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Abstract. 

A novel approach for structural system optimal design considering life cycle cost is developed. 
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Specifically, a performance-based multi-objective design optimization framework for 

nonlinear/hysteretic multi-degree-of-freedom (MDOF) structural systems subject to evolutionary 

stochastic excitation is formulated. In the core of the stochastic structural analysis component of 

the proposed framework lies an efficient approximate dimension reduction technique based on the 

concepts of statistical linearization and of stochastic averaging for determining the non-stationary 

system response amplitude probability density functions (PDFs); thus, computationally intensive 

Monte Carlo simulations are circumvented. Note that the approach can readily handle stochastic 

excitations of arbitrary non-separable evolutionary power spectral density (EPSD) forms that 

exhibit strong variability in both the intensity and the frequency content. Further, approximate 

closed-form expressions are derived for the non-stationary inter-story drift ratio amplitude PDFs 

corresponding to each and every DOF. In this regard, considering appropriately defined damage 

measures structural system related fragility curves are determined at a low computational cost as 

well. Finally, the structural system design optimization problem is formulated as a multi-objective 

one to be solved by a genetic algorithm based approach. A building structure comprising the 

versatile Bouc-Wen (hysteretic) model serves as a numerical example for demonstrating the 

efficiency of the proposed methodology.  

Keywords: Nonlinear stochastic dynamics, Evolutionary power spectral density, Hysteresis, 

Statistical linearization, Performance-based earthquake engineering, Stochastic averaging, Multi-

objective optimization 

1 INTRODUCTION 

Most structures and civil infrastructure systems are subject to excitations that exhibit strong 

variability in both the intensity and the frequency content. Clearly, a realistic system analysis and 

design necessitates the representation of this class of loads by non-stationary stochastic processes 



 

[1,2,3]. Further, structural systems under severe excitations, such as earthquakes, can behave in a 

nonlinear manner exhibiting a hysteretic restoring force-displacement characteristic. Thus, a 

sustained challenge in the area of structural dynamics has been the efficient analysis and design of 

nonlinear/hysteretic systems/structures under evolutionary stochastic excitation. 

Performance-based earthquake engineering (PBEE) aims at providing information for 

facilitating risk-based decision-making via performance assessment and design methods that 

properly account for the presence of uncertainties [4,5]. In general, the PBEE framework includes 

four basic stochastic analysis components (see section 3) which address the issue of stochastic 

structural design in a comprehensive and consistent manner. Considering the last component of a 

PBEE analysis, that of stochastic loss analysis, the seismic life-cycle cost is usually employed as 

a decision variable [6]. Indicatively, in [7], Kong and Frangopol addressed the bridge maintenance 

schedule optimal design problem and estimated the life-cycle cost performance. Further, adopting 

a median global Park-Ang damage index, Ang and Lee [8] considered repair costs for various 

ground motion intensity levels for the case of reinforced concrete buildings. In [9-10], a 

probabilistic multi-objective optimization framework was applied for the life-cycle cost optimal 

seismic design of steel structures. Further, Taflanidis and Beck [11] focused on assessing the 

performance of passive dissipative devices by utilizing an efficient simulation approach within a 

performance-based seismic design framework that optimized the expected life cycle cost of 

structural systems. Next, Takashi et al. [12] relied on a Monte Carlo simulation approach for 

assessing the life-cycle cost of a structural system equipped with damping devices. 

Focusing on the stochastic structural/damage analysis components of a PBEE framework, 

several approaches have been developed for relating the seismic hazard to the system fragility and 

for producing corresponding fragility curves, i.e. probabilities of exceeding specified damage 



 

states given an intensity measure (IM) value. These range from the ones that employ a limited 

number of nonlinear time-history analyses with prescribed IM level compatible scaled real 

earthquake records [13], to the ones that employ standard or efficient Monte Carlo simulation 

(MCS) based methodologies such as importance/line sampling, and subset simulation [14,15,16]. 

Nevertheless, note that there are cases where the computational cost of the MCS based techniques 

can be significantly high; thus, rendering their use computationally cumbersome, or even 

prohibitive. Clearly, there is a need for developing approximate analytical and/or numerical 

techniques for determining efficiently the response and reliability statistics of nonlinear systems 

subject to stochastic excitation [1,2,17-19]. Nevertheless, although there is a considerable body in 

the literature referring to the development of such techniques there are limited results related to 

adopting and implementing such techniques for efficient fragility analysis applications. An 

interesting contribution in this regard is the work by Der Kiureghian and Fujimura [20] where an 

efficient tail-equivalent linearization based approach was applied for fragility analysis of a 

nonlinear building structure. 

In this paper, a performance-based multi-objective design optimization framework for 

nonlinear/hysteretic MDOF structural systems subject to evolutionary stochastic earthquake 

excitations is formulated. In the core of the stochastic structural analysis component lies an 

efficient approximate analytical dimension reduction approach for determining the system 

response evolutionary power spectral density (EPSD) matrix based on the concepts of statistical 

linearization and stochastic averaging [18]; thus, computationally intensive Monte Carlo 

simulations are circumvented. Note that the approach can readily handle stochastic excitations of 

arbitrary EPSD forms, even of the non-separable kind. Further, approximate closed-form 

expressions are derived for the non-stationary response amplitude PDFs of the inter-story drift 



 

ratios (IDRs) corresponding to each and every DOF. In this regard, considering appropriately 

defined damage measures structural system related fragility curves are determined at a low 

computational cost as well. Further, note that the multi-objective optimization [21] allows for 

objectives that exhibit potentially conflicting requirements to be treated simultaneously. In the 

present formulation, solving the multi-objective optimization problem typically suggests the 

determination of a set of Pareto optimal solutions. 

Overall, the novelty of the proposed framework lies in that fact that it appears to be highly 

efficient for performing stochastic design optimization, reducing significantly the computational 

burden for this task. Specifically, the recently developed approximate nonlinear stochastic 

dynamics technique is appropriately tailored and incorporated in a robust performance-based 

framework for addressing the so called life-cycle cost stochastic design optimization problem; 

thus, circumventing computationally intensive Monte Carlo simulations that are ordinarily utilized 

in the literature so far. Further, an additional important feature relates to the utilization of the 

expected value of the life-cycle cost. In this manner, the contributions of all structural components 

are considered in the formulation herein, in contrast to the commonly adopted in the literature 

consideration of the most critical component contribution only. 

2 NONLINEAR SYSTEM STOCHASTIC RESPONSE DETERMINATION 

2.1 Statistical linearization treatment 

In this section the most important elements of an approximate stochastic response determination 

technique developed by Kougioumtzoglou and Spanos [18] are included for completeness. 

