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0  INTRODUCTION

Excitations acting upon dynamical systems such as 

wind, wave, and seismic loads commonly exhibit 

evolutionary features. In this setting, not only the 

intensity of the excitation but also its frequency 

content exhibit strong variability. This fact necessitates 

the representation of this class of structural loads 

by non-stationary stochastic processes. Further, 

structural systems under severe excitations can exhibit 

significant nonlinear behavior of the hysteretic kind. 

Thus, of particular interest to the structural dynamics 

community is the development of techniques for 

determining the response and assessing the reliability 

of nonlinear/hysteretic systems subject to evolutionary 

stochastic excitations (e.g., [1] to [3]). 

Further, in engineering dynamics, the evaluation 

of the probability that the system response stays 

within prescribed limits for a specified time interval 

is advantageous for reliability based system design 

applications. In this regard, the first-passage problem, 

that is, the determination of the above time-variant 

probability known as survival probability, has been a 

persistent challenge in the field of stochastic dynamics 

for many decades.

Monte Carlo simulation techniques are among 

the most potent tools for assessing the reliability 

of a system (e.g. [4]). Nevertheless, there are cases 

where the computational cost of these techniques 

can be prohibitive, especially when large-scale 

complex systems are considered; thus, rendering the 

development of alternative efficient approximate 

analytical/numerical techniques for addressing the 

first-passage problem necessary. Indicatively, one 

of the early approaches, restricted to linear systems, 

relies on the knowledge of the mean up-crossing rates 

and on Poisson distribution based approximations 

(e.g., [5] to [7]). Further attempts to address the first-

passage problem range from analytical ones (e.g., [8]) 

to numerical ones (e.g., [9]). Furthermore, techniques 

based on the concepts of the numerical path integral 

(e.g., [10] to [13]), of the probability density evolution 

(e.g., [3]), or of stochastic averaging/linearization 

(e.g., [14]) constitute some of the more recent 

approaches.
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Highlights

• A stochastic dynamics methodology for determining the survival probability of nonlinear MDOF systems.

• Approximate analytical expressions provided for estimating the time-varying survival probability.

• Survival probabilities and the associated first-passage PDFs are determined at a low computational cost. 

• The developed technique is characterized by enhanced versatility as it can handle readily a wide range of nonlinear behaviors 

as well as various stochastic excitations with arbitrary EPS forms.
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In this paper, an approximate analytical technique 

for determining the survival probability and first-

passage probability density function (PDF) of 

nonlinear multi-degree-of-freedom (MDOF) systems 

subject to an evolutionary stochastic excitation vector 

is developed. Specifically, first relying on a statistical 

linearization based dimension reduction approach 

the original MDOF system is decoupled and cast 

into (n) effective single-degree-of-freedom (SDOF) 

linear time-variant (LTV) systems corresponding 

to each and every degree of freedom of the original 

MDOF system. Second, a stochastic averaging 

based approximate technique is utilized to derive the 

nonlinear MDOF system survival probability and 

first-passage PDF at a low computational cost. 

The remainder of this paper is organized as 

follows: In section 1.1 the statistical linearization 

technique for nonlinear MDOF systems is presented. 

Next, in section 1.2 a stochastic averaging/statistical 

linearization treatment of the problem, through a 

system dimension reduction approach is briefly 

delineated. In section 1.3, it is shown that the nonlinear 

MDOF system non-stationary marginal, transition 

and the joint response amplitude probability density 

functions (PDFs) can be approximated by closed-form 

expressions. Further, section 2 provides analytical 

closed-form expressions for the time-dependent 

survival probability of the nonlinear MDOF structural 

system as well as for the corresponding first-passage 

PDF. In section 3, illustrative examples comprising 

a 3-DOF system exhibiting Bouc-Wen hysteresis 

and subject to evolutionary stochastic excitations 

are considered. Pertinent MCS data demonstrate the 

reliability of the proposed technique. Finally, section 4 

provides with concluding remarks.

1  MDOF SYSTEM DIMENSION REDUCTION

In this section, the basic elements of an approximate 

dimension reduction/decoupling technique developed 

by some of the authors for determining the non-

stationary response amplitude PDF of nonlinear 

MDOF systems subject to evolutionary stochastic 

excitation are reviewed for completeness; see [15] and 

[16] for a more detailed presentation.

