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Abstract: The changing nature of manufacturing, in recent years, is evident in industry’s 
willingness to adopt network connected intelligent machines in their factory development 
plans. A number of joint corporate/government initiatives also describe and encourage the 
adoption of Artificial Intelligence (AI) in the operation and management of production lines. 
Machine learning will have a significant role to play in the delivery of automated and 
intelligently supported maintenance decision making systems. While e-maintenance practice 
provides a framework for internet connected operation of maintenance practice the advent of 
IoT has changed the scale of internetworking and new architectures and tools are needed. 
While advances in sensors and sensor fusion techniques have been significant in recent 
years, the possibilities brought by IoT create new challenges in the scale of data and its 
analysis. The development of audit trail style practice for the collection of data and the 
provision of a comprehensive framework for its processing, analysis and use should be a 
valuable contribution in addressing the new data analytics challenges for maintenance created 
by internet connected devices. This paper proposes that further research should be conducted 
into audit trail collection of maintenance data and the provision of comprehensive framework 
for its processing analysis and use, allowing future systems to enable ‘Human in the loop’ 
interactions. 
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1. Introduction 

Increasingly manufacturing industry is adopting network connected intelligent machines in 
their factory development plans. This has created a new wave of interest in incorporating 
advances in Artificial Intelligence (AI), which is described and encouraged by a number of 
international government/industry initiatives.  The Industry 4.0 movement is one such initiative, 
between the German government and national industries, with a role to envisage and promote 
the use of new technologies and organizational methods for manufacturing (German Federal 
Government, 2016). Cyber Physical Systems (CPS) are a core theme of Industry 4.0, 
encompassing the further integration between machines and computing resources, leveraged 
in part by the Internet of Things (IoT). In addition, the enhanced information processing and 
analysis opportunities provided by the ubiquity of sensor use in modern machinery to provide 
data streams and resulting Big Data sets is seen to create potential for new products and new 
types of manufacturing models.  In the US the Industrial Internet Consortium is an initiative 
setup between the US government and large industrial organizations. While having similarities 
to the vision provided by Industry 4.0 there is a concentration on three core components: 
Intelligent Production Machines, Analysis of Sensed Data, People and Machines working 
together (Posada et al. 2015). The industrial Internet is also much more focused on the 
visualisation of data at both global and local levels (Industrial Internet Consortium, 2017). The 



central differentiator between the two visions is that while Industry 4.0 focusses on 
manufacturing, the remit of the Industrial Internet is much wider bringing in other sectors of 
the economy as well. In the opinion of the authors of this paper the central challenge is how 
maintenance can best utilise the opportunities brought by this expansion of AI into the 
manufacturing arena. The quality and provenance of data are important factors in data 
management and a key success factor for when engaging in any form of analytics. With 
maintenance rapidly adopting key Industry 4.0 technologies, such issues attain increased 
importance for successful applications and services. The path towards Industry 4.0-enabled 
maintenance has seen developments in Predictive Maintenance, Condition Based 
Maintenance, Intelligent Maintenance, and E-Maintenance; leading to the introduction of IoT, 
Context aware computing and Audit Trail concepts for maintenance. This paper offers a critical 
overview of this evolving landscape, including Industry 4.0 applications in the area of 
maintenance. The paper concludes by finding that while maintenance is increasingly adopting 
Industry 4.0 technologies, issues related to data governance, provenance and quality 
management, are already well appreciated in the Big Data literature; these topics deserve 
equal attention in this application domain and to this end a discussion of the potential of using 
the Audit Trail for maintenance data is provided. 

 

2. Intelligent Decision Support 

 

2.1 Condition Based and Predictive Maintenance 

Condition Based Maintenance (CBM) is the standard term employed to describe maintenance 
strategies determined on the basis of the actual condition of assets, as identified by the 
application of condition monitoring programmes (ISO 13372:2012)(BS EN 13306:2017). While 
this general viewpoint holds a central role in literature, details on how exactly CBM benefits 
from individual technologies, methods, has also received significant attention in the literature. 
In industrial practice, CBM involves the performance of maintenance tasks triggered by the 
analysis and interpretation of monitored hardware parameters and the associated decision 
making rules as an integrated process (Liyanage et al., 2009). Peng et al. (2010) describe 
Condition Based Maintenance (CBM) as a “decision making strategy to enable real-time 
diagnosis of impending failures and prognosis of future equipment health, where the decision 
to perform maintenance is reached by observing the “condition” of the system and its 
components” or additionally on the basis of prognostics about the anticipated future condition. 
While the diagnostics and prognostics parts of CBM approaches have benefited from 
incorporated machine intelligence in order to associate measured data and parameters with 
current and future machinery conditions (Jardine et al., 2006) (Emmanouilidis et al., 2006), an 
early criticism of machine intelligence use in CBM has been that the research has 
concentrated on very specific cases with only limited attempts to deliver solutions with generic 
applicability (Lee et al. 2006). As a response to this Lee et al. (2006) put forward a toolkit for 
predictive CBM based on sensor data, capable of working with different manufacturing 
machines and set ups. In their review of machinery diagnostics and prognostics Jardine et al. 
(2006) indicated a number of research directions for Condition Based Monitoring (CBM) 
systems for condition based Maintenance, including the development of a new generation of 
sensors for on-line data collection in real time and investigation into the provision of predictive 
techniques based on collected data. The next step in the maintenance data processing chain 
is to produce action recommendations, as highlighted in the OSA-CBM architecture (MIMOSA, 
2017). This elevates a CBM strategy to proactive maintenance. Within such an approach, 
asset events and errors are decomposed in a process flow, arguing that in understanding the 



conditions leading up to a fault, more accurate estimates of safe operating limits can be 
identified (Radkowski and Jasinski, 2014). The importance of utilising a range of evidence 
contained in multiple data sets and streams when making CBM related decisions is highlighted 
by Niu et al. (2010).  Such a data fusion approach can bring benefits through the combination 
of many condition measurements into a consolidated description of maintenance needs for an 
individual component or unit under observation. Niu et al. (2010) outline a maintenance system 
that takes advantage of data fusion and the OSA-CBM standard, providing a platform for the 
optimised exploration of maintenance decisions and predictions. Building on the availability of 
Big Data Bousdekis et al. (2015) provides a review of Condition Based Maintenance (CBM) 
and proposes a framework for maintenance decision making, utilising expert knowledge, 
which is capable of recommending maintenance actions for implementation. 

The question of how much capital to invest in maintenance practice has been addressed in 
the field of vibration monitoring by Al-Najjar and Alsyouf (2004). These authors concluded that 
a framework of performance measurement should be utilised to ensure value for money is 
being obtained from maintenance activities. Further research has been conducted into 
calculation of the likelihood of failure of assets and the appropriate stage at which to conduct 
maintenance interventions. Yao et al. (2016) identify two types of failure under CBM where in 
the first instance an asset may fail before the monitoring threshold is reached and the second 
where the monitoring threshold is exceeded without asset failure. Goyal et al. (2016) provide 
a more recent review that includes a number of machine intelligence methods for CBM and 
predictive maintenance practice and note that while such techniques provide good offline 
models research scope still exists in harnessing them for real time prediction and decision 
making. Accorsi et al. (2017) add a set of models to aid the prediction of faults in production 
systems and explore machine learning techniques such as decision trees utilised for the 
classification and identification of abnormal operating conditions derived from production 
machine data streams. Accorsi et al. (2017) go onto propose a framework for data mining and 
modelling related to CBM.  

 

Prognostic maintenance practice is based on the prediction of likely breakdowns in hardware 
formed from the analysis of collected parameters and degradation trends. Liyanage et al. 
(2009) identify three prognostic approaches: 

• Model based: Centred on detailed knowledge of a system and its interlinkages; its use 
is limited due to inherent complexity of modern industrial systems. 

• Data-driven: Requires historical parameter collection from monitored assets; requires 
pattern recognition and machine intelligence techniques to realise actionable decision 
making outcomes. 

• Hybrid: Is a combination of the two aforementioned approaches requiring a joint 
analysis of both known information about a system in combination with sensed data 
points. 