Consider an n-degree-of-freedom nonlinear structural system governed by the equation  

ሷܙۻ  ሶܙ۱  ܙ۹  ǡܙሺ ሶܙ ሻ ൌ  ሺtሻǡ                                                      ሺͳሻ



 

where ܙሷ ǡ ሶܙ  and ܙ denote the response acceleration, velocity and displacement vectors, respectively, 

defined in relative coordinates; M, C and K denote the ሺn ൈ nሻ mass, damping and stiffness 

matrices, respectively; ሺܙǡ ሶܙ ሻ is assumed to be an arbitrary nonlinear ሺn ൈ ͳሻ vector function of 

the variables ܙ and ܙሶ ; and ሺtሻ ൌ ሺfଵሺtሻǡ fଶሺtሻǡ ǥ ǡ f୬ሺtሻ is a ሺn ൈ ͳሻ zero mean, non-stationary 

stochastic vector process defined as ሺtሻ ൌ െۻഥ Ƚሷ ሺtሻǡ where  is the unit column vector, Ƚሷ ሺtሻ is 

a stochastic non-stationary excitation process (e.g. earthquake excitation) and ۻഥ  stands for the ሺn ൈ nሻ mass matrix defined in absolute coordinates. Further, ሺtሻ possesses an EPSD matrix ܁ሺǡ  ሻ of the formܜ

ሺǡ܁ ሻܜ ൌ ێێۏ
ۍێ mଵଶSሷ ౝሺɘǡ tሻ               Ͳ                     ڮ                 Ͳ          Ͳ                     mଶଶSሷ ౝሺɘǡ tሻ     ڮ                 Ͳ          ڰ                              ڭ ڮ                      m୬ଶSሷ ڮ                   Ͳ                                Ͳ                    ڭ                 ౝሺɘǡ tሻۑۑے

 ǡ              ሺʹሻېۑ

while the non-stationary stochastic process ሺtሻ is regarded to be a filtered stationary stochastic 

process [22]. Note that excitations exhibiting variability in both the intensity and the frequency 

content, and thus, possessing a non-separable EPSD can be considered as well.  

In the following, a statistical linearization approach [1,2,3] is employed for determining the 

response EPSD matrix ܙ܁ሺɘǡ tሻ. In this regard, a linearized version of Eq.(1) is given in the form 

ሷܙۻ  ൫۱  ሶܙ൯ܙ܍۱  ൫۹  ܙ൯ܙ܍۹ ൌ  ሺtሻǤ                                         ሺ͵ሻ

Relying next on the standard assumption that the response processes are Gaussian, the time-

dependent elements of the equivalent linear matrices ۱ܙ܍ and ۹ܙ܍ are given by the expressions 

ܿǡ ൌ ܧ ቊ߲߲݃ݍሶቋ ǡ                                                                  ሺͶሻ 

and 



 

݇ǡ ൌ ܧ ቊ߲߲݃ݍቋǤ                                                                   ሺͷሻ 

Next, omitting the convolution of the impulse response function matrix with the 

modulating matrix can lead to substantial reduction of computational effort, especially for the case 

of MDOF systems [23,24]. In this manner, the response EPSD matrix ܙ܁ሺɘǡ tሻ for the linearized 

system of Eq.(3) is given by 

ሺɘǡܙ܁ tሻ ൌ ۶ሺɘሻ܁ሺɘǡ tሻ۶כ܂ሺɘሻǤ                                                  ሺሻ 

where ۶ሺɘሻ is the frequency response function (FRF) matrix defined as 

۶ሺɘሻ ൌ ൫െɘଶۻ  iɘሺ۱  ሻܙ܍۱  ሺ۹   ሻ൯ିଵǤ                             ሺሻܙ܍۹

Note that Eq.(6) can be regarded as a quasi-stationary approximate relationship which, in general, 

yields satisfactory accuracy in cases of relatively stiff systems [23,24]. Considering next Eqs.(2) 

and (6) yields the time-dependent variance of the response displacement and velocity for the i-th 

degree of freedom 

ɐ୯ଶ ሺtሻ ൌ න ሺȁH୧ଵሺɘሻȁଶmଵଶ  ڮ  ȁH୧୬ሺɘሻȁଶm୬ଶሻ ஶ
ିஶ Sሷ ౝሺɘǡ tሻdɘǡ                  ሺͺሻ 

and 

ɐ୯ሶ ଶ ሺtሻ ൌ න ɘଶሺȁH୧ଵሺɘሻȁଶmଵଶ  ڮ  ȁH୧୬ሺɘሻȁଶm୬ଶሻ ஶ
ିஶ Sሷ ౝሺɘǡ tሻdɘǤ               ሺͻሻ 

Eqs.(8) and (9) hold true in the approximate quasi-stationary sense delineated earlier. Clearly, 

Eq.(6) can be used in conjunction with Eqs.(4-5) and (7-9) to form a nonlinear system of algebraic 

equations to be solved for determining the MDOF system response covariance matrix at a low 

computational cost [18]; thus, circumventing computationally intensive Monte Carlo simulations.  



 

2.2 Dimension reduction approach 

Following next the dimension reduction/decoupling approach developed in [18], an auxiliary 

effective linear time-variant (LTV) oscillator corresponding to the i-th DOF can be defined as 

qሷ ୧  Ⱦୟ୳୶ǡ୧ሺtሻqሶ ୧  ɘୟ୳୶ǡ୧ଶ ሺtሻq୧ ൌ f୧ሺtሻǡ   i ൌ ͳǡ ǥ ǡ nୢ୭ǡ                           ሺͳͲሻ 

where the time-varying equivalent stiffness ɘୟ୳୶ǡ୧ଶ ሺtሻ and damping Ⱦୟ୳୶ǡ୧ሺtሻ elements can be 

determined by equating the variances of the response displacement and velocity expressed utilizing 

the quasi-stationary FRF of Eq.(10) with the corresponding ones determined via Eqs.(8-9); this 

yields  

ɐଶ ሺtሻ ൌ න ቆ ͳሺɘୟ୳୶ǡ୧ଶ ሺtሻ െ ɘଶሻଶ  ሺȾୟ୳୶ǡ୧ሺtሻɘሻଶቇ ஶ
ିஶ m୧ଶSሷ ౝሺɘǡ tሻdɘǡ              ሺͳͳሻ 

and 

ɐሶ ଶ ሺtሻ ൌ න ɘଶ ቆ ͳሺɘୟ୳୶ǡ୧ଶ ሺtሻ െ ɘଶሻଶ  ሺȾୟ୳୶ǡ୧ሺtሻɘሻଶቇ ஶ
ିஶ m୧ଶSሷ ౝሺɘǡ tሻdɘǤ          ሺͳʹሻ 

Clearly, Eqs.(11) and (12) constitute a nonlinear system of two algebraic equations to be solved 

for the unknowns ɘୟ୳୶ǡ୧ଶ ሺtሻ and Ⱦୟ୳୶ǡ୧ሺtሻ. Further, relying primarily on the assumption of light 

damping, a stochastic averaging technique is applied for casting the second-order stochastic 

differential equation (SDE) of Eq.(10) into a first-order SDE [25,26] governing the evolution in 

time of the response amplitude process Ƚ୧ሺtሻ defined as  

Ƚ୧ଶሺtሻ ൌ q୧ଶሺtሻ  ቆ qሶ ୧ሺtሻɘୟ୳୶ǡ୧ሺtሻቇଶ Ǥ                                             ሺͳ͵ሻ 