1.1  Statistical Linearization Treatment

Consider an n-degree-of-freedom nonlinear system 

governed by the equation:

 My C y K y + g y y F  + + ( ) = ( ), .t  (1)

where y  denotes the response acceleration vector, y  

is the response velocity vector, y is the response 

displacement vector, defined in relative coordinates; 

M, C and K denote the (n × n) mass, damping and 

stiffness matrices, respectively; g y y, ( )  is an 

arbitrary nonlinear (n × 1) vector function of the 

variables y and y . F(t)T = ( f1(t),  f2(t), ..., fn(t)) is a 

(n × 1) zero mean, non-stationary stochastic excitation 

vector process defined as F(t) = γa t( )  where  

γT = (γ1, γ2, ..., γn) is an arbitrary (n × 1) vector of 

constant weighting coefficients, and a t( )  is a non-

stationary process with an evolutionary power 

spectrum (EPS) S t
a ω,( ) . In this regard, F(t) 

possesses the EPS matrix:
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Further, the non-stationary stochastic excitation 

process is regarded to be a filtered stationary 

stochastic process according to the concept proposed 

by Priestley [17]; see also [18]. Thus, the excitation 

EPS matrix of Eq. (2) takes the form:

 S A S A
F F
ω ω ω ω, , , ,t t t

T( ) = ( ) ( ) ( )

*

 (3)

where the superscripts (T) and (*) denote matrix 

transposition and complex conjugation, respectively;  

A(ω, t) is the modulating matrix which serves as a 

time-variant filter; and S
F ω( )  is the power spectrum 

matrix corresponding to the stationary stochastic 

vector process F t( ) . Note that both separable and 

non-separable EPS can be defined considering Eq. (3). 

In this manner, excitations exhibiting variability in 

both the intensity and the frequency content can be 

considered. Focusing next on the frequency domain, 

the response determination problem is defined as 

seeking the corresponding system response EPS 

matrix of the form:
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.(4)

According to the statistical linearization method 

(e.g., [1] to [3]), a linearized version of Eq. (1) takes 

the form:
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 My C C y K K y F
eq eq

 + +( ) + +( ) = ( )t .�  (5)

Next, adopting the standard assumption that the 

response processes are Gaussian, the time-dependent 

elements of the equivalent linear matrices Ceq and Keq  

are given by the expressions:

 c E
g

y
i j

eq i

j

, ,=
∂

∂












 (6)

and

 k E
g

y
i j

eq i

j

, .=
∂

∂












 (7)

Further, for a linear MDOF system subject to 

evolutionary stochastic excitation a matrix input-

output spectral relationship of the form:

 S H S H
y gen F gen
ω ω ω ω, , , ,t t t

T( ) = ( ) ( ) ( )
*

 (8)

can be derived (e.g., [1] and [3]), where

 H h A
gen

ω τ ω τ τ.ω τ
, ,t t e d

t
i t( ) = −( ) ( )∫

− −( )

0

 (9)

In Eq. (9)  denotes the impulse response function 

matrix. Furthermore, the time dependent cross–

variance of the response can be evaluated by the 

expression:

 E y y S t di j y yi j
  = ( )

−

∞

∫
∞

ω ω.,  (10)

It can be readily seen that Eqs. (6) to (10) 

constitute a coupled nonlinear system of algebraic 

equations to be solved numerically for the system 

response covariance matrix. Note in passing that 

instead of the frequency domain Wiener-Khinchin 

relationship of Eq. (8), a state-variable formulation 

can be adopted yielding a system of differential 

equations of the Lyapunov kind (e.g., [1] and [19]) for 

the system response covariance matrix. Nevertheless, 

although a pre-filtering treatment can be applied 

for considering non-stationary stochastic excitation 

processes of the separable kind (e.g., [1]), excitations 

possessing a non-separable EPS (e.g. realistic cases 

of earthquake excitations) cannot be accounted for, at 

least in a straightforward manner. Next, omitting the 

convolution of the impulse response function matrix 

with the modulating matrix can lead to substantial 

reduction of computational effort, especially for the 

case of MDOF systems (e.g., [16] and [20]). In this 

manner, Eq. (9) takes the form:

 H H A
gen

ω ω ω, , ,t t( ) = ( ) ( )  (11)

where H(ω) is the frequency response function (FRF) 

matrix defined as:

  H M C C K K
eq eq

ω ω ω( ) = − + +( )+ +( )( )−2
1

i .  (12)

Consequently, taking into account Eqs. (3) and 

(8), Eq. (11) becomes:

 S H S H
y F
ω ω ω ω, , .t t T( ) = ( ) ( ) ( )

*

 (13)

Note that the Eq. (13) can be regarded as a quasi-

stationary approximate relationship which, in general, 

yields satisfactory accuracy in cases of relatively stiff 

systems (e.g., [20] to [22]). Note in passing that the 

spectral input-output relationship of Eq. (13) is exact 

for the case of stationary processes (e.g., [1] to [3]). 