The use of prognostic maintenance practice to estimate the remaining useful life of a 
component has been investigated by Van Horenbeek and Pintelton (2013). This work takes 
into account inter-component dependencies in the degradation calculation approach and 
prognostic maintenance policy developed (Van Horenbeek and Pintelton, 2013). Prognostic 
maintenance practice can benefit from advances in data capture and the availability of big 
data for a range of applications. Lee et al. (2013) describe the use of a Digital Twin whereby 
a machine may be represented in digital form utilising CAD models and sensor streams from 
the machine.  Lee et al. (2013) also describe the possibility for similar machines to 
communicate with each other to check and compare status to form more accurate feedback 



to the maintenance monitoring system along with the use of self-aware sensors with built in 
decision making capabilities.  Lee et al. (2013) conclude with an outline of a cloud based cyber 
physical model of machine data capture, analysis and use. The capture and integration of 
expert knowledge to support and validate predicted routines is very much an active subject of 
research. The use of prognostics in condition based maintenance through the construction of 
a hybrid model incorporating expert knowledge is investigated by Galar et al. (2015). In this 
work a combination of discrete data and semantic feedback (provided by experts) is combined 
to provide decision support in relation to issues of component degradation (Galar et al. 2015).  
Baysian approaches to prediction in maintenance are not new; McNaught and Zagorecki 
(2009) have explored the use of a Bayesian network approach to prognostic modelling of 
equipment in terms of maintenance. A more recent technique drawing on Bayesian theory for 
prediction is put forward by Desforges et al. (2017) is described as a support system for 
maintenance planning activities with the aim of modelling fault prorogation in subsystems for 
improved prediction. In addition the technique aims to reduce the downtime of systems 
enabling further efficiencies in planning to take place (Desforges et al., 2017). Niu and Jiang 
(2017) propose a technique for prognostic control at a component level within a system while 
enabling the optimisation of the system as a whole at a global level. This enables the 
development of a suitable overall maintenance interval schedule based on sub system level 
health prognostics (Niu and Jiang, 2017). Ragab et al. (2017) put forward a way of pattern 
selection from condition monitoring data to support prognostic maintenance, a method that 
does not rely on expert judgement and statistical base assumptions on initial set up. A case 
study on prognostic techniques relating the maintenance of railway infrastructure is presented 
by Marugan and Marquez (2016). Binary Decision Diagrams are used with fault trees to 
provide an Internet based decision making process for problem diagnosis in railway points.  
Recent work by Belkacem et al. (2017) investigated the combined approach of integrating 
diagnostic and prognostic maintenance policies to provide a dynamic maintenance system; a 
technique these authors aim to extend and develop further, in terms of its scalability, in future 
research. The practice of prognostic maintenance must of course be viewed within a wider 
maintenance system composed of the latest hardware and software. Such a system is 
envisaged within the field on E-maintenance, which is the subject of the following section of 
this paper. Xia et al. (2018) provide a concise summary of predictive techniques in use for 
maintenance practice in a range of digital manufacturing activities; these authors note that 
innovative manufacturing techniques, such as 3D printing, bring new challenges to the way 
maintenance is performed, demanding new research into how supply chains support products 
manufactured in this way. Vafaei et al. (2019) have investigated CBM from the perspective of 
providing an approach for an early warning system. In this work Vafaei et al. (2019) utilise a 
fuzzy inferencing approach to enable a system capable of developing what-if scenarios based 
on generated rulesets regarding the potential for break downs in monitored production lines. 
In their survey paper on CBM and prognostic techniques in industry Sakib and Wuest (2018) 
make the case that a combination of such techniques is increasingly seen as the most likely 
future path for maintenance practice, involving a multiphase approach to problem detection, 
diagnosis and corrective/mitigating actions. 

 

2.2 E-maintenance 

Incorporating predictive maintenance approaches within E-maintenance aims to integrate 
developments in web enabled communication technologies with semantically described data 
resources, sensing technologies and artificial intelligence algorithms to realise new 
capabilities for remote and ubiquitous maintenance. Levrat et al. (2008) state that inherent in 
the concept of e-maintenance is the remote monitoring and management of assets though 



Internet-based technology. Levrat et al. (2008) go onto propose a framework for e-
maintenance encompassing issues such as infrastructure,  business processes and 
information architecture, noting that further research is needed in terms of unified standards 
for e-maintenance and the communication protocols required for effective operation. A 
particular feature of e-maintenance, enabled though its framework, is the facilitation of fault 
prediction in order to pre-emptively schedule mitigating maintenance activity. Voisin et al. 
(2010) proposes a prognosis business process as a formalisation of the predictive feature of 
e-maintenance practice in their proposed model. Muller et al. (2008) provides a review of the 
main research works in the area of e-maintenance, focussing on definitions of e-maintenance 
ranging from a maintenance strategy to a type of maintenance planning. Muller et al. 2008) 
state that the combination of the latest ICT developments, especially with regard to 
prognostics, with maintenance practice has led to the emergence of e-maintenance. However, 
a more accurate assessment would see e-Maintenance as an enabling factor for more efficient 
maintenance, which would also include prognostics, rather than the other way round. The 
utility of machine learning in the successful delivery of e-maintenance has been noted by Ucar 
and Qiu (2005). These authors also note the rise of wireless communications technology 
(networks, sensors etc.). Arnaiz et al. (2010) provide a review of communication technology 
use in e-maintenance and point to two trends; that of the use of wireless web enabled 
communication technologies and the miniaturisation of sensing devices. The potential value 
of RFID and other associated smart tagging technologies is noted by Adgar et al. (2010) along 
with the rise of ubiquitous computing, a movement describing the almost universal availability 
of miniaturised computing power in a range of, often, portable devices (Arnaiz et al., 2010; 
Krommenacker et al. 2010). The prominence of one particular approach has been identified 
by several authors (Arnaiz et al., 2010; Campos, 2009; Vogel-Heuser et al. 2014); that of 
Agent technology, where sometimes geographically distributed software modules are able to 
cooperate in order to autonomously fulfil a given objective or set of objectives. When used 
with machine learning techniques this approach is particularly relevant to the field of e-
maintenance. Overall, e-maintenance is considered an umbrella term to include a range of 
enabling technologies which facilitate the whole data process chain in maintenance, from data 
acquisition through sensor miniaturisation, smart tags, and sensor networks, to wireless 
communications and mobile devices, all the way to web-based and semantic computing for 
offering maintenance services and decision support, including technology enablers for 
maintenance training (Holmberg et al., 2010).  

Holgado et al. (2016) identify a range of functionalities provided by e-maintenance applications 
listing 10 categories of tools. These focused on provided diagnostic and prognostic 
functionality were rated more highly for usefulness than those than were based on model 
simulation. A recent evaluation work comparing diagnostic and prognostic maintenance 
policies is provided by Belkacem et al. (2017). The use of AR (Augmented Reality), where 
animations and graphics are overlaid on actual scenes in real time, is identified by Azuma 
(1997) and Azuma et al. (2001) as an aid to maintenance activities. Henderson and Fiener 
(2011) explore the use of AR for engineer knowledge assistance in maintenance and repair 
activities. These findings are interesting as Turner et al. (2016) envisages the development of 
AR with simulation, allowing models of production systems to be fed with data in real time and 
overlaid on the actual physical view of the plant/assets in question. Such a combination of 
technologies could act as a context relevant visualisation to aid ‘in-field’ maintenance 
decisions. Ceruti et al. (2019) examine the use of AR within case studies drawn from aviation 
maintenance practice, concluding that such an approach can streamline part identification 
tasks and on the job training and support of maintenance technicians.   

Real world case studies of e-maintenance systems in action can be found in industries such 
as aerospace and rail and road maintenance where sensed data about both static and mobile 



assets may be collected and analysed to make decisions about present and future 
maintenance actions. (Ben-Daya et al., 2016). Ben-Daya et al. (2016) charts the rise of e-
maintenance, from manual systems, and CBM into web connected systems.  