Furthermore, associated with the above-mentioned first-order SDE is the Fokker-Planck partial 

differential equation governing the evolution of the non-stationary response amplitude PDF 



 

pሺȽ୧ǡ tሻ corresponding to the i-th degree of freedom. Next, the system non-stationary response 

amplitude Ƚ୧ is assumed to follow a time-dependent Rayleigh distribution of the form [18,27] 

pሺȽ୧ǡ tሻ ൌ Ƚ୧Ʌ୧ሺtሻ exp ቆെ Ƚ୧ଶʹɅ୧ሺtሻቇǤ                                               ሺͳͶሻ 

Substituting Eq.(14) into the Fokker-Planck partial differential equation, yields a first-order 

ordinary differential equation of the form 

Ʌሶ ୧ሺtሻ ൌ െȾୟ୳୶ǡ୧ሺtሻɅ୧ሺtሻ  ɎS൫ɘୟ୳୶ǡ୧ሺtሻǡ t൯ɘୟ୳୶ǡ୧ଶ ሺtሻ ǡ                                      ሺͳͷሻ 

to be solved via standard numerical integration schemes such as the Runge-Kutta; see also [26-

28]. Overall, it can be readily seen that the approximate analytical technique presented in section 

2 not only determines the original MDOF system response amplitude PDF pሺȽ୧ǡ tሻ for each and 

every DOF in an efficient manner by circumventing computationally demanding MC simulations, 

but also decouples the original system providing with effective time-varying stiffness and damping 

elements corresponding to the i-th DOF. The latter feature is especially important for a number of 

reasons such as determining peak system response estimates based on design spectrum compatible 

excitation power spectra [29], tracking and avoiding moving resonance phenomena [30], and 

developing efficient approximate techniques for determining nonlinear system survival 

probabilities and first-passage PDFs [31,32].  

Further, the herein considered damage states are expressed in terms of the inter-story drift ratio 

(IDR) that is defined as the difference of the horizontal displacements between two successive 

stories, normalized by the inter-story height h. Considering in the ensuing analysis the IDR 

amplitude A୧ሺtሻ, a direct transformation [33] of the response amplitude PDF pሺȽ୧ǡ tሻ yields the 

non-stationary IDR amplitude PDF in the form 



 

pሺA୧ǡ tሻ ൌ hଶ A୧Ʌ୧ሺtሻ exp ቆെ hଶA୧ଶʹɅ୧ሺtሻቇǤ                                           ሺͳሻ 

Further, of particular interest from a reliability assessment perspective is the time instant where 

the IDR amplitude reaches its most critical value, i.e. pୡ୰ሺA୧ሻ ൌ pሺA୧ǡ t ൌ tୡ୰ሻ. In the following, 

this is assumed to be the time where Ʌ୧ሺtሻ reaches its peak value, and thus, the PDF of Eq.(16) 

takes its most broad-band form yielding higher failure probabilities. Specifically, the failure 

probability P୧ defined as the probability of exceeding various levels of damage Ɂௗ௦ conditioned 

upon the peak ground acceleration (PGA), is expressed as 

P୧ሾA୧ሺtሻ  Ɂௗ௦ ൌ ɁหPGA ൌ Ƚ୮ୟሿ ൌ ͳ െ න pୡ୰൫A୧ሺtሻหPGA ൌ Ƚ୮ୟ൯ஔ
 dA         ሺͳሻ 

Considering Eq.(16), and integrating analytically Eq.(17) yields   

P୧ሾA୧ሺtሻ  Ɂௗ௦ ൌ ɁหPGA ൌ Ƚ୮ୟሿ ൌ exp ቆെ hଶɁଶʹɅ୧ሺtሻቇǤ                        ሺͳͺሻ 

It is deemed appropriate to note that in the herein proposed framework, only failure definitions of 

the form of Eq.(18) are considered, whereas incorporation of first-passage [31,32,34] kind failure 

criteria is identified as a topic of potential future work. 

3 SEISMIC LIFE-CYCLE COST EVALUATION  

The PBEE methodology serves as a potent stochastic framework for assessing the performance 

of engineering structural systems subject to various hazards via an appropriately defined decision 

variable. Following a standard PBEE framework, as proposed by the Pacific Earthquake 

Engineering Research (PEER) center [35,36], the evaluation of a decision variable typically 

depends on a number of analysis components such as (i) stochastic hazard analysis treating the 

uncertainty in the seismic input intensity measures (IMs); the seismic hazard is usually described 



 

by the annual probabilities of exceeding various levels of IMs, (ii) stochastic structural analysis 

associated with the uncertainty of the engineering demand parameter (EDP) used to monitor the 

structural response conditional on the IMs; the IDR is a commonly selected EDP for building 

structures, (iii) stochastic damage analysis relating the EDPs to damage states, which in turn 

describe the generated damage, and (iv) stochastic loss analysis reflecting the effect of the 

underlying uncertainties on a quantifiable decision variable. 

The uncertainty in seismic ground motions is normally described in terms of the probability 

distribution of a seismic intensity measure, such as the peak ground acceleration (PGA). In this 

regard, the seismic hazard is presented as a mean seismic hazard curve HሺȽ୮ୟሻ, which provides 

the annual probability of exceeding specified levels of PGA [37]; that is, 

H൫Ƚ୮ୟ൯ ൌ PൣPGA  Ƚ୮ୟ൧Ǥ                                                     ሺͳͻሻ 

In various PBEE studies [9,10] as well as in the ensuing analysis, discrete damage states are 

considered. The non-stationary IDR amplitudes A୧ሺtሻ serve as global EDPs while the employed 

relationship between the EDP and the damage states, provided herein for illustration purposes, is 

based on the work by Ghobarah [38] related to ductile reinforced concrete (RC) moment resisting 

frames (see Table. 1). Note that IDR constitutes one of the most reliable measures of structural 

damage due to its close relationship to plastic rotation demands for individual beam-column 

connection assemblies. Typically, the damage states for reliability analysis purposes are defined 

in terms of the overall inelastic deformation or the maximum inter-story drift of the structural 

system [4]. 

  



 

Damage State Inter-Story Drift (%)  Cost (% Cin) 

(I)-None  ͲǤͲ  IDRୟ୶ ൏ ͲǤͳ 0 

(II)-Slight ͲǤͳ  IDRୟ୶ ൏ ͲǤʹ 0.5 

(III)-Light ͲǤʹ  IDRୟ୶ ൏ ͲǤͶ 5 

(IV)-Moderate ͲǤͶ  IDRୟ୶ ൏ ͳǤͲ 20 

(V)-Heavy ͳǤͲ  IDRୟ୶ ൏ ͳǤͺ 45 

(VI)-Major ͳǤͺ  IDRୟ୶ ൏ ͵ǤͲ 80 

(VII)-Destroyed ͵ǤͲ  IDRୟ୶ 100  

Table 1. Damage states, Inter-story drift limits and associated costs. 