Further, adopting the aforementioned quasi-stationary 

approach, it can be readily seen that for the ith degree 

of freedom, using Eqs. (2), (10) and (13) yields:
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, ,  (15)

Eqs. (14) and (15) hold true in the approximate 

quasi-stationary sense delineated earlier. Clearly, 

Eq. (13) constitutes an approximate formula for 

determining the MDOF system response EPS matrix 

at a low computational cost; thus, circumventing 

computationally intensive Monte Carlo simulations.

1.2  Effective SDOF Linear Time-Variant System

Following next the system dimension reduction 

approach developed in [16], an auxiliary effective 

SDOF LTV system corresponding to the ith degree of 

freedom can be defined as:

  y t y t y t
i eq i i eq i i i
+ ( ) + ( ) = ( )β ω α

, ,
,

2  (16)

where the time-varying equivalent stiffness and 

damping elements of the effective LTV system 

can be determined by equating the variances of 

the response displacement and velocity expressed 

utilizing the quasi-stationary FRF of Eq. (16) with the 
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corresponding ones determined via Eqs. (14) and (15); 

this yields:

E y t

t t

i

eq i eq i
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2 2 2 2
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( )− + ( )
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−
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×× ( )γ ω ωi aS t d
2
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Clearly, Eqs. (17) and (18) in conjunction with 

Eqs. (14) and (15) constitute a nonlinear system of 

two algebraic equations to be solved for the evaluation 

of the LTV system time-varying equivalent stiffness 

ω
eq i
t

,

2 ( )  and damping βeq,i (t) coefficients. Note that 

determining the time-varying natural frequency 

ωeq,i (t) is especially important for a number of reasons 

such as tracking and avoiding moving resonance 

phenomena (e.g., [23]), determining peak system 

response estimates based on design spectrum 

compatible excitation power spectra (e.g., [24]), or 

developing efficient approximate techniques for 

determining nonlinear system survival probability and 

first-passage PDF (e.g., [14]).  

Next, a stochastic averaging technique (e.g., 

[15] and [16]) is applied for casting the second-order 

stochastic differential equation (SDE) of Eq. (1) into 

a first-order SDE governing the evolution in time 

of the response amplitude ai (t). In this regard, and 

based primarily on the assumption of light damping, 

it can be argued that the response yi (t) of the effective 

LTV system of Eq. (16) exhibits a pseudo-harmonic 

behavior described by the equations:

 y t a t cos t t t
i i eq i i( ) = ( ) ( ) + ( )( )ω ϕ, ,  (19)

and

     y t t a t t t ti eq i i eq i i( ) = − ( ) ( )× ( ) + ( )( )ω ω ϕ
, ,

sin .  (20)

In Eq. (19) the response amplitude ai (t) is a 

slowly varying function with respect to time defined 

as:

 a t y t
y t

t
i i

i

eq i

2 2

2

( ) = ( )+ ( )
( )












ω

,

,  (21)

whereas φi (t) stands for the phase of the response yi (t). 

Further, relying on a combination of deterministic 

and stochastic averaging (e.g., [16]) a first-order SDE 

governing each and every degree-of-freedom response 

amplitude process ai (t) takes the form:

 

a t t t
S t t

t t

S

i eq i i
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In Eq. (22), η(t) stands for a stationary, zero mean 

and delta correlated Gaussian white noise process of 

unit intensity, i.e., E(η(t)) = 0 ; and E(η(t)η(t+τ)) = δ(τ), 
with δ(τ) being the Dirac delta function. Associated 

with the above SDE (Eq. (22)) is the Fokker-Planck 

(F-P) partial differential equation governing the 

response amplitude transition PDF of the Markovian 

process αi; that is,

∂
∂

( ) =

= −
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∂
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Further, considering the case p(ai,2, t2 | ai,1 = 0, 

t1 = 0) = p(ai, t), the marginal system response 

amplitude PDF has been shown to follow a time-

dependent Rayleigh distribution of the form (e.g., 

[16], [25] and [26]):

 p a t
a

c t

a

c t
i

i

i

i

i

, exp ,( ) =
( )