Increasingly industry is witnessing the gradual introduction of Cyber Physical Systems (CPS). 
Such CPS systems are composed of deeply interconnected hardware and software systems 
with sensing capabilities and are often able to provide intelligent decision support and decision 
making functionalities to users (NIST, 2013).  Holgado et al. (2016) notes the importance of 
CPS and the increasing potential of machines to interact with their maintenance systems and 
influence the works carried out and their timing. As a tangent to this Ruiz-Arenas et al. (2014) 
explores many of the e-maintenance issues that pertain to CPS systems themselves and 
provide the case study of a CPS enabled greenhouse as an example. Penna et al. (2014) and 
Botelho et al. (2014) describe an approach for the visualisation of CPS integration in 
maintenance systems and the development of maintenance scenarios using 3D modelling 
tools. The aforementioned visualisation approach focusses on Human Computer Interaction 
issues taking into account and designing interfaces for the support of human operators within 
the maintenance process (Penna et al., 2014). One of the central components of e-
maintenance is the ability to freely collect, exchange and process data. One approach to this 
is through the use of semantic technology and ontology use. Nuñez and Borsato (2017) 
explore the potential of semantic technologies to describe machine health management and 
prognostic forecasting of potential failure. The semantic framework built by Nuñez and Borsato 
(2017) is provided in the form of prototype software to allow experimentation with a wide 
variety of plant and machinery. Zhou et al. (2017) provide a potential augmentation to the 
aforementioned semantic framework through their research of fault diagnosis and provision of 
a requisite knowledge model. This work also utilises a semantic approach and envisages the 
use of pattern recognition approaches such as Neural Network to better identify and classify 
a fault through data analysis (Zhou et al., 2017). Li et al. (2017) in a review of artificial 
intelligence/machine learning use in manufacturing discuss programmes for proactive and 
preventative maintenance that would be possible within an intelligent manufacturing system. 
The interconnected nature of organisational management systems and manufacturing 
production machines in combination with accessible rich data and information sets is leading 
to this new role for machine learning in industry (Li et al. 2017). In applications with high 
maintenance needs there is a requirement to coordinate the supply chain responsible for spare 
parts delivery. This subject has been researched by Espíndola et al. (2012) who put forward 
a conceptual approach to combining an intelligent maintenance system with supply chain 
coordination and planning processes. In addition da Silva et al. (2014a) also investigate the 
integration of parts supply chain and planning with an intelligent maintenance system touching 
on the use of ontology to describe communication within the combined architecture; along with 
Saalmann et al. (2016) who propose a multi-layer ontology incorporating existing semantic 
approaches to supply chain and intelligent systems. A particular use of ontology is in the 
potential integration of spare parts supply chains and the field of CBM, where the two entities 
possess distinct knowledge sets and express their data and parameters in different levels of 
granularity and importance (Saalmann et al., 2016). Saalmann et al. (2016) make the case for 
a common terminology and utilise DPWS (Device Profile for Web Services) in order to obtain 
metadata from physical devices (DPWS is a standardised middleware for exposing 
parameters about and data from physical hardware devices). 

One particular challenge relating to e-maintenance data is that of missing values, where 
connectivity issues and faulty sensors can lead to incomplete data recordings (Loukopoulos 
et al., 2017). The research of Loukopoulos et al. (2017) explores the process of imputing 
missing values in data relating to the e-maintenance practice required for compressors used 
in the oil industry. This work investigates the use of computational intelligence approaches 



such as self-organising map (SOM) Neural Network learning, K nearest neighbours classifier 
and Bayesian techniques. Lou found that while SOM and KNN produced reasonable results 
the best result was produced by Multiple Imputation MI (an uncertainty method used to 
introduce simulated data based on Bayesian theory). Beyond missing values, Liyanage et al. 
(2009) makes the point that there is also a need to keep experts in the loop; networks of people 
are required to enrich data from systems and sensors with their own contributed observations 
or knowledge. Djurjanovic et al., (2003) outline a watchdog agent which has been designed to 
convert sensor data into health management information and Liyanage et al. (2009) place this 
within an overall e-Maintenance framework. In combination with decision management 
functionality the agent is designed as a semi-autonomous software module capable of 
interaction and coordination with enterprise maintenance and manufacturing systems.  

In line with Muller et al. (2008) definition of e-maintenance as a combination of  
‘telemaintenance principles with Web services and modern e-collaboration principles’ enabling 
knowledge exchange and intelligence based on the ability to identify and collect relevant and 
timely parameters, a more recent wave of technologies presents a step change and the 
possibility for real time proactive maintenance. This paradigm addressed existing practices 
that were much more focussed on the improved management of maintenance, from reactive 
to proactive activities, through prognostics based on largely disconnected datasets with 
potential for data quality and timeliness penalties. The increasing importance of maintenance 
as a service in industry is highlighted by Akkermans et al. (2019); these authors highlight that 
the product service methodology has evolved into the provision of smart maintenance services 
to complement products, made possible by more accurate quantifications of service needs 
and costs based on real-time analytics. 

2.3 IOT 

Developments within hardware have increasingly leveraged the availability of almost 
ubiquitous network connectivity provided by internet based communication protocols. This has 
now culminated in IoT whereby hardware from sensors to entire machines may be web 
addressed as interactive objects providing raw and often intelligently filtered data points to 
client software applications. Cloud implementations utilise both network technologies and big 
data production capabilities of IoT connected hardware to provide new distributed 
manufacturing forms and the opportunity for prognostic flexible maintenance based on 
intelligent near real-time analysis of live operating environments. The utilisation of cloud 
technologies to enable CBM is one of the more recent research strands within e-maintenance. 
Karim et al. (2016) make the case for what they term ‘Maintenance Analytics’, where four time 
related perspectives of practice are defined in the utilisation of data provided by industrial 
application cloud platforms. In a rail related case study, ‘Rail Cloud’, Karim et al. (2016) find 
that a systematic treatment of maintenance data is required with its synthesis and integration 
required for decision making in order to support the next generation of digitally monitored plant 
and machinery. In the research of Truong (2018) it is acknowledged that the inherent 
complexity of modern machinery IoT enabled cloud platforms require additional analysis of 
interactions between system components, and that this analysis also requires human 
intervention and decision making capabilities. Truong (2018) go onto propose a system 
capable of automatically recognising when human expertise is required and alerting the 
correct expert for input of knowledge and decision making capability.  While this research 
outlines an architecture for distributed analytics processing Truong (2018) notes that much 
research is still required in the correct mapping of analytics to domain knowledge derived from 
experts an in the facilitation of the ‘Human in the Loop’. Mourtzis et al. (2016) propose a shop 
floor monitoring approach that includes CBM functionality delivered via a cloud infrastructure. 
The approach of Mourtzis et al. (2016) highlighted the possibility of near real time data 



acquisition and monitoring for maintenance decision making. In later work Mourtzis et al. 
(2018) provide a cloud based model for IoT sensor data collection from a manufacturing 
production line; highlighting the potential of such a system in its ability to interconnect the shop 
floor with enterprise IT software, these authors elude to the possibility of fine grain control and 
prediction at the individual machine tool sensor pack level.  Wang et al. (2017) provide an 
example model of cloud based prognostic maintenance practice outlining the advantages of 
local processing of data on mobile devices in order to manage the overall analytics load within 
the system and reduce the communications bandwidth required. In their work Wang et al. 
(2017) cite the need for further research in the development of distributed data analysis 
practice and co-ordination of heterogeneous data streams and for improved security for data 
communication. The question of enhanced security practice for cloud based CBM practice is 
one explored by Tedeschi et al. (2017) who propose a structured approach to the assessment 
of security requirements within a cloud based CBM system. In more recent work Bowden et 
al. (2019) propose a ‘plug and Play’ end to end cloud architecture for predictive maintenance. 
The architecture utilises Docker containers (an open source software that is used to ‘wrap’ up 
unites of code into generically compatible container compliant with common software as a 
service and platform as a service implementations) to provide flexibility in the implementation 
and deployment of the completed analytics system. A case study is provided by these authors, 
based on the monitoring of a Comau industrial robot, with initial results demonstrating a range 
of predictive and near to real time alerting functionalities expected of a future industry 4.0 
maintenance system (Bowden et al., 2019). Predictive maintenance architectures such as 
Bowden et al. (2019) often rely on data streams provided by IoT compliant sensing packs 
composed sensors and Edge data processing devices. It is the opinion of certain research 
works that there are limitations in the utilisation of Cloud platforms for industrial applications 
in that the sheer volume of data transfer that must take place between facility and Cloud 
infrastructure means that more localised processing is necessary (Anaya et al. 2018). Patel et 
al. (2017) also acknowledge the data transfer limitation of Cloud platforms along with the need 
for near to real time processing of data, a factor that is also difficult to achieve in such 
platforms.   