Further, the seismic fragility curves serving as a quantitative tool of the structure vulnerability 

are evaluated for various damage levels. Specifically, the seismic fragility curves are efficiently 

determined by simply integrating the critical non-stationary response IDR amplitude PDF pୡ୰ሺA୧ሻ 

for the time instant tୡ୰; see Eqs.(16-17). In this regard, the probability of the i–th DOF exceeding 

various levels of damage given a specified PGA value, i.e. P୧ሾA୧ሺtሻ  Ɂௗ௦ ൌ ɁหPGA ൌ Ƚ୮ୟሿ, can 

be efficiently computed via Eq.(18).  

Notably, the fragility curves corresponding to each and every DOF for various damage levels 

are determined at a minimum computational cost via Eq.(18). Next, considering the i-th DOF of 

the MDOF system, the annual probability of exceeding a given state of damage can be defined as  

P୧ǡୟ ൌ න P୧ൣA୧ሺtሻ  Ɂௗ௦ ൌ ɁหPGA ൌ Ƚ୮ୟ൧ ቤdH൫Ƚ୮ୟ൯dȽ୮ୟ ቤ dȽ୮ୟǤ                      ሺʹͲሻ 

In the current study, the earthquake occurrence is assumed to follow a Poisson process [39]. 

Further, the expected value of the life-cycle cost (LCC) due to seismic hazard can be expressed in 

the form 

Eൣ�CC൫A୧ሺܠǡ ሻ൯൧ܜ ൌ ͳߣ ௗܶ ሺͳ െ exp ሺെߣ ௗܶሻሻ ൈ ǥ 



 

  ቀെC୫ ቂln ቀͳ െ P୧ǡౚሺA୧ሺtሻ  Ɂ୫ሻቁ െ ln ቀͳ െ P୧ǡౚሺA୧ሺtሻ  Ɂ୫ାଵሻቁቃቁǡ                        ሺʹͳሻ୬ౚ౩
୫ୀଵ

୬ౚ
୧ୀଵ  

where nୢୱ is the total number of damage states considered; nୢ୭ is the number of degrees of 

freedom of the MDOF system, ߣ is a constant discount rate/year, ௗܶ is the design life of the 

structure, C୫ is the cost associated with the m-th damage state, given in Table.1 as a percentage 

of the initial cost; P୧ǡౚ refers to the i-th DOF and represents the ௗܶ-year probability of exceeding 

the m-th damage state given by the expression 

P୧ǡౚ ൌ ͳ െ exp൫െP୧ǡୟ ௗܶ൯Ǥ                                                         ሺʹʹሻ 

Furthermore, it is assumed that the structure is restored to its initial undamaged state after each 

earthquake occurrence and losses due to fatalities and building downtime are ignored. 

The fact that this study involves damage costs makes it important to consider all degrees of 

freedom, as opposed to only the critical component that is usually employed in PBEE studies 

[4,9,10]. Considering cases where the roof drift is employed as an EDP, the corresponding damage 

analysis cannot account for the distribution of damage along the height of the structure, or take 

into account soft stories phenomena [38]. Further, in many studies in the literature, the adoption 

of the maximum value of the induced inter-story drifts as an EDP leads to a subsequent stochastic 

damage analysis based on information corresponding to a specific story only. Thus, information 

regarding the response behavior of the rest of the stories and their contribution to damage is 

disregarded. 

Overall, in the herein proposed life-cycle cost formulation the expected value of the seismic 

losses given by Eq.(21) serves as the decision variable, whereas the attribute of considering ݊ௗ 

EDPs is expected to better account for the system overall performance in the formulation of the 



 

multi-objective optimization problem in the following section.  

4 MULTI-OBJECTIVE DESIGN PROBLEM FORMULATION 

In the field of structural system optimization, most often several conflicting objectives need to 

be treated simultaneously. In this regard, a multi-objective optimization problem is formulated 

yielding a compromise between various objective functions. A general stochastic multi-objective 

optimization formulation for the determination of a vector ܠ of design variables to minimize a 

vector of objective functions takes the form 

minאܠୈ ۴ሺܠሻǡ                                                                        ሺʹ͵ሻ 

where 

۴ሺܠሻ ൌ ൣf୧୬ୢሺܠሻ൧ ൌ ൣfଵ୧୬ୢሺܠሻǡ ǥ ǡ f୬୭ୠ୨୧୬ୢ ሺܠሻ൧ǡ z ൌ ͳǡ ǥ ǡ n୭ୠ୨ 
ܠ ൌ ൣx୨൧ ൌ ሾxଵǡ xଶǡ ǥ x୬ౚ౬ሿǡ j ൌ ͳǡ Ǥ Ǥ nୢ୴ǡ א ܠ Dǡ                                  ሺʹͶሻ 

subject to system response level constraints of the form 

۵ሺܠሻ ൌ ൣg୮୧୬ୢሺܠሻ൧ ൌ ൣgଵ୧୬ୢሺܠሻǡ ǥ ǡ g୬ୡ୭୬୧୬ୢ ሺܠሻ൧  Ͳǡ p ൌ ͳǡ ǥ ǡ nୡ୭୬ Ǥ                  ሺʹͷሻ 

The superscript (ind) denotes the nature of the objective function or constraint which in turn is 

indicated by the subscripts (obj) and (con) respectively. In the case of a stochastic objective 

function mୱ୲୭ୡ୦ሺܠሻ and ɐୱ୲୭ୡ୦ሺܠሻ are employed. mୱ୲୭ୡ୦ሺܠሻ and ɐୱ୲୭ୡ୦ሺܠሻ are the maximum over 

time non-stationary values of the mean and standard deviation of the objective function f 

respectively, evaluated at the design variables vector ܠ; fୢ ୣ୲ሺܠሻ is a deterministic objective 

function evaluated at the design variables vector ܠ; in case of a stochastic response constraint, m౦ୱ୲୭ୡ୦ሺܠሻ, Ɋ౦ୱ୲୭ୡ୦ሺܠሻ and ɐ౦ୱ୲୭ୡ୦ሺܠሻ stand for the maximum over time non-stationary values of the 

mean, mode and standard deviation of the response function g୮ respectively, evaluated at the 



 

design variables vector ܠ; g୮ୢୣ୲ሺܠሻ is a deterministic response level constraint evaluated at the 

design variables vector ܠ; and ۵ሺܠሻ is the vector of the constraint functions of the optimization 

problem under consideration. D is a given set that contains the boundary constraints for the vector 

of design variables ܠ. 

Further, a weighted linear combination of the aforementioned quantities, which is the case in 

most practical applications [21], is considered in the herein work as well. In this regard, a single 

parameterized objective function ۴ሺܠሻ under several optimization runs with different parameter 

settings is responsible for the generation of the Pareto optimal set [40], i.e.  

