3; k is a normalization constant so tlgét) ,..x = 1, thus Eq.(52) has
a uniform modulation. The widely used Kanai-Tajimi spectrum appropriately modified by Clough

and Penzien [43] is considered 4 (w); that is,



(w/we)* wg? + 4(8g)  wg’w?

“(1— (@/w)?)? + 452 (0/wp)? (wg? — w2)? + 482w 2w?

Scp(w) =S (54)

wheresS, is the amplitude of the bedrock excitation spectrum, modeled as a white noise process;
& andw, are the damping factor of the soil and the fundamental natural frequency, respectively;
and¢; andw; are parameters describing the Clough-Penzien filter. The parameters values chosen
are§; = 0.7, wg = 2rad/s, & = 0.6, w¢ = 12.5rad/s. At this point, it is deemed appropriate to

note that the proposed framework can readily address in a straightforward manner also cases where
the excitation input is of the non-separable kind. Next, the duration of the earthquake exgitation

is taken equal t@0s. Note that in the ensuing analysis the following definition fordahsg is

adopted; i.e.,
Opga = E[max(|b’cg(t)|)], 0<t<t, (55)

Thus, to provide with a mapping between tig,, and the modulated Clough-Penzien

excitation spectrum intensity fact8§, several MCS are conducted for vari@gsvalues via the
spectral representation approach [44]. For each ensemble of excitation realizations Eq.(55) is

applied for determining the valuwg,, that corresponds to the givBp In this manner, repeating

this process for various valuesSyfthe relationshis, (a,g,) depicted in Fig.(2) is obtained.
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Figure 2. Mapping between tlSg(ay,g,) Of the excitation spectrum angl,, .

In Fig.(3), the EPSD 083 (w,t) is plotted forS, = 0.5692 m?/s3 which corresponds tona

acceleration of the earthquake inpyt, equal to0.34g according to the definition of Eq.(55).

B 00 120 140 160 180
5 oo 20 40 60 80 100120
Frequency (rad/s)

40 60 80 100 120 140 160 180
Frequency (rad/s)

Figure 3. Clough-Penzien Evolutionary Power Spectral Deﬂ&ét@w, t).
Note that the herein utilized Clough-Penzien spectrum has been widely used in earthquake
engineering applications, also as an excitation power spectrum model compatible with the seismic

design spectrum [29]. Next, the seismic hazard curve of B4gEXpressed in the approximate

form used in [37], i.e.,

H(apga) = P[PGA = O‘pga]] = kg X O(pga_kll (56)

wherek, = 6.734 x 1075 andk,; = 2.857. Note that when dealing with the evaluation of the
expected value of LCC (see Eq.(21)), and for the purpose of taking into account all possible
earthquake scenarios a structure is anticipated to encounter during its lifetime, all seismic events

with acceleration input,,, values betweed.1 andlg are considered. In this setting, a wide range



of imposed seismic inputs,,, is regarded while neglecting those with ground acceleration less

than0.1g that are not expected to cause significant damage to the structure.

Further, approximate technique based data are compared with pertinent Monte Carlo simulation
data utilizing 10,000 realizations. Specifically, excitation realizations compatible with the EPSD
of Eq.(54) are generated based on the spectral representation technique [44]. Next, the nonlinear
equation of motion (Eq.(1)) is numerically integrated via a standard fourth order Runge-Kutta
scheme, and finally, system response statistics are obtained based on the ensemble of the response
realizations. In this regard, to provide with an indicative order of magnitude for the computational
cost involved, utilizing a laptop computer with standard configurations, the technique based on the
Rayleigh approximation requires-3 min, whereas the MCS based system response EPSD
estimation (10,000 time histories) requires-12 h, depending on the specific application.
Indicatively, in Figs.(4a) and (4b), the non-stationary response IDR amplitudedefofsined
via the approximate technique are compared with corresponding MCS data for an initial design
variables vectorx™ = [0.30m,0.25m, 0.20m]T. The seismic excitation intensity level S, is

selected to yield aapg,value equal td.34g; see Fig.(3). Note in passing that it can be argued that

even in cases where the system response PDF deviates considerably from the Gaussian one, the
magnitude of this discrepancy is reduced when referring to system response amplitude PDF. It can
be readily seen that the proposed approximate stochastic dynamics technique demonstrates a

satisfactory degree of accuracy.
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Figure 4. Non-stationary response IDR amplitude PDFs corresponding to the third story of the
hysteretic MDOF structural system (a) via the analytical approach (b) Monte Carlo data (10,000

realizations).

Further, in Figs. (5a) and (5b) the most critical response IDR amplitude PDEs) =
p(A; t = t.) are plotted for two distinct design variables values and compared with MCS data

demonstrating a reasonable degree of accuracy.
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Figure 5. Non-stationary response IDR amplitude PDF of every story of the hysteretic MDOF
system; comparison with MCS (a)x™ =[0.30m,0.25m,0.20m]Tand (b) x"° =
[0.55m, 0.55m, 0.55m]T.