In such circumstances the ability of Edge devices to pre-process data streams emanating from 
production and machine tool sensors takes on additional importance; as such decentralised 
processing of data using Edge devices is an active stream of research within Industrial IoT 
analytics programs to support maintenance activities (Uhlmann et al. 2017). Parpala & Iacob 
(2017) describe how IoT enabled Edge technologies can be used to allow data collection from 
legacy machinery. This work also demonstrates a simple data communication interface to 
complement the sensor and Edge device hardware implementations required (Parpala & 
Iacob, 2017). Jantunen et al. (2018) provide a case study drawn from research of a proactive 
maintenance approach within a power plant. This work examined the output of vibration 
sensors monitoring flue gas blowers within a power plant; the research concluded that a six 
month time difference between component replacement times suggested by use of this 
approach and manual assessments of the same data (Jantunen et al., 2018). A wider 
exploration of Edge computing in the manufacturing domain is provided by Wan et al. (2018) 
who propose an architecture for IoT enabled production. In their maintenance based case 
study Wan et al. (2018) the authors found that the packing of confectionary boxes by robots 
could be performed autonomously with self-organisation and planning undertaken at the 
production line level, made possible by the inherent advantages of co-located processing 
provided by Edge computing devices. The connection and synergies achievable with the 
combined use of IoT, predictive maintenance and 3D printing are elicited by Yamato et al. 
(2017a). Such linkages are explored with regard to aircraft maintenance, and an analytics 
platform is proposed (Yamato et al., 2016) along with a case examining the potential of sound 



stream analysis in maintenance utilising edge devices (Yamato et al., 2017). In terms of 
machine learning use with data streams Tran and Yang (2012) propose a platform for CBM 
utilising intelligent techniques such as Principal Component Analysis (PCA) and Support 
Vector Machine (SVM) in particular to extract features from data and then diagnose faults in 
rotating machinery, respectively. In further studies involving the maintenance practice relating 
to rotating machinery, Yunusa-Kaltungo and Sinha (2017) make the case that while analysis 
of big data obtainable from such equipment is potentially transformative, in the case of 
vibration based parameters more streamlined techniques can hold the potential for lower cost 
and simplified e-maintenance practice. These authors provide an approach utilising 
classification and optimisation techniques for use in the monitoring of such machines (Yunusa-
Kaltungo and Sinha, 2017). Kanawaday and Sane (2017) explore the use of a forecasting 
method, AutoRegressive Integrated Moving Average (ARIMA), on data streams generated by 
IoT sensorised production line machinery. This approach has been used to improve 
maintenance planning and in future research may be adapted to predict remaining useful life 
of a production machine and detect operational anomalies (Kanawaday and Sane, 2017). The 
concept of tele maintenance (remote maintenance) is highlighted by Selcuk (2018) as a future 
direction for prognostic maintenance, made possible by IoT connected sensors, intelligent 
products and machines. This author also points to the emergence of maintenance as a full 
integrated service provided to customers, leveraged through IoT technology (Selcuk, 2018). It 
is also the case that Digital Twins, providing virtual replicas of real world production lines and 
assets, may be used in IoT (Koulamas and Kalogeras, 2018) for connected predictive 
maintenance practice (Qi & Tao, 2018) and administered from both inside and outside the 
customer organisation. A number of interesting new business models for IoT based service 
provision are outlined by Ju et al. (2016). These authors propose a generic framework for the 
enablement of IoT business model development (Ju et al., 2016). Khan et al. (2017) also 
provide a methodology for IoT sensing in industry, illustrated by a use case based on a process 
to facilitate predictive maintenance within an organisation. It is clear that localised processing 
of data streams can provide real benefits in terms of real time decision making and the 
enablement of intelligent automation; for an additional commentary on the mining of streaming 
data for maintenance activities Munir et al. (2018) provide a concise summary.  At this point it 
should be noted that newer IoT enabled maintenance techniques are perhaps not a complete 
replacement for existing techniques such as root cause failure analysis and preventative 
maintenance practice; existing and new techniques can be complimentary in their use, a point 
made by Bengtsson and Lundstrom (2018).    

2.3.1 Data fusion from multiple sensor outputs  

The IoT opens up disparate physical plants and machinery to the potential for ubiquitous and 
real time data connectivity. While much work still remains to be completed on the 
establishment of unified data exchange standards and semantics progress has been made in 
terms of data networking and management approaches for this recent paradigm shift in 
connectivity.  

2.3.1.1 Large scale data internetworking 

Emmanoulidis et al. (2009) make the case for the take up of advanced communication 
networks in conjunction with mobile computing solutions in order to support maintenance 
activities. A reliance on locally available data and resources provided by LAN (local Area 
Network) often means that organisations must undertake manual data mining tasks on 
disconnected data sets in order to make planning decisions on maintenance activities 
(Emmanoulidis et al., 2009). Sayafar et al. (2016) add that the real time optimisation of 
maintenance activity planning, in part enabled through mobile networked devices, will lead to 



universal access to vital asset data for involved workers. The production of data by intelligent 
products provides another IoT enabled source of data. Intelligent products may produce data 
while in operation ‘in the field’ or even while in production while being assembled in a factory. 
McFarlane et al. (2012) investigate the state of the art in intelligent products point to the use 
of RFID (Radio-frequency identification) tags to trace products through the supply chain and 
also note the rise of IOT and its potential to network connect intelligent products. Cuthbert et 
al. (2016) make the case for product intelligence in domestic appliances suggesting that low 
cost electronics could be integrated into such products to enable health tracking for 
maintenance purposes. Improvements in communications networks especially mobile 
networks are helping to leverage interest in IOT. The 5G mobile standard promises 
bandwidths capable of serving the requirements for the wireless connection of IOT devices 
with greater energy efficiency (Andrews et al., 2014). Papakostas et al. (2016) outlines 5G in 
a manufacturing context pointing to the possibility for ubiquitous connectivity and potential for 
plug and play hardware on the shop floor.  

2.3.1.2 Large scale data management and analytics 

The volume of data sets and streams available with networked hardware in manufacturing 
leads to changes in the way that data analysis takes place. Cloud technologies have been 
assessed for this purpose and the concept of Cloud Manufacturing has been put forward as a 
potential analytics solution. The Cloud Manufacturing paradigm is based on the use of 
distributed Cloud Computing technologies for sustainable manufacturing while integrating 
distributed Internet technologies such as IoT (Zhang et al., 2014). Sustainability in 
maintenance practice is a theme explored by Franciosi et al. (2018) who surveyed literature 
and found that proactive and predictive maintenance practices could lead to reduced 
environmental impact in many cases, noting that improved end of life estimation and failure 
modes that take account of emission/environmental damage due to machine breakdown hold 
much potential. The distributed processing of data envisaged by Cloud Manufacturing is one 
way to address the analytics need created by the challenge of continuous maintenance 
particularly of high value long lifecycle products (Roy et al., 2016). Truong (2018) provide a 
predictive analytics approach for maintenance utilising IoT and Big Data Cloud resources.  

More efficient methods of maintenance are required as many high value products are sold as 
product-service offerings whereby maintenance is delivered as part of the retail offer (Baines 
et al., 2009). Cyber Physical Systems (CPS) in manufacturing are entities that both produce 
and consume vast quantities of data in their operation. While encompassing such entities as 
cybernetic extensions to humans CPS systems in terms of manufacturing are more likely to 
be formed of the following components: production capable machines; sensing functionality 
(both hardware and software); intelligent computer processing functionality. With CPS there 
is a need for both local data processing (within the CPS hardware entities), for autonomous 
operation within a shop floor perhaps, and remote analytics for monitoring and global 
coordination. Gubbi et al. (2013) notes that both Cloud and IoT technologies are required to 
fully enable CPS and link together intelligence at both local and global levels; it is this, in the 
authors’ of this paper opinion, that will help to deliver the next generation of manufacturing 
solutions including those focussed at the maintenance level. While realising interconnectivity 
at a hardware and digital communications level is key to the latest maintenance practice an 
often overlooked concept, though one that is gaining in acceptance, is that of context 
awareness in relation to maintenance.  

2.4 Context aware computing  

The area of context awareness in systems has been growing over recent years. Dey et al. 
(2001) describe the context awareness of systems as being provided through the intelligent 



characterisation and interaction of computer applications with their surrounding environment. 
In the view of Dey et al. (2001) context awareness acquisition by a system may be manual as 
well as automatic. The research of Bettini et al. (2010) advises that applications should be 
abstracted away from the context related functionality that they utilise, meaning that changes 
in context data and models should not break the software systems built upon them. To this 
end Bettini et al. (2010) survey the field of context modelling with the aim of identifying good 
practice in order to reduce the complexity of context aware application development; 
recommendations are also made as to the use of formal modelling techniques such as Object-
Role Modelling (ORM) in the development of context models. Blasch et al. (2012) highlights 
the importance of context in the development of a data fusion architecture noting that the use 
of technologies such as simulation in combination with context based information can provide 
further efficiencies at the analysis stage. One key driver for increased interest in context 
awareness is the rise of pervasive computing. Ye et al. (2012) identify pervasive computing 
as a type of computing that through the use of sensors is able to interact with the world with 
minimal or no human intervention. Perera et al. (2014) provide an overview and a taxonomy 
of a lifecycle approach to context awareness for utilisation in conjunction with IoT linked 
middleware, highlighting a progression from context acquisition through processing and 
analysis to its eventual distribution though API (Application Programming Interfaces) and 
appropriate data formats. 