−
( )











2

2
 (24)

where ci(t) accounts for the non-stationary variance 

of the LTV system of Eq. (16). As it was shown in 

[15] and [16] substituting Eq. (24) into Eq. (23) and 

manipulating yields the following nonlinear ordinary 

differential equation (ODE):

 c t t c t
S t t

t
i eq i i

F eq i

eq i

( ) = − ( ) ( )+
( )( )
( )

β
π ω

ω
,

,

,

,
,

2
 (25)

to be solved for the non-stationary LTV system 

response variance ci(t) via standard numerical 

schemes such as the fourth order Runge-Kutta.

1.3  Transition and Joint Nonlinear System Response PDFs

Taking into account that no change of state 

can occur if the transition time is zero i.e., 

p(ai,2, t1 | ai,1, t1) = δ(ai,2 – ai,1) and following a similar 

analysis as the one in [25], the transition response 

amplitude PDF p(ai,2, t2 | ai,1, t1) for the ith degree-of-
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freedom of the original MDOF system is assumed to 

be of the form:

p a t a t

a

c t t
exp

a h t t

c t

i i

i

i

i i

i

, ,

, ,

, | ,
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2 2 1 1
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1 2
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12
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−

+ ( )
tt

I
a h t t

c t t

i i

i2

0

2 1 2

1 2( )










( )
( )









× , ,

,
,(26)

where ci(t1, t2) and hi(t1, t2) are functions to be 

determined and I0 represents the modified Bessel 

function of the first kind and of zero order. Next, 

substituting Eq. (26) into the F-P Eq. (23) and 

manipulating (see also [9],[14] and [25]) yields the 

linear first-order ODEs:

 

dc t t

dt
c t t c t t

S c t t

i
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=
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0
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 (27)

and

 
dh t t

dt
h t t h t ti

eq i i i

1 2

2

1 2 1 2

1

2
0

,
, , .

,

( )
+ ( )( ) ( ) =β  (28)

Relying on the assumption that the equivalent 

damping and stiffness coefficients follow a slowly 

varying with respect to time behavior, the following 

approximations over a small time interval [ti,j–1, ti,j] 

are introduced; i.e., βeq,i(ti,j) = βeq,i(ti,j–1) and 

ωeq,i(ti,j) = ωeq,i(ti,j–1) for t∈  [ti,j–1, ti,j]. Next, based on 

the slowly varying with time behavior of the EPS, 

Sfi,i
 (ω,t) is also treated as a constant over the interval 

[ti,j–1, ti,j]. Further, based on the above assumptions, 

introducing the variable τi,j = ti,j – ti,j–1, and applying a 

first-order Taylor expansion around the point τi,j = 0, 

Eqs. (27) and (28) become (see [14] for a detailed 

derivation):

c t t S t t
t

i i j i j F eq i i j i j
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, , , , ,
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ω ))
,  (29)

and

 h t t a ti i j i j i j eq i i j i j, , , , , ,
, .− − −( ) = − ( )1 1 1

1 β τ  (30)

Furthermore, considering Eqs. (25) and (29) 

and applying a first-order Taylor expansion for the 

response variance ci(t) around the point t = ti,j–1 yields:

c t t c t c t t
i i j i j i i j i i j eq i i j i j, , , , , , ,

, .− − −( ) = ( )− ( ) − ( )( )1 1 1
1 β τ (31)

Relying next on the Markovian assumption for 

the process ai, the joint-response amplitude PDF 

p(ai, j–1, tj–1 ; ai, j, tj) is given by:

p a t a t p a t p a t a ti j j i j j i j j i j j i j j, , , , ,
, ; , , ) ( , | ,− − − − − −( ) = (1 1 1 1 1 1 )).(32)

Utilizing Eqs. (24) and (26), Eq. (32) becomes:
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Further, setting

 r
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i i j

eq i i j i j,

,
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( )
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Eq. (31) yields:

 c t t c t r
i i j i j i i j i j, , , ,

, .−( ) = ( ) −( )1

2
1  (35)

Next, considering Eqs. (29) and (30) and Eqs. 