۴ሺܠሻ ൌ  ൭ݓఓǡݏఓǡ mౡୱ୲୭ୡ୦ሺܠሻ  ఙǡݏఙǡݓ ɐౡୱ୲୭ୡ୦ሺܠሻ൱୬ౘౠ౩౪ౙ
୩ୀଵ   ൭ݓݏ f୬ୢ ୣ୲ሺܠሻ൱୬ౘౠౚ౪

୬ୀଵ ǡ              ሺʹሻ  
where ݓఓǡ, ݓఙǡ are weights and ݏఓǡ, ݏఙǡ are scale factors for the mean and standard deviation 

of the stochastic objective components f୩ୱ୲୭ୡ୦ሺܠሻ, k ൌ ͳǡ ǥ ǡ n୭ୠ୨ୱ୲୭ୡ୦; ݓ and ݏ are the weight and 

scale factor of the deterministic objective components f୬ୢ ୣ୲ሺܠሻǡ n ൌ ͳǡ ǥ ǡ n୭ୠ୨ୢୣ୲. Regarding the 

weighting factors ݓ the following normalization is employed 

 w ൌ ͳǤ୬ౘౠ
ୀଵ                                                                   ሺʹሻ 

The weighting factors can be adjusted appropriately, according to the importance of each objective 

and therefore the trade-off between the objectives can be readily studied. Any combination of the 

weighting factors corresponds to a single Pareto optimal solution [9,10,21]. Thus, by performing 

a set of optimization processes utilizing various weighting factors combinations it is possible to 

generate the full set of the Pareto optimal solutions. 

Since the generation of the Pareto optimal set involves performing a number of optimization 



 

procedures, the selection of an optimization algorithm with considerable advantages specifically 

tailored to meet the characteristics of the herein problem formulation is of particular importance. 

Specifically, an outer loop that systematically varies the weighting factors of the parameterized 

objective function and an inner loop that features a standard genetic algorithm based optimization 

process are utilized for solving the multi-objective optimization problem. Regarding genetic 

algorithms, they belong to the class of Evolutionary algorithms and they appear to be quite robust 

in the sense that they are less vulnerable to being trapped in local optima; and thus, more likely to 

obtain the global optimum for a non-convex constrained optimization problem [41]. 

5 NUMERICAL APPLICATION 

5.1 Three-story Bouc-Wen hysteretic building structure 

In this section, the proposed methodology is applied to a 3-story reinforced concrete building 

which is modeled as a nonlinear/hysteretic 3-DOF structural system subject to evolutionary 

stochastic earthquake excitations. All floors are assumed to be rigid and have a constant height 

equal to 3m, whereas the masses of the plates are considered to be constant for all floors with a 

value m୮୪ୟ୲ୣ ൌ ͵Ǥͷ ൈ ͳͲସkg. A Young’s modulus of E ൌ ͵Ͳ ൈ ͳͲଽPa and mass density of ɏ ൌʹǡͷ ൈ ͳͲଷkgȀmଷ are considered herein. Columns’ cross-section dimensions for a given floor are 

assumed to be equal, and thus, the vector of design variables ܠ has one component for every story, 

i.e. the width of the cross-section.  



 

 
Figure 1. A general nonlinear/hysteretic MDOF structural system. 

The nonlinearity is assumed to be in the form of the Bouc-Wen hysteretic model [42]. In this 

regard, considering inter-story drifts q୧ (q୧ ൌ x୧ െ x୧ିଵǡ i ൌ ͳǡ ǥ ǡ nୢ୭) as well as the additional 

states z୧, the 3-DOF nonlinear structural system is governed by Eq.(1) where 

܂ܙ ൌ ሺqଵ qଶ qଷ zଵ zଶ zଷሻ                                                          ሺʹͺሻ 

ۻ ൌ ۻ ۻۻ  ൨ǡ                                                               ሺʹͻሻۻ

where 

ۻ ൌ mଵ Ͳ Ͳmଶ mଶ Ͳmଷ mଷ mଷ൩ǡ                                                          ሺ͵Ͳሻ 

and 

ۻ ൌ ۻ ൌ ۻ ൌ Ͳ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ൩Ǥ                                                 ሺ͵ͳሻ 

۹ ൌ ۹ ۹۹ ۹൨ǡ                                                                ሺ͵ʹሻ 

where 



 

۹ ൌ akଵ െakଶ ͲͲ akଶ െakଷͲ Ͳ   akଷ ൩ǡ                                                     ሺ͵͵ሻ 

۹ ൌ ሺͳ െ aሻkଵ െሺͳ െ aሻkଶ    ͲͲ    ሺͳ െ aሻkଶ െሺͳ െ aሻkଷͲ    Ͳ    ሺͳ െ aሻkଷǡ                                    ሺ͵Ͷሻ 

and 

۹ ൌ ۹ ൌ Ͳ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ൩Ǥ                                                          ሺ͵ͷሻ 

In Eqs.(33-34) the parameter a stands for the rigidity ratio and can be viewed as a form of post-

yield to pre-yield stiffness ratio ሺa ൌ ͳ corresponds to the linear systemሻ. Further, the damping 

matrix of the structural system  takes the form 

۱ ൌ ۱ ۱۱ ۱൨ǡ                                                                 ሺ͵ሻ 

where 

۱ ൌ c ή ۹ǡ                                                                  ሺ͵ሻ 

۱ ൌ ۱ ൌ Ͳ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ൩ǡ                                                        ሺ͵ͺሻ 

and 

۱ ൌ ͳ Ͳ ͲͲ ͳ ͲͲ Ͳ ͳ൩Ǥ                                                               ሺ͵ͻሻ 

In Eq.(37) c is taken equal to ͲǤʹ ൈ ͳͲିଶ. Next, the loading vector becomes 

۴ሺtሻ ൌ ሺfଵሺtሻ fଶሺtሻ fଷሺtሻ Ͳ Ͳ Ͳሻǡ                                              ሺͶͲሻ 



 

and 

ǡܙሺ ሶܙ ሻ܂ ൌ ൫Ͳ Ͳ Ͳ െ gଵሺqሶ ଵǡ zଵሻ  െ gଶሺqሶ ଶǡ zଶሻ  െ gଷሺqሶ ଷǡ zଷሻ൯Ǥ                    ሺͶͳሻ 

In the Bouc-Wen model the additional state z୧ is associated with the inter-story drift q୧ via the 

nonlinear differential equation 

zሶ ୧ ൌ g୧ሺqሶ ୧ǡ z୧ሻǡ                                                               ሺͶʹሻ 

where 

g୧ሺqሶ ୧ǡ z୧ሻ ൌ െɀȁqሶ ୧ȁz୧ȁz୧ȁ୬ିଵ െ Ⱦqሶ ୧ȁz୧ȁ୬  Ȝqሶ ୧Ǥ                              ሺͶ͵ሻ 

In Eq.(43) the parameters ɀǡ Ⱦǡ Ȝ and ݊  are capable of representing a wide range of hysteresis loops 

[42]. The values a ൌ ͲǤͳͷ, Ⱦ ൌ ɀ ൌ ͲǤͷ, n ൌ ͳ and A ൌ ͳ are considered herein. Next, the 

equivalent linear matrices take the form [1,3] 