Hong et al. (2009) provide a classification framework for context aware systems in their survey 
of the area identifying five distinct layers: Concept and research layer; Network layer; 
Middleware layer; Application layer; User intrastate layer. Focusing on Enterprise Information 
Systems, El-Kadiri at al. (2016) argue that the multi-networked nature of physical entity 
supported IoT empowers physical products and assets to become intelligent; but in order to 
cope with the breadth, depth, rate, and sheer volume of produced data a context aware 
approach is needed. El-Kadiri at al. (2016) identify abstract context categories (e.g. user, 
environment, system, service and social context) as relevant to a wide range of applications 
but they indicate that such high-level context abstraction needs to be supplemented by 
domain-specific context modelling, providing examples relevant to maintenance and asset 
management.    

Of most interest to this paper are the application and middleware layers. While benefitting from 
the other layers the application and middleware layers contain the logic required to establish 
context and provide intelligent processing and presentation of data to the user while holding 
the potential as a platform for automated decision making. In the research put forward by 
Perera et al. (2014) these authors also sought to examine appropriate data collection 
frequency levels and establish responsible components for data collection and decision 
making within context aware IoT systems. The importance of context in data fusion is 
highlighted by a number of authors (Khaleghi et al. 2013, Fernández-de-Alba et al. 2015, 
Snidaro et al. 2015, Linas et al. 2016).  In particular the fusion of context related data is 
interesting in the work of Fernández-de-Alba et al. (2015) who put forward a framework to 
combine senor data from different sensors and platforms; the framework is demonstrated 
through a case study that guides users to meetings within an organisation. An important 
facilitator of context aware computing is semantic technology.  

The survey of Snidaro et al. (2015) underlines the increasing role of machine learning in the 
analysis and use of context based data, in addition these authors also note the need to provide 
context processing functionality as part of a shared middleware layer that applications utilise 
for information processing. Linas et al. (2016) go onto formalise the roles of context and 
information fusion in their combined use. These authors also promote the JDL (Joint Directors 
of Laboratories) data fusion model which defines five fusion levels their roles in applications 



and the algorithmic approaches associated in their realisation. Smirnov et al. (2015) introduce 
a number of context based knowledge fusion patterns. The seven patterns aim to encapsulate 
the different context based effects that occur in decision support systems when integrating 
new knowledge and changes in semantic mappings to related ontologies.  The role of ontology 
in the collection and analysis of context related data has been researched by a number of 
authors (Perera et al. 2014; Sminov et al. 2015, Sminov et al. 2016, Linas et al. 2016). From 
literature it is clear that semantics and metadata descriptions will play a significant part in the 
development of context awareness, as raised by Sminov et al. (2015) the ability to arrive at 
and distribute processed data with a recognised shared meaning will be key. Perera et al. 
(2014) identify six wider research challenge areas for context aware computing for IoT that in 
the opinion of the authors of this paper also relate to IoT enabled maintenance applications: 

1. Automated configuration of Sensors 

2. Context discovery 

3. Acquisition, modelling, reasoning and distribution 

4. Selection of sensors in sensing as a service model 

5. Security, privacy and trust 

6. Context sharing 

Establishing and describing context for data is an important subject for the further development 
of maintenance practice, though perhaps it still lacks a holistic containing formalisation to 
enable its universal take-up in industry. It is the opinion of the authors of this paper that 
underlying many of the aforementioned IoT, Context, and prognostic maintenance research 
challenges outlined by Perera et al. (2014) it is perhaps that there is a need for an audit trail 
framework to be applied to data collection and semantic description methods, particularly for 
its use with maintenance applications taking into account their transactional nature and need 
for integrated scheduling.  

2.5 The audit trail for maintenance  

The quality and provenance of data are important factors in data management and a key 
success factor for engaging in any form of analytics. With maintenance rapidly adopting key 
Industry 4.0 technologies, such issues attain increased important for successful applications 
and services. Product and asset lifecycle data are increasingly acknowledge as a valuable 
asset (Kubler et al., 2015). Therefore their own lifecycle needs to be appropriately managed 
and this could become a key factor in establishing a credible audit trail for maintenance 
activities and data. Lin et al. (2007) conducted a survey into data quality relating to asset 
management information. The survey found that processes and software for asset related data 
quality management were missing in a majority of organisations interviewed; in addition 
organisations did not have a strategy in place regarding data quality (Lin et al., 2007).  In a 
review of standards relating to Asset Management, Koronios et al. (2007) noted the increasing 
use of XML (eXtensible Markup Language) as a data description standard along with OPC UA 
(OPC Unified Architecture) for industrial system intercommunication. The OPC UA standard, 
while comprehensive in its specification, can be complex and expensive for an organisation to 
implement. The work of Henßen and Schleipen (2014) examines the role that the 
AutomationML mark-up language can play in simplifying the use of OPC UA models with 
existing data sets and streams expressed in XML. According to Henßen and Schleipen (2014) 
use of OPC UA directly is a complex task, utilising AutomationML mapping to OPC UA opens 
up the opportunity of streamlined connectivity with OPC UA compliant systems and 



manufacturing systems. Liyanage et al. (2009) mention the semantic web, ontology and use 
of XML metadata descriptions for information exchange in e-maintenance.  Grangel-Gonzalez 
et al. (2016) take the semantic communication notion a step further by producing a metadata 
software shell for Industry 4.0 components. The approach is based on RDF (Resource 
Description Framework) and OWL (Web Ontology Language) and allows for new functionality, 
described by ontological elements, to be integrated into the communication framework with 
minimum disruption (Grangel-Gonzalez et al., 2016). In combination with machine intelligence 
such a framework could acts as an enabling protocol for automation efforts in maintenance 
activities and factory operations alike. 

Many enterprise systems in organisations, such as ERP (Enterprise Resource Planning), 
possess event logging capabilities. Such event logs may be mined in order to reconstruct a 
chain of activities that have taken place within the organisation and administrated by the 
system (Tiwari et al. 2008, IEEE Task Force on Process Mining 2011, Turner et al. 2012) and 
then further analysed by automated techniques to provide optimised processes (Tiwari et al. 
2010, Vergidis et al. 2015). Similar event logging based audit trails have been utilised in the 
field of cyber threat detection within networked software systems. Bass (2002) details efforts 
made in the development of intrusion detection systems utilising a data fusion approach. In 
this work Bass (2002) highlights the use of pattern detection utilising templates. In later 
research Vaughn et al. (2005) examine the possibility for automated cyber vulnerability 
recognition where sensor data is used to trigger security warnings. The aim of automated 
cyber security is also sought by Abreu et al. (2015) with the use of audit trail data. With this 
work Abreu et al. (2015) and others such as Nehinbe (2014) employ machine learning 
techniques to derive patterns and insights to, in principle, enable automated actions and 
decisions to be made. Duncan and Whittington (2016) advise on the regular analysis of audit 
trails in the effective securing of Cloud based systems. While useful in countering intrusions 
into maintenance systems it is also the case that such approaches provide much of the rigor 
and data management practise required to ensure quality and enforce standards within an 
organisation and its supply chain and linked parties. The use of such audit trail techniques in 
manufacturing has been much less evident though its use with IoT has in outline been 
explored by Lomotey et al. (2018) in research exploring the need for visualisation of Internet 
connected devices. In addition Lomotey et al. (2018) propose a provenance methodology to 
allow for improved traceability and identification of routes through a network that specific data 
points may take. Efforts towards a unified metadata syntax and model for provenance are 
embodied in the work of Moreau et al. (2011) who put forward the Open Provenance Model 
(OPM), enabling the unified and secure exchange of such data between networked systems 
and entities.  Park et al. (2011) also explore issues surrounding the location of provenance 
data for an entity (local vs global storage) and the rights of access to the provenance data by 
other network connected entities. 

Use has been made of audit type data in industrial applications. A sensor fusion approach has 
been used by Payan et al. (2016) in the development of proactive safety metrics for 
Helicopters. In this research Payan et al. (2016) fuse the outputs of flight data monitoring to 
form the basis for predictive safety measures, with the potential to advise preventative actions.  
Such an approach may also inform the development of audit trail compilation and use to 
enhance the scheduling and performance of maintenance activities. An approach to 
combining multi sensor data has been put forward in the information fusion technique of Basir 
and Yuan (2007), who utilise Dempster-Shafer theory evidence theory with an industrial case 
based on engine testing on an automotive production line. Basir and Yuan (2007) found that 
their approach was able to successfully address decision conflicts pertaining to engine fault 
diagnosis with an improved level of accuracy. 