Comparing Figs.(5a) and (5b) it can be readily seen that a slightly higher level of accuracy is
observed in Fig.(5b). To explain this, note that in Fig.(5b) the chosen design x/&ttehich

corresponds to an upper design bound with value [0.55m,0.55m, 0.55m]7T yields a relatively



stiffer structure than the one depicted in Fig.(5a), where x™ = [0.30m,0.25m,0.20m]". As
pointed out in section 2 and explained in detail in [18,23,24]the approximation induced by
considering Eq.(6) implies a relatively lower level of accuracy for “softer” systems. Nevertheless
as shown in Fig.(5a), even in cases where the technique deviates slightly from the exact value, it
still provides with conservative estimates; thus, rendering itself well-suited for structural design
applications. Clearly, the determination of response IDR amplitude PDFs efficiently is a key factor
for the subsequent fragility and loss analysis as well as for conducting the optimization procedure
of the proposed PBEE framework.

Next,in Fig. (6) the fragility curves for each damage state are indicatively plotted for one story

of the MDOF structural system; see Table 1.
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Figure 6. Fragility curves for the third story of the hysteretic MDOF structural system considering
each damage state'{ = [0.30m, 0.25m, 0.20m]7).
5.2Multi-objective Optimal Designs— Pareto Front Curves

The objective function is defined as a weighted linear combination of the initial cost function
and of the expected value of the life-cycle cost (LCC). Further, the response of the structural
system is constrained in terms of the modes (i.e. most probable values) of the non-stationary

response IDR amplitude PDFs of every DOF of the hysteretic MDOF system. The design variables



are the dimensions of the square crassion of the column elements. Columns’ cross-section
dimensions for a given floor are assumed to be equal, and thus the vector of design wanedbles
three components, one for every story. Next, assuming an initial design
[0.30m, 0.25m, 0.20m]T and boundary constraintg™ < x; < x;"°, i = 1, ..., ngop, Wherex'? =

[0.55m, 0.55m, 0.55m]T the optimization problem takes the form
minyep (F(X)) = minkep(Cin, E[LCC(A;(x, ©))]), (57)

where the conflicting sub-objectives are normalized appropriately (see section 4) under the

stochasticonstraints

Ve

Moi(S5, %, 1) =——< Symit) (58)
and
®aux,i (S0, X ) max S Werp OF 0gyy,i (S, X, ) min 2 Werr (59)
and the deterministic constraint
Xi = Xiz1, 1=1,.., 040 (60)

In Eq.(57 Ci,(x) stands for the initial cost which is assumed to be directly proportional to the
building structure weight; this includes the weight of the column elements plus the weight of the
plates evaluated at the design variables veGtBfLCC(A;(x, t))] is the expected value of the life-
cycle cost, evaluated at the design variables vecttm Eq.(58)p,;(Ss, X, t) is a vector of the
modes of the non-stationary response IDR amplitude PDFs of every story of the hysteretic MDOF
system for the whole duratiap of the seismic excitation with intensity facgj, evaluated at the
design variables vector. The structure design service lifgy is considered to be equal to fifty

years while the discount ratid, is taken to be equal 8. Regarding the stochastic constraints



of Egs.(58) and (59) the critical excitation was selected to be the one with intensitySfactor

yielding an earthquake input,,, equal to0.34g; see Fig(3). The rationale behind this choice lies
in the fact that the above chosen valuedgy, represents a relatively severe earthquake event

which is characterized by a low annual probability of occurrence according to the selected seismic
hazard curve; thus, highly appropriate for applying constraints considering safety issues [5,9]. In

this setting, the imposed stochastic constraint of Eq.(58) ensures that the vector of the modes of
the non-stationary response IDR amplitude PDFs of every story of the hysteretic structural system

for the whole duratiort, of the seismic excitation with intensity fact®f will not exceeda

preselectedimit 85 which is taken equal to 0.2% and corresponds to a specific damage state
according to the defined IDR limits of Table 1.

Further, regarding the constraint of Eq.(5®)exploits the time-varying effective stiffness

2

(*)aux,i

(t) and damping,,xi(t) elements, stemming from the efficient decoupling of the original
n-DOF system of Eq.(1) inta SDOF LTV oscillators of the form of Eqg.(10). This important
feature of the technique is exploited in the proposed formulation in the constraint of Eq.(59) for
avoiding “moving resonance” phenomena [30]. In this regard, it facilitates the optimization
process to avoid unnecessary optimal design searching in areas where surely optimal designs do
not exist. Specifically, considering the quasi-stationary treatment of the LTV oscillator in Eq.(11),

it can be reasonably argued that the maximum response variance of the original MDOF system

occurs when the excitation EPSR, (w, t) resonates with the LTV oscillator equivalent natural
frequencywayxi(t). Thus, to avoid this resonance phenomenon, the constraint of Eq.(59) is
formulated so that w,, i (t) is kept outside a critical range in the frequency domain [w¢y, 1, , Wer r]

where the excitation EPSD Sitg (w, t) takes its largest values. In this regard, the expression



Sdg‘L(w, t)<ex sgglp (w,1) (61)

is adopted, wher&ag,L(m, t) is a selected EPSD value given as a percerstaf¢he peak EPSD
valuesgg’P (w, t) corresponding to the time instant whigét)|? takes its peak valysee Figs.(3),

(7a)and (7b). In this applicatiols,was taken equal t05%.
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Figure 7. Depiction of the stochastic constraint for avoiding resonance phenomena.