ܙ܍۱ ൌ ۱ܙ܍ ܙ܍۱ܙ܍۱  ൨ǡ                                                          ሺͶͶሻܙ܍۱

where 

ܙ܍۱ ൌ ܙ܍۱ ൌ ܙ܍۱ ൌ Ͳ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ൩ǡ                                           ሺͶͷሻ 

and 

ܙ܍۱  ൌ cୣ୯ଵ Ͳ ͲͲ cୣ୯ଶ ͲͲ Ͳ cୣ୯ଷǤ                                                   ሺͶሻ 

ܙ܍۹ ൌ ۹ܙ܍ ܙ܍۹ܙ܍۹  ൨ǡ                                                       ሺͶሻܙ܍۹

where 



 

ܙ܍۹ ൌ ܙ܍۹ ൌ ܙ܍۹ ൌ Ͳ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ൩ǡ                                        ሺͶͺሻ 

and 

ܙ܍۹  ൌ kୣ୯ଵ Ͳ ͲͲ kୣ୯ଶ ͲͲ Ͳ kୣ୯ଷǤ                                               ሺͶͻሻ 

Furthermore, the elements cୣ୯ and kୣ୯ are given by the expressions 

cୣ୯ ൌ ඨɎʹ ێێۏ
ɀۍ Eሺqనሶ z୧ሻටEሺqనሶ ଶሻ  ȾඥEሺz୧ଶሻۑۑے

ې െ A ǡ                                   ሺͷͲሻ 

and 

kୣ୯ ൌ ඨɎʹ ቈɀටEሺqనሶ ଶሻ  Ⱦ Eሺqనሶ z୧ሻඥEሺz୧ଶሻǡ                                               ሺͷͳሻ 

respectively. Regarding the excitation EPSD Sሷ ౝሺɘǡ tሻ, it is assumed to have the separable form 

Sሷ ౝሺɘǡ tሻ ൌ ȁgሺtሻȁଶSେሺɘሻǡ                                                       ሺͷʹሻ 

where Sେሺɘሻ represents a stationary process power spectral density and gሺtሻ denotes a time-

modulating function. The envelope function gሺtሻ is given by 

gሺtሻ ൌ k൫eିୠభ୲ െ eିୠమ୲൯ǡ                                                          ሺͷ͵ሻ 

where bଵ ൌ ͲǤͳ and bଶ ൌ ͲǤ͵; k is a normalization constant so that gሺtሻ୫ୟ୶ ൌ ͳ, thus Eq.(52) has 

a uniform modulation. The widely used Kanai-Tajimi spectrum appropriately modified by Clough 

and Penzien [43] is considered for Sେሺɘሻ; that is, 



 

Sେሺɘሻ ൌ S ሺɘȀɘሻସሺͳ െ ሺɘȀɘሻଶሻଶ   ͶɌଶሺɘȀɘሻଶ ɘସ  ͶሺɌሻଶɘଶɘଶሺɘଶ െ ɘଶሻଶ  ͶɌଶɘଶɘଶ           ሺͷͶሻ 

where S is the amplitude of the bedrock excitation spectrum, modeled as a white noise process; Ɍ and ɘ are the damping factor of the soil and the fundamental natural frequency, respectively; 

and Ɍ and ɘ are parameters describing the Clough-Penzien filter. The parameters values chosen 

are Ɍ ൌ ͲǤǡ ɘ ൌ ʹ radȀ sǡ  Ɍ ൌ ͲǤǡ ɘ ൌ ͳʹǤͷ radȀs. At this point, it is deemed appropriate to 

note that the proposed framework can readily address in a straightforward manner also cases where 

the excitation input is of the non-separable kind. Next, the duration of the earthquake excitation ݐఖ 

is taken equal to ʹͲs. Note that in the ensuing analysis the following definition for the Ƚ୮ୟ is 

adopted; i.e., 

Ƚ୮ୟ ൌ Eൣmax൫หȽሷ ሺtሻห൯൧ǡ      Ͳ  ݐ   ఖ                                     ሺͷͷሻݐ

Thus, to provide with a mapping between the Ƚ୮ୟ and the modulated Clough-Penzien 

excitation spectrum intensity factor S, several MCS are conducted for various S values via the 

spectral representation approach [44]. For each ensemble of excitation realizations Eq.(55) is 

applied for determining the value Ƚ୮ୟ that corresponds to the given S. In this manner, repeating 

this process for various values of S the relationship SሺȽ୮ୟሻ depicted in Fig.(2) is obtained.  

 



 

Figure 2. Mapping between the SሺȽ୮ୟሻ of the excitation spectrum and Ƚ୮ୟ. 

In Fig.(3), the EPSD of Sሷ ౝሺɘǡ tሻ is plotted for S ൌ ͲǤͷͻʹ mଶȀsଷ which corresponds to an 

acceleration of the earthquake input Ƚ୮ୟ equal to ͲǤ͵Ͷg according to the definition of Eq.(55).  

 

 

Figure 3. Clough-Penzien Evolutionary Power Spectral Density Sሷ ౝሺɘǡ tሻ. 

Note that the herein utilized Clough-Penzien spectrum has been widely used in earthquake 

engineering applications, also as an excitation power spectrum model compatible with the seismic 

design spectrum [29]. Next, the seismic hazard curve of Eq.(19) is expressed in the approximate 

form used in [37], i.e., 

H൫Ƚ୮ୟ൯ ൌ PൣPGA  Ƚ୮ୟሿ൧ ൌ k ൈ Ƚ୮ୟି୩భ ǡ                                    ሺͷሻ 

where k ൌ Ǥ͵Ͷ ൈ ͳͲିହ and kଵ ൌ ʹǤͺͷ. Note that when dealing with the evaluation of the 

expected value of LCC (see Eq.(21)), and for the purpose of taking into account all possible 

earthquake scenarios a structure is anticipated to encounter during its lifetime, all seismic events 

with acceleration input Ƚ୮ୟ values between ͲǤͳ and ͳg are considered. In this setting, a wide range 



 

of imposed seismic inputs Ƚ୮ୟ is regarded while neglecting those with ground acceleration less 

than ͲǤͳg that are not expected to cause significant damage to the structure. 

Further, approximate technique based data are compared with pertinent Monte Carlo simulation 

data utilizing 10,000 realizations. Specifically, excitation realizations compatible with the EPSD 

of Eq.(54) are generated based on the spectral representation technique [44]. Next, the nonlinear 

equation of motion (Eq.(1)) is numerically integrated via a standard fourth order Runge-Kutta 

scheme, and finally, system response statistics are obtained based on the ensemble of the response 

realizations. In this regard, to provide with an indicative order of magnitude for the computational 

cost involved, utilizing a laptop computer with standard configurations, the technique based on the 

Rayleigh approximation requires 4–5 min, whereas the MCS based system response EPSD 

estimation (10,000 time histories) requires 12–13 h, depending on the specific application. 