With the use of such audit trail based intelligent data mining there arises the potential need to 
explain the reasoning behind automated decisions to humans for the purposes of 
evaluating/ensuring provenance of maintenance data. Duncan and Whittington (2016) make 
a number of recommendations on how the audit trail for Cloud computing could be improved; 
the following are an adaptation of a subset of those recommendations with relevance to the 
maintenance field: 

• Insufficient logging of data within Cloud environments and manufacturing systems, 
data logging is not set to ‘on’ by default 

• A proper regime of data log migration to data storage is required 
• Further understanding on information flow within a manufacturing system is required 
• Enhanced data security is required to safeguard collected audit trail data and digital 

entry points to manufacturing systems from cyber attackers 

It is the case that a ‘human in the loop’ is also required as their expert knowledge and overview 
capability can be leveraged, in particular, to help ensure data and process security. A vital 
step along the road to automation is the inclusion of human expertise along with standards 
such as the MIMOSA open system architectures for CBM and EAI (Enterprise Application 
Integration) (MIMOSA, 2017), which potentially provide a wider underlying structure for the 
concept of maintenance audit trails. 

Figure 1 illustrates the concept of the audit trail with an example drawn from railway 
maintenance activities. In Figure 1 it can be seen that for a section of track there are a range 
of maintenance activities that may involve: maintenance workers, feeding back reports via 
mobile devices; rail maintenance vehicles with sensors; passenger trains fitted with track and 
infrastructure monitoring sensors.  In addition a number of trackside sensors may also stream 
back data to a control centre concerning a range of environment specific parameters. IoT hubs 
may be co-located with trackside equipment and within train vehicles. Edge devices on 
standard passenger services may be linked to sensors and process and store data for 
forwarding to the IoT hub (allowing for when the passenger service may be out of 
communication range with the advantage of possibly reducing the amount of data to be 
communication due to built-in intelligent processing and filtering stage). The OPC/UA (Open 
Platform Communications – Universal Architecture) standard and message queuing telemetry 
transport protocol (MQTT) would provide the data transfer format to and from IoT hubs. 



 

Figure 1: An audit trail drawn from rail maintenance activities and sensor streams for a 
section of track 

The scenario depicted in Figure 1 relates to the possibility that sensors have registered faults 
with a Balise (track based forming part of an automatic train protection (ATP) system) and 
trackside signals in a period of time after the section of track has been tamped (where the 
ballast bed of the track is adjusted). In addition a bankside sensor has noted some occasional 
subsidence in the past. All these data streams are recorded at a central control centre. The 
use of data mining may establish a causal link between these events taking into account the 
outlier measurement from the bankside sensor leading to the root cause of the fault. The audit 
trail establishes the order of events via timestamps and the output from data mining/machine 
learning. Such audit trails once established can help in the decision making and may also 
advise trackside workers, undertaking maintenance in future scheduled activities, to make 
additional checks based on the history of the track section. 

 
3. Related Work and Discussion  

It is clear that Industry 4.0 enabling technologies are changing attitudes towards digital 
connectivity and automation in manufacturing, though it is also the case that there is a need 
for a holistic understanding of the use of machine intelligence in the achievement of automated 
and autonomous manufacturing visions of the near future. It is also clear from this review that 
standardised data collection processes and intelligent analysis techniques are the subject of 
current investigation by many research groups around the world. As part of this review, using 
the search tool Scopus, it was possible to identify the amount of papers published in the period 
2000 to 2018. Of interest were the findings for papers published involving the subject of E-
maintenance and that of predictive maintenance. Figure 2 shows that predictive maintenance 
papers have shown a gradual increase of the period peaking in 2018. For the same time period 
Figure 3 shows that E-Maintenance papers peaked in 2010 and then have stabilised at around 
15-23 publications per year for the most recent 5 year period.  From this review it was possible 
to identify a number of works that best typify the sub areas highlighted in this paper. Table 1 
summarises these papers in terms of intelligent decision challenges and approaches taken. 



From Table 1 it is clear that there is a wide range of potential solutions and approaches to 
intelligent maintenance, though it is the authors’ opinion this field would benefit from clear 
processes to support audit trail style collection of data and clear framework for its processing, 
analysis and use. There will be a necessity to capture and store data streams from production 
machinery and the audit trails of decision making within Semantic technologies may provide 
a way of describing maintenance data so it may be shared across the manufacturing 
enterprise and potentially within the supply chain. The case for a metadata layer capable of 
semantically describing maintenance data is made in part by Pistofidis et al. (2016) who put 
forward a methodology for maintenance metadata management involving the incorporation of 
expert knowledge. Such technology may be the cornerstone of evolving context awareness in 
maintenance systems to enable automated decision making and scheduling for maintenance 
activities.  

 

Figure 2: Papers published involving predictive maintenance between 2000 – 2018 (Source: 
Scopus) 

 

Figure 3: Papers published involving the subject of e-maintenance between 2000 – 2018 
(Source: Scopus) 
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It is clear that machine learning will have a significant role to play in the delivery of future 
automated and intelligently supported maintenance decision making systems. Predictive 
maintenance programmes will increasingly rely on machine learning techniques in order to 
deliver proactive and dynamic maintenance plans. The extension of the manufacturing 
enterprise to digitally link with its supply chain has gained another potential benefit in the ability 
to order spare parts in advance of potential breakdowns, when predictive forecasting 
techniques are employed.  

It is clear that industry is still missing an overall framework for digital maintenance. Advances 
in sensors and sensor fusion techniques have run-ahead of suitable processes and systems 
capable of fully harnessing their outputs. This is evident in the introduction of Cyber Physical 
Systems (CPS) within manufacturing, though progress is being made in the area of worker 
interactions with shop floor machinery. Both simulation and visualisation technologies, 
especially Mixed Reality, provide a new platform for enhanced machine assistance for human 
engineers and raise the potential for maintenance related Cobot development. Much research 
has concentrated on the further development and use of more readily available data streams 
such as those provided by SCADA systems. Increasingly though papers may be found 
exploring the role IoT can play in the provision of data streams from both new and even legacy 
equipment. This move is especially evident in the area of Condition Based Maintenance (CBM) 
and predictive approaches. Utilisation of Digital Twin systems to replicate industrial production 
assets are now being introduced; a significant focus in Digital Twin development is that of 
health monitoring and prediction of maintenance needs/breakdowns with many organisations 
adopting this virtual representation for the specific goal of increased uptime. For many 
organisations the use of existing systems in combination with new sensor technologies and 
software will provide many of the potential advantages promised by e-maintenance and 
visions such as Industry 4.0. 

 

Table 1: Intelligent Decision Support Challenges and Approaches   

Publication Approach outline Problem targeted 
 
Prognostic maintenance 
 
de Novaes et al. (2017) A review of prognostic 

techniques relating to 
remote field maintenance of 
wind turbines including 
discussion of Hidden 
Markov Model, Neural 
Networks and use of 
SCADA data. 

Prognostic maintenance 
practice relating to remote 
field maintenance of wind 
turbines 

Djurdjanovic et al. (2003) Describes ‘Watchdog agent’ 
capable of sensor 
assessment and prediction 
of machine performance. 
Utilises Neural Network, 
Hidden Markov Model, 
Particle Filter  

Product performance 
degradation prognostics 



Fumagalli and Macchi 
(2015) 

E-maintenance platform 
utilising web services 
approach and statistical 
techniques. 

E-maintenance platform for 
rapid integration of 
maintenance activities 

Katsouros et al. (2013) Bayesian approach for 
maintenance action 
recommendation based on 
historical cases  

Intelligent decision 
support/recommendation 

Kiritsis (2011), Closed loop product 
lifecycle approach for 
Intelligent products 
Definition, Semantic model 
and ontology for data 
interchange respecting IoT 
connectivity possibilities. 

Intelligent products and 
product service model and 
data usage for improved 
product lifecycle including 
maintenance practice. 