(34) and (35), the joint response amplitude PDF 

p(ai, j–1, ti, j–1 ; ai, j, ti, j) of Eq. (33) is given in the form:

p t t
c t c t r

i j i j i j i j

i j i j

i i j i i j

α α
α α

, , , ,

, ,

, ,

, ; ,− −
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−
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1 1

1

1
1
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i j i i j i j i i j

i i j i

c t c t

c t c t

,

, , , ,

,

exp

2

2

1 1

2

1
2

( )
×

× −
( )+ ( )

( )
− −

−

α α

ii j i j

i j i j i j

i i j i i j

r
I

r

c t c t

, ,

, , ,
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×

×
( ) (

−

−

1
2 0

1

1

α α

)) −( )













1

2
r
i j,

.  (36)

2  NONLINEAR MDOF SYSTEM RELIABILITY ASSESSMENT

In this section the approximate analytical technique 

developed by some of the authors in [14] for 

nonlinear SDOF survival probability determination 

is generalized herein to account for MDOF systems 

by utilizing the dimension reduction/decoupling 

technique outlined in section 1.

In this regard, the survival probability P
i

B  is 

defined as the probability that the system response 
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amplitude ai stays below a prescribed barrier B over 

the time interval [0, T], given that ai(t = 0) < B. Further, 

the first-passage PDF and the survival probability 

p T
i

B ( )  are related according to the expression:

 p T
dP T

dT
i

B i

B

( ) = − ( )
.  (37)

Next, adopting the discretization scheme 

employed in [9] yields intervals of the form:

 

t t j m t

t T t t
T t

i j i j i

i m i j i j

eq i

, , ,

, , ,

,

, , , , , , ,

,

−

−

  = … =

= − =

1 0

1

1 2 0

ii j,
,

−( )1
2

 (38)

where the response amplitude ai is assumed to be 

constant over [ti,j–1, ti,j] due to its slowly varying in 

time behavior. In Eq. (38) Teq,i represents the LTV 

system equivalent natural period given by:

 T t
t

eq i

eq i

,

,

.( ) =
( )

2π

ω
 (39)

Note in passing that a smaller time interval can be 

chosen if higher accuracy is required. In this regard, 

the survival probability P
i

B  is assumed to have a 

constant value over the same time interval as well. 

Obviously, the survival probability is given by

 P T F
i

B

j

m

i j

B( ) = − 
=
∏
1

1
,
,  (40)

where F
i j

B

,
 is defined as the probability that the 

response amplitude ai will exceed the prescribed 

barrier B over the time interval [ti,j–1, ti,j], given that no 

crossings have occurred prior to time ti,j–1. Next, 

invoking the Markovian property of the response 

amplitude ai, one gets:

F
Prob a t B a t B

Prob a t B

H
i j

B i i j i i j

i i j

i j

,

, ,

,

,
[ ]

[ ]
=

( ) ≥ ∩ ( ) <
( ) <

=
−

−

1

1

−−

−

1

1

,

,

,
j

B

i j

BH
 (41)

where ∩ denotes the intersection symbol. Utilizing 

Eq. (24) H i j

B

, −1  can be determined analytically in a 

straightforward manner; that is,

H p a t da exp
B

c t
i j

B

B

i j i j i j

i i j

, , , ,

,

,− − − −

−

= ( ) − −
( )







=∫1

0

1 1 1

2

1

1
2






,(42)

whereas H
i j j

B

, ,−1  is defined as a double integral of the 

form:

     H da p a t a t dai j j

B

B

i j

B

i j i j i j i j i j, , , , , , , ,
, ; , .− − − −= × ( )∫ ∫1

0

1 1 1

∞

 (43)

Further, taking into account Eq. (36) and 

expanding the Bessel function I0(x) in the form (e.g., 

[27]):

 I x
x

kk

k

0

0

2
2

1
( ) = ( )

+( )=
∑
∞ /

!
,

Γ κ
 (44)

analytical treatment of the involved integrals is 

possible yielding:

 H A A
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where
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and

A
r
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with
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,(48)

In Eq. (48) Γi [γ, z] represents the incomplete 

Gamma function defined as Γ γ γ
i

z

t
z t e dt,[ ] = ∫ − −

∞
1 . 