Indicatively, in Figs.(4a) and (4b), the non-stationary response IDR amplitude PDFs determined 

via the approximate technique are compared with corresponding MCS data for an initial design 

variables vector ܠ୧୬ ൌ ሾͲǤ͵Ͳmǡ ͲǤʹͷmǡ ͲǤʹͲmሿ. The seismic excitation intensity level S is 

selected to yield a Ƚ୮ୟvalue equal to ͲǤ͵Ͷg; see Fig.(3). Note in passing that it can be argued that 

even in cases where the system response PDF deviates considerably from the Gaussian one, the 

magnitude of this discrepancy is reduced when referring to system response amplitude PDF. It can 

be readily seen that the proposed approximate stochastic dynamics technique demonstrates a 

satisfactory degree of accuracy. 



 

 
(a)                                                                              (b) 

Figure 4. Non-stationary response IDR amplitude PDFs corresponding to the third story of the 

hysteretic MDOF structural system (a) via the analytical approach (b) Monte Carlo data (10,000 

realizations). 

Further, in Figs. (5a) and (5b) the most critical response IDR amplitude PDFs pୡ୰ሺA୧ሻ ൌpሺA୧ǡ t ൌ tୡ୰ሻ are plotted for two distinct ܠ design variables values and compared with MCS data 

demonstrating a reasonable degree of accuracy. 

 
(a)                                                                              (b) 

Figure 5. Non-stationary response IDR amplitude PDF of every story of the hysteretic MDOF 

system; comparison with MCS (a) x୧୬ ൌ ሾͲǤ͵Ͳmǡ ͲǤʹͷmǡ ͲǤʹͲmሿand (b) x୳ୠ ൌሾͲǤͷͷmǡ ͲǤͷͷmǡ ͲǤͷͷmሿ. 

Comparing Figs.(5a) and (5b) it can be readily seen that a slightly higher level of accuracy is 

observed in Fig.(5b). To explain this, note that in Fig.(5b) the chosen design vector ܠ୳ୠ which 

corresponds to an upper design bound with value ሾͲǤͷͷmǡ ͲǤͷͷmǡ ͲǤͷͷmሿ yields a relatively 



 

stiffer structure than the one depicted in Fig.(5a), where  ܠ୧୬ ൌ ሾͲǤ͵Ͳmǡ ͲǤʹͷmǡ ͲǤʹͲmሿ. As 

pointed out in section 2 and explained in detail in [18,23,24] the approximation induced by 

considering Eq.(6) implies a relatively lower level of accuracy for “softer” systems. Nevertheless, 

as shown in Fig.(5a), even in cases where the technique deviates slightly from the exact value, it 

still provides with conservative estimates; thus, rendering itself well-suited for structural design 

applications. Clearly, the determination of response IDR amplitude PDFs efficiently is a key factor 

for the subsequent fragility and loss analysis as well as for conducting the optimization procedure 

of the proposed PBEE framework. 

Next, in Fig. (6) the fragility curves for each damage state are indicatively plotted for one story 

of the MDOF structural system; see Table 1.  

 
Figure 6. Fragility curves for the third story of the hysteretic MDOF structural system considering 

each damage state (x୧୬ ൌ ሾͲǤ͵Ͳmǡ ͲǤʹͷmǡ ͲǤʹͲmሿ). 

5.2 Multi-objective Optimal Designs – Pareto Front Curves 

The objective function is defined as a weighted linear combination of the initial cost function 

and of the expected value of the life-cycle cost (LCC). Further, the response of the structural 

system is constrained in terms of the modes (i.e. most probable values) of the non-stationary 

response IDR amplitude PDFs of every DOF of the hysteretic MDOF system. The design variables 



 

are the dimensions of the square cross-section of the column elements. Columns’ cross-section 

dimensions for a given floor are assumed to be equal, and thus the vector of design variables ܠ has 

three components, one for every story. Next, assuming an initial design ܠ୧୬ ൌሾͲǤ͵Ͳmǡ ͲǤʹͷmǡ ͲǤʹͲmሿ and boundary constraints x୧୧୬  x୧  x୧୳ୠǡ i ൌ ͳǡ ǥ ǡ nୢ୭, where ܠ୳ୠ ൌሾͲǤͷͷmǡ ͲǤͷͷmǡ ͲǤͷͷmሿ the optimization problem takes the form 

 min୶אୈሺ۴ሺܠሻሻ ൌ  min୶אୈሺC୧୬ ǡ Eሾ�CCሺA୧ሺܠǡ  ሻሻሿሻ ǡ                                ሺͷሻܜ

where the conflicting sub-objectives are normalized appropriately (see section 4) under the 

stochastic constraints 

כǡܑሺS୭ܗૄ ǡ ǡܠ ሻܜ ൌ ඥܑ܋ሺtሻh  ઼ୢୱ୧୫୧୲ ǡ                                                 ሺͷͺሻ 

and 

  ௨௫ǡሺS୭כ ǡ ǡܠ ሻǡ୫ୟ୶ܜ   ǡ   or   ௨௫ǡሺS୭כ ǡ ǡܠ ሻǡ୫୧୬ܜ   ǡோ                     ሺͷͻሻ 

and the deterministic constraint 

x୧  x୧ାଵ ǡ   i ൌ ͳǡ ǥ ǡ nୢ୭  Ǥ                                                      ሺͲሻ 

In Eq.(57) C୧୬ሺܠሻ stands for the initial cost which is assumed to be directly proportional to the 

building structure weight; this includes the weight of the column elements plus the weight of the 

plates evaluated at the design variables vector ܠ; Eሾ�CCሺA୧ሺܠǡ -ሻሻሿ is the expected value of the lifeܜ

cycle cost, evaluated at the design variables vector ܠ. In Eq.(58) ૄ כǡܑሺS୭ܗ ǡ ǡܠ  ሻ is a vector of theܜ

modes of the non-stationary response IDR amplitude PDFs of every story of the hysteretic MDOF 

system for the whole duration ݐఖ of the seismic excitation with intensity factor S୭כ , evaluated at the 

design variables vector ܠ. The structure design service life Tୢ  is considered to be equal to fifty 

years while the discount ratio, ߣ, is taken to be equal to ͵Ψ. Regarding the stochastic constraints 



 

of Eqs.(58) and (59) the critical excitation was selected to be the one with intensity factor S୭כ  

yielding an earthquake input Ƚ୮ୟ equal to ͲǤ͵Ͷg; see Fig(3). The rationale behind this choice lies 

in the fact that the above chosen value for Ƚ୮ୟ represents a relatively severe earthquake event 

which is characterized by a low annual probability of occurrence according to the selected seismic 

hazard curve; thus, highly appropriate for applying constraints considering safety issues [5,9]. In 

this setting, the imposed stochastic constraint of Eq.(58) ensures that the vector of the modes of 

the non-stationary response IDR amplitude PDFs of every story of the hysteretic structural system 

for the whole duration ݐఖ of the seismic excitation with intensity factor S୭כ  will not exceed a 

preselected limit  ઼ୢୱ୧୫୧୲ which is taken equal to ͲǤʹΨ and corresponds to a specific damage state 

according to the defined IDR limits of Table 1. 