Lee et al. (2006)  Tools for prognostics 
utilising Self-Organizing 
Map (SOM),Hidden Markov 
Model, illustrated with case 
studies 

Machine health prognostics 

Lee et al. (2014) A position paper and case 
study detailing. Discussion 
of Self-Organizing Map 
(SOM), Gaussian Mixture 
Model 
(GMM), Bayesian Belief 
Network (BBN), Fuzzy Logic 
for maintenance 

Machine health prognostics 

Leitao et al. (2016) A survey of Smart Agent 
use in combination with 
machine intelligence within 
manufacturing and 
maintenance 

Intelligent Maintenance 
Systems and CPS 
Integration 

Leite et al. (2017) Holistic prognostics to 
support maintenance of 
wind turbines utilising an 
approach incorporating 
Neural Network and  
Particle Filter (maintaining  
assets located in 
inaccessible/remote sites)  

Maintenance Prognostics 

Liyanage et al. (2009) An outline of an integrated 
e-maintenance approach 
and description of the 
Watchdog (Agent-Based 
Real-time Remote 
Machinery Prognostics and 
Health 
Management) toolbox 
application. Utilisation of 
Software agent and custom 
algorithms. 

Framework for E-
maintenance with prognostic 
maintenance application. 



McNaught and Zagorecki 
(2009), 

Development of a model for 
Prognostic maintenance 
decision making and policy 
evaluation utilising Bayesian 
Networks  

Prognostic modelling for 
reliability and maintenance 
policy experimentation 

Niu and Jiang (2017) Custom algorithm for 
dynamic maintenance 
incorporating both local 
health prognostics for 
combination with global 
optimisation approach 

Health Prognostics and 
maintenance optimisation 

Papathanassiou et al. 
(2013) 

E-learning approach to 
support maintenance 
management proposing a 
toolkit for training delivery. 

E-learning for maintenance 
management 

Peng et al. (2010) Classification of common 
prognostic models for 
maintenance. Discussion of 
neural network, Bayesian-
related methods, hidden 
Markov models for 
maintenance. 

Machine health prognostics 
– residual useful life 

Selcuk (2018) Prognostic maintenance, 
made possible by IoT 
connected sensors, 
intelligent products and 
machines. The emergence 
of maintenance as a full 
integrated service provided 
to customers, leveraged 
through IoT technology. 

Maintenance as an IoT 
enabled service 

Vafaei et al. (2019) Fuzzy inferencing for rule 
set composition and 
maintenance scenario 
generation.  

Maintenance decision 
support for CBM. 

Voisin  et al. (2010) Custom algorithm for 
proactive maintenance, 
framework for ‘predict and 
prevent ‘. 

Generic prognostic 
approach and methodology 
for maintenance decision 
support 

Xia et al. (2018) Concise summary of 
predictive techniques in use 
for maintenance practice in 
a range of digital 
manufacturing practices. 

Predictive maintenance 
review of techniques 

Yunusa-kaltungo and Sinha 
(2017) 

Big data and optimisation 
techniques for simplified e-
maintenance practice; 
utilisation of classification 
and optimisation for 
production machine 
monitoring. 

Classification and 
optimisation technique for 
maintenance prognostics 

Zhou et al. (2017) Custom algorithm statistic 
for performance degradation  
forecasting of power 

Performance Degradation 
Prognostics 



machinery based on historic 
and monitored datasets 

 
Remaining useful life prediction 
 
Belkacem et al. (2017) Prognostic and diagnostic 

architecture for industrial 
system maintenance using a 
custom approach based on 
hybrid automata modelling. 

Remaining useful life 
prognostics and diagnostics 

Desforges et al. (2017) Prognostic function for 
maintenance planning 
support. Proposes 
extensions to Object 
Oriented Bayesian Networks 
for Remaining Useful Life 
calculation 

Proposes co-operative 
planning between 
production and maintenance 
to promote their 
synchronisation. 

Fan et al. (2015) Remaining Useful Life 
prediction and prognostics 
approach for LED lights 
utilising a particle filter 
approach based on 
Sequential Monte Carlo 
(SMC) and Bayesian 
techniques. 

Remaining useful life 
prediction and prognostics  

Galar et al. (2015) Residual useful life 
predicted through data 
aggregation and context 
awareness using fuzzy 
approaches and clustering 

Residual useful life 
prediction for condition 
based maintenance 

Kanawaday and Sane 
(2017) 

Use of the forecasting 
method, AutoRegressive 
Integrated Moving Average 
(ARIMA), on data streams 
generated by IoT sensorised 
production line machinery. 
Used to improve 
maintenance planning with 
possible future application to 
RUL. 

Forecasting method utilising 
IoT data streams, with 
application to RUL. 

Marugan and Marquez 
(2015) 

Approach for the monitoring 
of rail track points utilising 
binary decision diagram and 
fault tree analysis. An online 
decision making system 
based on this research is 
envisaged as a next stage. 

Diagnostic and prognostic 
maintenance  decision 
making 

McNaught and Zagorecki 
(2009) 

Development of a model for 
Prognostic maintenance 
decision making and policy 
evaluation modelling with 
utilising Bayesian Networks 

Prognostic modelling for 
reliability and maintenance 
policy experimentation 

Niknam et al. (2015) Prognostic based approach 
for maintenance decision 

Residual life prognostics 
approach 



making based on remaining 
life prediction using a 
custom algorithm  

Ragab et al. (2017) Pattern based approach 
utilising a logical analysis of 
data (LAD) and Kaplan–
Meier (KM) estimator; 
provides an estimated 
reliability curve for a given 
monitored asset. 

Prognostic technique for 
Condition based 
maintenance 

Van Horenbeek and 
Pintelon (2013) 

Dynamic maintenance 
policy development based 
on prognostics using a 
custom algorithm and 
degradation model. 

Prognostic approach for 
component lifetime 
extension 

Zhou et al. (2017 ) Combination of forecasting 
and statistic based method 
to provide a combined time 
and condition based 
maintenance approach. 

Degradation trend 
prognostics and fault 
diagnosis 

 
Intelligent products and assets 
 
Barbosa et al. (2016) Envisages the combination 

of both intelligent products 
with Cyber Physical systems 
(CPS), outlining the 
additional combined use of 
agent based systems to 
provide prognostic 
maintenance and decision 
making. 

Intelligent products in use 
data combined with Cyber 
Physical Systems (CPS) for 
prognostic maintenance.   

Brintrup et al. 2011 Intelligent agent platform 
based on a web service 
approach to leverage in field 
assets data generation. 

Autonomous intelligent 
products in-use data 
harvesting with maintenance 
application. 

Cuthbert et al. (2016) Framework for domestic 
products health monitoring 
describing the potential for 
automated self-repair of 
assets based. A future 
research challenge section 
is set out by this paper 

Intelligent product data use 
and maintenance with self-
repairing assets 

Dhall and Solanki (2017) IoT based predictive car 
maintenance where the 
connected car is able to 
communicate health data so 
that service scheduling is 
streamlined.  

Predictive Car maintenance 
scheduling 

Katsouros, et al. (2015) Embedded event detection 
within intelligent products 
though feature extraction 
and statistical time series 
data analysis. 

Self-aware assets and 
analysis of their generated 
data streams 



Kiritsis (2011) Closed loop product 
lifecycle approach for 
Intelligent products 
Definition, Semantic model 
and ontology for data 
interchange respecting IoT 
connectivity possibilities. 

Intelligent products and 
product service model and 
data usage for improved 
maintenance practice and 
product lifecycle 
management. 

McFarlane et al. (2013), A review of intelligent 
product and RFID tag data 
use. 

Review of intelligent 
products field including 
RFID technologies for active 
participation of products in 
their manufacture and in 
field use 

Meyer et al. (2009) A review of intelligent 
products giving reference to 
maintenance practice that 
may be 
envisaged/leveraged 
through the paradigm. 
Discussion of agent based 
approach for potential 
combination with machine 
intelligence algorithms is 
provided. 

Intelligent products in-use 
data and system interaction 
and interconnectivity, data 
provision potential for 
prognostics and 
maintenance decision 
support systems.  

Parpala & Iacob (2017) Utilisation of IoT hardware 
and protocols to link legacy 
machine tools to internet 
services for the provision of 
automated maintenance and 
status alerts to production 
line operators.  

IoT connectivity to legacy 
machine tools with software 
interface and edge 
hardware implementation. 

Selcuk (2018) Prognostic maintenance, 
made possible by IoT 
connected sensors, 
intelligent products and 
machines. The emergence 
of maintenance as a full 
integrated service provided 
to customers, leveraged 
through IoT technology. 

Maintenance as an IoT 
enabled service. 

Truong (2018)  Predictive analytics 
approach for maintenance 
utilising IoT and Big Data 
Cloud resources.  