Concisely, the developed technique comprises the 

following steps:

i. Determination of the MDOF system non-

stationary response covariance matrix (Eqs. (10) 

and (13)) via a statistical linearization treatment 

of the problem.

ii. Determination of the equivalent linear time-

varying elements βeq,i(t) and ωeq,i(t) by solving 

the system of algebraic equations (Eqs. (17) and 

(18)).
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iii. Determination of ci(t) via numerically integrating 

the first-order ODE Eq. (25).

iv. Determination of the equivalent natural period  

Teq,i(t) (Eq. (39)) and discretization of the time 

domain via Eq. (38).

v. Determination of the parameters H
i j

B

, −1  and 

H
i j j

B

, ,−1  via Eqs. (42) and (43).

vi. Determination of the survival probability P T
i

B ( )  

via Eq. (40) and of the corresponding first-

passage PDF p T
i

B ( )  via Eq. (37).

3  NUMERICAL APPLICATIONS

In this section, a nonlinear three-degree-of-freedom 

system following the Bouc-Wen hysteretic model 

(e.g., [28] and [29]) subject to evolutionary stochastic 

excitation is considered to demonstrate the reliability 

of the technique.

The survival probabilities and the first-passage 

PDFs obtained via the developed approximate 

technique are compared with survival probability and 

first-passage PDF estimates obtained via pertinent 

Monte Carlo simulations (10,000 realizations). The 

Monte Carlo simulations were conducted by utilizing 

a spectral representation methodology; additional 

details can be found in [30].

Further, a standard fourth-order Runge-Kutta 

numerical integration scheme is employed for solving 

the nonlinear system differential equation of motion 

(Eq. (1)), whereas the barrier level B is expressed as a 

fraction λ of the maximum over time and over DOF 

value of the non-stationary response displacement 

standard deviation, i.e. B t
i and t

i
= ( )λ σmax( )  with 

σ
i i
t c t( ) = ( ) . Considering displacements defined in 

relative coordinates, the 3-DOF nonlinear system is 

governed by Eq. (1) where

 y
T y y y z z z= ( )1 2 3 1 2 3

,  (49)

 M
M M

M M
=










11 12

21 22

,  (50)

where

 M
11
=
















m

m m

m m m

1

2 2

3 3 3

0 0

0 ,  (51)

and

 M M M
12 21 22 3 3

0= = = , . (52)

Further,

 K
K K

K K
=










11 12

21 22

,  (53)

where

 K
11
=

−

−
















a a

a a
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k k

k k
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1 2

2 3

3

0

0

0 0

,  (54)

      K
12
=

−( ) − −( )
−( ) − −( )

−( )

















1 1 0

0 1 1

0 0 1

1 2

2 3

3

a a

a a

a

k k

k k

k

,  (55)

and

 K K
21 22 3 3
= = 0

,
.  (56)

In Eqs. (54) and (55)  stands for the rigidity ratio 

which can be viewed as a form of post-yield to pre-

yield stiffness ratio (a = 1 corresponds to the linear 

system). Further, the damping matrix of the structural 

system C is assumed to be proportional to the stiffness 

matrix; that is,

 C
C C

C C
=










11 12

21 22

,  (57)

where

 C K
11 11
= c ,  (58)

 C C
12 21 3 3
= = 0

,
,  (59)

and

 C
22
=
















1 0 0

0 1 0

0 0 1

.  (60)

In Eq. (58) c is taken equal to 0.2 × 10–2. For 

the specific example γi = mi, and the loading vector 

becomes

 F t f t f t f t
T( ) = ( ) ( ) ( )( )1 2 3

0 0 0 .  (61)

Further,

   

g y y
T

,

, , , .



  
( ) =

= − ( )− ( )− ( )( )0 0 0 1 1 1 2 2 2 3 3 3
g y z g y z g y z  (62)

In the Bouc-Wen model the additional state zi is 

associated with the displacement yi via the equation:

  z g y z
i i i i
= ( ), ,  (63)

where
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 g y z y z z y z Ay
i i i i i i

n

i i

n

i
   , .( ) = − − +

−
γ β

1
 (64)

The parameters γ, β, A and n are capable of 

representing a wide range of hysteresis loops (e.g., 

[28] and [29]). In this example the values a = 0.15, 

β = γ = 0.5, n = 1 and A = 1 are considered. The 

equivalent linear matrices take the form (e.g., [1] to 

[3]):

 C
C C

C C
eq

eq eq

eq eq

=










11 12

21 22

,  (65)

where

 
C C C
eq eq eq11 12 22 3 3

= = = 0
,
,
 (66)

and

 C
eq21

=

















c

c

c

eq

eq

eq

1

2

3

0 0

0 0

0 0

.  (67)