Note that the deterministic constraints of Eq.(60) ensure that the optimization procedure will
provide applicable design solutions from a practical viewpoint. Further, the expected value of the
total cost, the initial cost and the expected value of the life-cycle cost are related accditigng to

following expression [6]

E[Crotal(Ai(x, )] = Cin(x) + E[LCC(A;(x,1))] X Cin (%) (62)

The Pareto front curves obtained by compromise programming, utilizing the linear weighting
method in a MATLAB's built-in genetic algorithm constraint optimization algorithm for both the
expected value of the life-cycle cost and the total cost with respect to the initial cost are presented

in Fig.(8).
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Figure 8. Pareto front curves for the expected values of LCC and Total cost.

Each solution of the Pareto front curves constitutes an applicable design configuration

compromising the conflicting sub-objectives of the problem while respecting the imposed

stochastic and deterministic constraints. Next, to highlight the flexibility of the proposed

methodology, the compromise design solution exhibiting the lowest expected value of the total

cost, as well as the ones corresponding to the two tails (Fig.(8)) are presented in Table 2.

Designs x(m) Cin(X) E[LCC(A{(X, )]  E[Crota(Ai(x,1))]
Design A [ 1t [ 0.3892
2 | 0.3701 1.1095 x 10° 17.1103 x 1072 1.2993 x 10°
349 | 0.3294
Design B | 1%t | 0.4750
2 | 0.4749 1.1415 x 10° 1.1302 x 1072 1.1544 x 10°
3¢9 | 0.3981
Design C | 1%t | 0.5492
2 1 0.5489| 1.1853 x 10° 5.5901 x 10~* 1.1860 x 10°
39 | 0.5471

Table 2. Pareto optimal designs configurations A, B and C.

Note that the tail designs (i.e. Designs A and C) correspond to the single-objective optimal

designs where the building structure weight and the life-cycle cost were used as the objective

functions respectively. Clearly, design configuration A is more susceptible to future seismic



excitations, thus it presents the highest expected value of life-cycle cost (Table 2). Further,
considering the herein formulation of the multi-objective optimization problem, the Paretaloptim
design B consists perhaps the most rational design configuration. However, the implementation of
the Pareto technique allows the designer/analyst to possess a considerable amount of information
for any compromise solution configuration, rather than being limited to a unique optimal solution
This is of particular importance for an educated decision-making analysis where the final optimal
design will be the compromise solution that best balances the initial cost, the life-cycle cost, and

the total cost aceding to the project stakeholders’ perspective.

6 CONCLUDING REMARKS

In this paper, a performance-based multi-objective design optimization framework considering
life-cycle cost has been developed for nonlinear/hysteretic multi-degree-of-freedom (MDOF)
structural systems subject to evolutionary stochastic excitations.

In the core of the stochastic structural analysis component of the proposed framework lies an
efficient approximate dimension reduction technique for determining the non-stationary system
response amplitude probability density functions (PDFs) based on the concepts of statistical
linearization and of stochastic averaging; thus, computationally intensive Monte Carlo simulations

are circumvented. The important additional output of yieldinge-varying effective stiffness

2

(*)aux,i

(t) and damping,,« i (t) elements is sufficiently exploited through the proposed framework
by introducingconstraints for avoiding “moving resonance” phenomena. Note that excitations

with arbitrary non-separable EPSD forms that exhibit strong variability in both the intensity and
the frequency content can be readily accounted for through the presented framework.

In this regard, considering appropriately defined damage measures structural system related

fragility curves for each story are determined at a low computational cost as well. Finally, the



structural system design optimization problem is formulated as a multi-objective one to be solved
by agenetic algorithm based approach; thus, various compromise solutions are obtained providing
the designer with enhanced flexibility regarding decision-making analysis. A building structure
comprising the versatile Bouc-Wen (hysteretic) model serves as a numerical example for
demonstrating the efficiency of the proposed methodology. Note that the proposed framework can
be applied in a straightforward manner to address cases of more sophisticated hysteretic modeling
as well (e.g. enhanced Bouc-Wen, and Preisach models). However, the framework is limited to
nonlinear/hysteretic modeling/functions for which equivalent linear elements can be determined

via a statistical linearization approach.
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