Analytics framework for IoT 
connectivity with cloud 
resources and big data for 
maintenance. 

Wuest et al. (2018) Analysis of work and expert 
opinion synthesis regarding 
the present and future of 
intelligent products.  

Future intelligent products 
are projected to move 
beyond providing 
information or decision 
support by becoming more 
proactive.  

 
IoTStreaming Data and Intelligent Decision making 
 
   



Accorsi et al. (2017) Model set to aid the 
prediction of faults in 
production systems, 
framework for data mining 
and modelling related to 
condition based 
maintenance.  
 

Framework for data mining 
and modelling related to 
CBM decision making. 

Barbosa et al. (2016), Envisages the combination 
of both intelligent products 
with Cyber Physical systems 
(CPS), outlining the 
additional combined use of 
agent based systems to 
provide prognostic 
maintenance and decision 
making. 

Integration of Cyber 
Physical Systems and 
Intelligent Products for 
improved decision making in 
maintenance practice 

Bowden et al. (2019) A ‘plug and Play’ end to end 
cloud architecture for 
predictive maintenance, 
utilising IoT Edge 
processing and open source 
Docker containers. Case 
study based on industrial 
robot autonomous 
operation.  

IoT enabled predictive 
maintenance utilising IoT 
Edge devices and a cloud 
platform. 

Chen et al. (2018) IoT Edge computing for 
manufacturing based 
maintenance practice, case 
study and architecture. 

IoT Edge computing 
architecture for 
manufacturing based 
maintenance practice. 

Jantunen et al. (2018) IoT based framework for 
maintenance, detailing a 
case study drawn from 
research of a proactive 
maintenance approach 
within a power plant. 

Industry 4.0 compliant IoT 
based framework for 
maintenance. 

Karim et al. (2016) Knowledge discovery 
framework for cloud based 
maintenance analytics 
platforms with a rail industry 
case study 

Knowledge discovery 
framework for cloud based 
maintenance analytics 
platforms 

Katsouros, et al. (2013) A Bayesian approach to 
maintenance action 
recommendation. The 
technique utilises past 
maintenance event data in 
its classification of problem 
types and probability 
estimation. 

Intelligent decision support 
for maintenance actions. 

Kiritsis (2011), Closed loop product 
lifecycle approach for 
Intelligent products 
Definition, Semantic model 
and ontology for data 

Intelligent products and 
product service model and 
data usage for improved 
product lifecycle including 
maintenance practice. 



interchange respecting IoT 
connectivity possibilities. 

Liyanage et al. (2009) An outline of an integrated 
e-maintenance approach 
and description of the 
Watchdog (Agent-Based 
Real-time Remote 
Machinery Prognostics and 
Health 
Management) toolbox 
application. Utilisation of 
Software agent and, custom 
algorithms. 

Framework for E-
maintenance and with CBM 
prognostic maintenance 
application. 

Mattila et al. (2016), Agent based approach to 
decision making utilising 
data from intelligent 
products respecting the 
product life cycle.  

A distributed agent based 
information architecture for 
decision making utilising 
intelligent product data. 

Meyer et al. (2009), A review of intelligent 
products giving reference to 
maintenance practice that 
may be 
envisaged/leveraged 
through the paradigm. 
Discussion of agent based 
approach for potential 
combination with machine 
intelligence algorithms is 
provided. 

Intelligent products in- use 
data and system interaction 
and interconnectivity, data 
provision potential for 
prognostics and 
maintenance decision 
support systems.  

Trappey et al. (2016), Underlying standards 
supporting IoT technology 
with relevance to 
maintenance systems 
including data linkages 
between hardware and 
software systems for the 
realisation of intelligent 
maintenance practice. 

A review of standards 
supporting IoT use in 
industry with relevance to 
intelligent maintenance 
systems. 

Uhlmann et al. (2017) Maintenance analytics 
approaches for 
decentralised IoT Edge 
platforms; Edge devices 
pre-processing data streams 
emanating from production 
and machine tool sensors. 

Maintenance analytics 
approaches for 
decentralised IoT Edge 
platforms. 

 
Data description and visualisation 
 
Botelho et al. (2014) Maintenance skill capture 

for use in intelligent 
maintenance systems for 
improved automated 
decision making with regard 
to assets degradation 

Method for improved 
Intelligent decision making 
for maintenance with 
inclusion of contextual data 
represented by maintenance 



monitoring using virtual 
reality environment and 
simulation system. 

skill capture from human 
operators. 

Ceruti et al. (2019) AR based visualisation of 
maintenance manual 
instructions and spare parts 
identification and 
information provision within 
an aviation maintenance 
setting. 

Visualisation of spare parts 
and maintenance 
instructions using AR. 

Fumagalli and Macchi 
(2015) 

E-maintenance platform 
utilising web services 
approach and statistical 
techniques. 

E-maintenance platform for 
rapid integration of 
maintenance activities 

Krempl et al. (2014) Mining of data streams open 
challenges highlighting the 
potential role of 
classification and machine 
learning algorithms for pre-
processing of streamed 
data. 

Open challenges for mining 
of data streams provided by 
sensors. 

Loukopoulos et al. (2017) Technique to impute 
missing values in data used 
for maintenance prognostic 
approaches using K Nearest 
Neighbour and Self-
Organising Map algorithms. 

Method to impute missing e-
maintenance data for use in 
prognostic maintenance 
systems. 

Nunez and Borsato (2017) Semantic framework 
expressed through OWL2 
language and 
interoperability with 
SPARQL for decision 
making in prognostic 
maintenance practice. 

Ontology based framework 
for data communication 
between systems promoting 
P-prognostics for machine 
maintenance. 

Penna et al. (2014) 3D visualisation and 
simulation tool using 
Augmented Reality to allow 
for user editing of 
maintenance scenarios to 
support intelligent 
maintenance practice. 

Interactive visualisation, 
simulation and planning of 
intelligent maintenance 
scenarios. 

Turner et al. (2016) VR and AR visualisation and 
DES simulation for potential 
use in visualising the 
decision making process for 
maintenance actions when 
used in combination with 
machine intelligence. 

Visualisation of intelligent 
maintenance decisions with 
VR, AR and DES 
Simulation. 

Zhong et al. (2017) Framework proposed for 
mining and analytics of 
manufacturing shop floor 
data utilising a custom 
algorithm. 

Mining RFID data for 
internet based intelligent 
manufacturing. 

 



Conclusions 

This paper has charted the evolution of intelligent decision support for maintenance practice 
from Condition Based Maintenance (CBM) then prognostic use all the way to the e-
maintenance paradigm and the introduction of IoT and Cloud-enabled solutions. It is arguable 
that the ability to digitally interconnect manufacturing plant and machinery provides many new 
opportunities to raise productivity and efficiency within a production line and in itself leads to 
a potential new era for intelligent maintenance though adoption of Industry 4.0 technologies. 
Many challenges still remain in the provision of intelligent decision support for manufacturing 
maintenance activities. While progress continues to be made in the area of prognostics for 
maintenance and whole life considerations of manufacturing assets it is still the case that there 
is a need for a holistic understanding of the use of machine intelligence in the achievement of 
automated and autonomous manufacturing visions of the near future. The provision of 
appropriate security measures for use in not just digital maintenance systems but throughout 
the manufacturing organisation and its supply chain is a topic that will prompt much research 
over the coming years. IoT technologies and their connectivity potential must be supported by 
standards but also shared semantic descriptions, with OPC/UA (Open Platform 
Communications – Universal Architecture) seen by many as a valid starting point in such 
efforts. Further work remains to be completed on understanding data flows within 
manufacturing and how digitisation of systems and information will impact maintenance 
activities.  

The quality and provenance of data are important factors in data management and a key 
success factor for when engaging in any form of analytics. With maintenance rapidly adopting 
key Industry 4.0 technologies, such issues attain increased importance in the delivery of 
successful applications and services. It is put by the authors that clear processes to support 
audit trail style collection of maintenance data and the provision of a comprehensive 
framework for its processing, analysis and use should be important goals for the work that 
must be completed in the near future for full enablement of digital maintenance practice. The 
concept of ‘Human in the loop’ is also reinforced with the use of audit trails, allowing 
streamlined access to decision making and the ability to mine decisions (and the reasoning 
behind decisions for both machine assisted workers and managers). The ability to provide 
procedural structure to data for reuse and communication within an Industry 4.0 maintenance 
system will be vital for any future move towards semi or fully autonomous maintenance 
activities. 
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