Further,

 K
K K

K Keq

eq eq

eq eq

=










11 12

21 22

,  (68)

where

 K K K
eq eq eq11 12 21 3 3

= = = 0
,  (69)

and

 K
eq22

=

















k

k

k

eq

eq

eq

1

2

3

0 0

0 0

0 0

.  (70)

The elements ceqi  and k
eqi

 in Eqs. (67) and (70) 

are given by the expressions:

 c
E y z

E y
E z Aeq

i i

i

ii
=

( )
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2

2

2

π
γ β




,  (71)

and

 k E y
E y z

E z
eq i

i i

i

i
= ( ) + ( )

( )

















2 2

2π
γ β


,  (72)

respectively.

3.1  A 3-DOF Hysteretic System under Evolutionary 

Stochastic Excitation of the Separable Form

In this example, the excitation EPS S tα ω,( )  takes the 

form

 S t w t S
CPα ω ω, ,( ) = ( ) ( )

2

 (73)

where SCP (ω) represents the widely used in 

engineering applications Clough-Penzien power 

spectrum (e.g., [31]) and w (t) denotes a time-

modulating envelope function given by:

 w t k e e
b t b t( ) = −( )− −1 2 ,  (74)

where b1 = 0.1 and b2 = 0.3; and k is a normalization 

constant so that w (t)max = 1. The Clough-Penzien 

spectrum is given by:

    

S SCP

g g g

g g g

f

f

ω
ω ξ ω ω

ω ω ξ ω ω

ω ω

ω ω

( ) =
+

−( ) +
×
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−

0

4 2 2 2

2 2
2

2 2 2

4

4

4

1

( )

/

/(( )( ) + ( )2
2

2
2

4ξ ω ωf f/

,

 (75)

where S0 is the amplitude of the excitation spectrum, 

modeled as a white noise process. The parameters 

values used are ξg = 0.7, ωg = 2 rad s–1, ξf = 0.6, 

ωf = 12.5 rad s–1. The total duration of the excitation is 

20 seconds. Further, the hysteretic 3-DOF system has 

the properties m1 = 2.0615×105 kg, m2 = 2.0559×105 kg, 

m3 = 2.0261×105 kg, k1 = 3.9668×108 Nm–1, 

k2 = 3.5007×108 Nm–1 and k3 = 2.6927×108 Nm–1. In 

Fig. 1 the EPS of S tα ω,( )  is plotted for S0 = 20 m2s–3.

Fig. 1.  Separable excitation evolutionary power spectrum 

In Figs. 2 and 3 the equivalent time-varying 

natural frequency ωeq,i(t) and βeq,i(t) the damping 

element  corresponding to each DOF are plotted, 

respectively. Note that the hysteretic/degrading 

behavior of the system is captured by the decreasing 

with time trend of the stiffness element, as well as the 

increasing with time trend of the damping element.

Further, in Figs. 4 and 5 the survival probabilities   

P T
i

B ( )  and indicatively the corresponding first-

passage PDFs p T
i

B ( )  for the first DOF of the 

hysteretic MDOF system are plotted for various 

barrier levels, respectively. The value N = 30 is chosen 

regarding the number of terms to be included in Eq. 

(45). Comparisons between the analytical approximate 

technique and MCS data (10,000 realizations) 
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demonstrate a satisfactory degree of agreement. Note 

that the irregular/non-smooth shape of the approximate 

technique based first-passage PDFs is due to the 

differentiation of the survival probability (Eq. (37)). 

In this regard, the survival probability Eq. (40) is 

assumed to have constant values over the time 

intervals [ti,j–1, ti,j], resulting in a non-smooth 

representation. Obviously, the level of non-

smoothness increases when differentiation takes 

place.

Furthermore, in Figs. 6 and 7 the survival 

probabilities P T
i

B ( )  corresponding to the second and 

third DOF of the system are plotted for various barrier 

levels. Comparisons with MCS demonstrate a 

satisfactory degree of accuracy for these cases as well.