Further, regarding the constraint of Eq.(59), it exploits the time-varying effective stiffness ɘୟ୳୶ǡ୧ଶ ሺtሻ and damping Ⱦୟ୳୶ǡ୧ሺtሻ elements, stemming from the efficient decoupling of the original ݊-DOF system of Eq.(1) into ݊ SDOF LTV oscillators of the form of Eq.(10). This important 

feature of the technique is exploited in the proposed formulation in the constraint of Eq.(59) for 

avoiding “moving resonance” phenomena [30]. In this regard, it facilitates the optimization 

process to avoid unnecessary optimal design searching in areas where surely optimal designs do 

not exist. Specifically, considering the quasi-stationary treatment of the LTV oscillator in Eq.(11), 

it can be reasonably argued that the maximum response variance of the original MDOF system 

occurs when the excitation EPSD Sሷ ౝሺɘǡ tሻ resonates with the LTV oscillator equivalent natural 

frequency ɘୟ୳୶ǡ୧ሺtሻ. Thus, to avoid this resonance phenomenon, the constraint of Eq.(59) is 

formulated so that ɘୟ୳୶ǡ୧ሺtሻ is kept outside a critical range in the frequency domain [ɘǡ ǡ ɘǡோሿ 
where the excitation EPSD Sሷ ౝሺɘǡ tሻ takes its largest values. In this regard, the expression  



 

Sሷ ౝǡైሺǡ tሻ  ɂ ൈ Sሷ ౝǡౌכ ሺǡ tሻ                                                    ሺͳሻ 

is adopted, where Sሷ ౝǡైሺǡ tሻ is a selected EPSD value given as a percentage ɂ of the peak EPSD 

value Sሷ ౝǡౌכ ሺǡ tሻ corresponding to the time instant where ȁgሺtሻȁଶ takes its peak value; see Figs.(3), 

(7a) and (7b). In this application, ɂ was taken equal to ͷΨ.  

  
(a)                                                                              (b) 

Figure 7. Depiction of the stochastic constraint for avoiding resonance phenomena. 

Note that the deterministic constraints of Eq.(60) ensure that the optimization procedure will 

provide applicable design solutions from a practical viewpoint. Further, the expected value of the 

total cost, the initial cost and the expected value of the life-cycle cost are related according to the 

following expression [6] 

EൣC୭୲ୟ୪൫A୧ሺܠǡ ሻ൯൧ܜ ൌ C୧୬ሺܠሻ   Eൣ�CC൫A୧ሺܠǡ ሻ൯൧ܜ ൈ C୧୬ሺܠሻǤ                   ሺʹሻ 

The Pareto front curves obtained by compromise programming, utilizing the linear weighting 

method in a MATLAB's built-in genetic algorithm constraint optimization algorithm for both the 

expected value of the life-cycle cost and the total cost with respect to the initial cost are presented 

in Fig.(8). 



 

 
Figure 8. Pareto front curves for the expected values of LCC and Total cost. 

Each solution of the Pareto front curves constitutes an applicable design configuration 

compromising the conflicting sub-objectives of the problem while respecting the imposed 

stochastic and deterministic constraints. Next, to highlight the flexibility of the proposed 

methodology, the compromise design solution exhibiting the lowest expected value of the total 

cost, as well as the ones corresponding to the two tails (Fig.(8)) are presented in Table 2.  

Designs x(m) Cin(x) Eሾ�CCሺA୧ሺܠǡ ǡܠሻሻሿ EൣC୭୲ୟ୪൫A୧ሺܜ  ሻ൯൧ܜ
Design A 1st 

2nd 

3rd 

0.3892 

0.3701 

0.3294 

 ͳǤͳͲͻͷ ൈ ͳͲହ 

 

 ͳǤͳͳͲ͵ ൈ ͳͲିଶ 

 

 ͳǤʹͻͻ͵ ൈ ͳͲହ 

Design B 1st 

2nd 

3rd 

0.4750 

0.4749 

0.3981 

 ͳǤͳͶͳͷ ൈ ͳͲହ 

 ͳǤͳ͵Ͳʹ ൈ ͳͲିଶ 

 ͳǤͳͷͶͶ ൈ ͳͲହ 

Design C 1st 

2nd 

3rd 

0.5492 

0.5489 

0.5471 

 ͳǤͳͺͷ͵ ൈ ͳͲହ 

 ͷǤͷͻͲͳ ൈ ͳͲିସ 

 ͳǤͳͺͲ ൈ ͳͲହ 

Table 2. Pareto optimal designs configurations A, B and C. 

Note that the tail designs (i.e. Designs A and C) correspond to the single-objective optimal 

designs where the building structure weight and the life-cycle cost were used as the objective 

functions respectively. Clearly, design configuration A is more susceptible to future seismic 



 

excitations, thus it presents the highest expected value of life-cycle cost (Table 2). Further, 

considering the herein formulation of the multi-objective optimization problem, the Pareto optimal 

design B consists perhaps the most rational design configuration. However, the implementation of 

the Pareto technique allows the designer/analyst to possess a considerable amount of information 

for any compromise solution configuration, rather than being limited to a unique optimal solution. 

This is of particular importance for an educated decision-making analysis where the final optimal 

design will be the compromise solution that best balances the initial cost, the life-cycle cost, and 

the total cost according to the project stakeholders’ perspective. 

6 CONCLUDING REMARKS 

In this paper, a performance-based multi-objective design optimization framework considering 

life-cycle cost has been developed for nonlinear/hysteretic multi-degree-of-freedom (MDOF) 

structural systems subject to evolutionary stochastic excitations.  

In the core of the stochastic structural analysis component of the proposed framework lies an 

efficient approximate dimension reduction technique for determining the non-stationary system 

response amplitude probability density functions (PDFs) based on the concepts of statistical 

linearization and of stochastic averaging; thus, computationally intensive Monte Carlo simulations 

are circumvented. The important additional output of yielding time-varying effective stiffness ɘୟ୳୶ǡ୧ଶ ሺtሻ and damping Ⱦୟ୳୶ǡ୧ሺtሻ elements is sufficiently exploited through the proposed framework 

by introducing constraints for avoiding “moving resonance” phenomena. Note that excitations 

with arbitrary non-separable EPSD forms that exhibit strong variability in both the intensity and 

the frequency content can be readily accounted for through the presented framework. 

In this regard, considering appropriately defined damage measures structural system related 

fragility curves for each story are determined at a low computational cost as well. Finally, the 



 

structural system design optimization problem is formulated as a multi-objective one to be solved 

by a genetic algorithm based approach; thus, various compromise solutions are obtained providing 

the designer with enhanced flexibility regarding decision-making analysis. A building structure 

comprising the versatile Bouc-Wen (hysteretic) model serves as a numerical example for 

demonstrating the efficiency of the proposed methodology. Note that the proposed framework can 

be applied in a straightforward manner to address cases of more sophisticated hysteretic modeling 

as well (e.g. enhanced Bouc-Wen, and Preisach models). However, the framework is limited to 

nonlinear/hysteretic modeling/functions for which equivalent linear elements can be determined 

via a statistical linearization approach. 
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