3.2 A 3-DOF Hysteretic System under Evolutionary 

Stochastic Excitation of the Non-Separable Form

The excitation EPS S tα ω,( )  is assumed to have the 

non-separable form:

 S t S e t e
bt

t

α

ω

πω
ω

π
, ,( ) = 









−
−









0

2

2 15

15

2

 (76)

with S0 = 10 m2s–3 and b = 0.5. This spectrum comprises 

some characteristics of particular interest, such as 

decreasing of the dominant frequency with respect to 

Fig. 4.  Survival probability for various values of the parameter λ 

for the first DOF; comparisons with MCS (10,000 realizations)

Fig. 5.  First-passage PDF for various values of the parameter λ for 

the first DOF; comparisons with MCS (10,000 realizations)

Fig. 6.  Survival probability for various values of the parameter λ for 

the second DOF; comparisons with MCS (10,000 realizations)

Fig. 7. Survival probability for various values of the parameter λ for 

the third DOF; comparisons with MCS (10,000 realizations)

Fig. 2.  Equivalent natural frequency ωeq,i(t)

Fig. 3.  Equivalent damping coefficient βeq,i(t)
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time (e.g., [25] and [32]). Further, the hysteretic 3-DOF 

system parameters take the values m1 = 1.0240×105 kg, 

m2 = 1.0225×105 kg, m3 = 1.0105×105 kg and 

k1 = 5.6889×107 Nm–1, k2 = 5.6889×107 Nm–1 and 

k3 = 4.3945×107 Nm–1. In Fig. 8 the non-separable 

excitation EPS is plotted.

Fig. 8.  Non-separable excitation evolutionary power spectrum  

S tα ω,( )

Fig. 9.  Εquivalent natural frequency ωeq,i(t)

Fig. 10.  Εquivalent damping coefficient βeq,i(t)

In Figs. 9 and 10 the equivalent time-varying 

natural frequency ωeq,i(t) and damping βeq,i(t) 

elements corresponding to each DOF are plotted, 

respectively. Underlying the analytical approximate 

approach is the attempt to capture the time evolution 

as well as the essential characteristics of the frequency 

content of the nonlinear system response. Note 

that the ability of the technique to provide with 

time-varying natural frequencies ωeq,i(t) can be of 

particular importance if seen in conjunction with 

recent theoretical developments regarding the concept 

of the mean instantaneous frequency (MIF) (e.g., 

[33] to [35]). In this regard, ωeq,i(t) together with the 

MIF of the excitation can be potentially employed for 

evaluating the effects of temporal non-stationarity in 

the frequency content of the excitation on the system 

response as well as for tracking moving resonance 

phenomena (e.g., [23] and [36]).

Further, in Figs. 11, 12 and 13 the survival 

probabilities P T
i

B ( )  for every DOF of the hysteretic 

MDOF system are plotted for various barrier levels, 

respectively; comparisons with MCS (10,000 

realizations) demonstrate a satisfactory degree of 

accuracy. 

Fig. 11.  Survival probability for various values of the parameter λ 
for the first DOF; comparisons with MCS (10,000 realizations)

Fig. 12.  Survival probability for various values of the parameter λ 
for the second DOF; comparisons with MCS (10,000 realizations)

Fig. 13.  Survival probability for various values of the parameter λ 
for the third DOF; comparisons with MCS (10,000 realizations)
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4  CONCLUDING REMARKS

An approximate analytical technique for determining 

the time-varying survival probability and associated 

first-passage PDF of nonlinear/hysteretic MDOF 

systems subject to evolutionary stochastic excitation 

has been developed. Specifically, based on an efficient 

dimension reduction approach and relying on the 

concepts of stochastic averaging and statistical 

linearization, the original nonlinear n-degree-of-

freedom system has been decoupled and cast into (n) 

effective single-degree-of-freedom (SDOF) linear 

time-variant (LTV) oscillators corresponding to each 

and every DOF. In this regard, time-varying effective 

stiffness ω
eq, i
t

2 ( )  and damping β
eq,i
t( )  elements 

corresponding to each and every DOF have been 

defined and computed, while the non-stationary 

marginal, transition and joint response amplitude 

PDFs have been efficiently determined in closed-form 

expressions. Finally, the MDOF system survival 

probability and first-passage PDF have been 

determined approximately in a computationally 

efficient manner. Overall, the developed technique 

exhibits enhanced versatility since it can handle 

readily a wide range of nonlinear behaviors as well as 

various stochastic excitations with arbitrary non-

separable EPS forms that exhibit strong variability in 

both the intensity and the frequency content. A 3-DOF 

system exhibiting hysteresis following the Bouc-Wen 

model has been included in the numerical examples 

section. Comparisons with pertinent Monte Carlo 

simulations have demonstrated the reliability of the 

technique.
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