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Abstract 

This paper proposes a novel computationally economical stochastic dynamics framework to 

estimate the peak inelastic response of yielding structures modelled as nonlinear multi degree-

of-freedom (DOF) systems subject to a given linear response spectrum defined for different 

damping ratios. This is accomplished without undertaking nonlinear response history analyses 

(RHA) or, to this effect, constructing an ensemble of spectrally matched seismic accelerograms. 

The proposed approach relies on statistical linearization and enforces pertinent statistical 

conditions to decompose the inelastic d-DOF system into d linear single DOF oscillators with 

effective linear properties (ELPs): natural frequency and damping ratio. Each such oscillator is 

subject to a different stationary random process compatible with the excitation response 

spectrum with damping ratio equal to the oscillator effective critical damping ratio. This 

equality is achieved through a small number of iterations to a pre-specified tolerance, while 

peak inelastic response estimates for all DOFs of interest are obtained by utilization of the 

excitation response spectrum in conjunction with the ELPs. The applicability of the proposed 

framework is numerically illustrated using a 3-storey Bouc-Wen hysteretic frame structure 

exposed to the Eurocode 8 elastic response spectrum. Nonlinear RHA involving a large 

ensemble of non-stationary Eurocode 8 spectrum compatible accelerograms is conducted to 

assess the accuracy of the proposed approach in a Monte Carlo-based context. It is found that 

the novel feature of iterative matching between the excitation response spectrum damping ratio 

and the ELP damping ratio reduces drastically the error of the estimates (i.e., by an order of 

magnitude) obtained by non-iterative application of the framework.  

Keywords: seismic response spectrum analysis, nonlinear stochastic dynamics, stochastic 

processes, statistical linearization, hysteretic MDOF structure, Bouc-Wen model 

1 INTRODUCTION 

Practical design and assessment of structures for earthquake resistance commonly involves 

defining the seismic action through uniform hazard spectra (UHS) derived from probabilistic 

seismic hazard analysis based on ground motion prediction equations for spectral acceleration 

[1]. UHS provide the peak seismic response of linear viscously damped single-degree-of-

freedom (SDOF) oscillators having a pre-specified probability to be exceeded in a given time 

period as a function of the natural period, T. They are developed for a nominal critical viscous 

damping ratio ζο, usually taken equal to 5%, and are complemented by damping adjustment 

factors [2] which reduce linear spectral ordinates in case a higher damping level from the 

nominal one needs to be adopted. Still, the vast majority of (ordinary) structures are expected 

to yield under the design seismic action since seismic codes and National regulatory agencies 

allow for structures to resist severe earthquakes through ductile behavior to achieve cost-

effective design for reduced strength [3]. In this setting, the problem of estimating the peak 

inelastic response (i.e., seismic demand) for structures modelled as multi-degree-of-freedom 

(MDOF) systems subject to smooth linear response UHS arises naturally in code-compliant 

seismic structural design and assessment.  

For any particular structure, this problem can be addressed through nonlinear response 

history analyses (RHA) applied to pertinent inelastic MDOF finite element (FE) models for a 

number of seismic ground motion records (GMs), whose average response spectrum matches 



(i.e., is in close agreement with) the linear UHS within a certain range of natural periods 

centered at the fundamental structural natural period [4]. In this respect, putting the need for 

dependable inelastic FE modelling aside, code-compliant nonlinear RHA requires considering 

artificial UHS compatible accelerograms [5], and/or judicial GM selection from large 

databanks of recorded accelerograms which are further scaled/modified to match a given linear 

UHS [6]. Such steps necessitate specialized software, are subject to subjective preferences and 

experience, and are cumbersome for everyday seismic design (or assessment) of ordinary 

structures. Further, nonlinear RHA is computationally demanding itself, especially if a 

sufficiently large number of GMs are considered in the analysis to reduce the variability of 

peak inelastic response data observed [7] when only the minimum number of GMs allowed by 

current seismic codes (typically 7 pairs or less) is used [8].  
In view of the above challenges, seismic codes and guidelines [9-12] favor the use of 

simplified methodologies for routine seismic design and assessment involving less demanding 
structural analysis steps compared to nonlinear RHA. In particular, the long-standing force-
based seismic design methodology utilizes modal response spectrum-based analyses applied to 
linear MDOF FE models in conjunction with modal combination rules without requiring 
explicit structural seismic performance assessment [3]. Further, displacement-based seismic 
design and assessment methodologies supporting modern performance-based earthquake 
engineering utilize nonlinear static (pushover) analyses applied to MDOF FE models to derive 
detailed pushover curves. Structural capacity is then quantified through surrogate inelastic 
SDOF oscillators characterized by idealized backbone capacity curves fitted to the detailed 
pushover curves [13-16 and references therein]. In this context, design seismic demand is 
specified by scaling the linear UHS ordinates through modification factors derived by 
considering the peak seismic response of inelastic SDOF oscillators following idealized force-
deformation hysteretic relationships, commonly following bilinear hardening backbone curves, 
to safeguard general applicability. Specifically, UHS ordinates are scaled by strength 
modification (or behavior) factors, R, in the traditional force-based design approach to derive 
constant-ductility inelastic spectra [17]. These spectra provide seismic design forces 
compatible with a pre-determined ductility μ (ratio of peak inelastic over yielding deformation) 
expected under the design seismic action. Initiated by the work of Veletsos and Newmark [18], 
R factors are specified through R-μ-Τ relationships (e.g., [19]) derived by application of 
nonlinear RHA to inelastic viscously damped SDOF oscillators with initial (pre-yield) natural 
period T and damping ratio ζο for large ensembles of judicially selected GMs [20]. Despite the 
availability of R-μ-Τ relationships for several different hysteretic force-deformation laws, codes 
of practice adopt R values pertaining to elastic perfectly-plastic SDOF oscillators known to 
yield conservative results for design purposes [21,22].  

Moreover, in displacement-based seismic design and assessment UHS compatible inelastic 
seismic demand is obtained through scaling the UHS ordinates either by displacement 
modification factors [23], leading to constant-strength inelastic spectra, or by damping 
adjustment factors leading to heavily damped linear spectra [24,25]. Specifically, displacement 
modification factors are defined by the ratio of the peak response of an inelastic SDOF 
oscillator over the peak response of a linear SDOF oscillator under the same design seismic 
action, having common T (pre-yield for the inelastic) natural period and ζο damping ratio. These 
factors are determined either by “inverting” R-μ-T relationships or, directly, through application 



of RHA for large ensembles of GMs [26] commonly considering bilinear hysteretic SDOF 
oscillators [27] consistent with capacity curves obtained from pushover analyses of MDOF 
systems [16]. On the other hand, damping adjustment factors for inelastic seismic demand 
estimation are derived through linearization techniques seeking to determine an equivalent 
linear SDOF system (ELS) with effective linear properties (ELPs), natural period Tef>T, (or, 
equivalently, natural frequency ωef=2π/Tef), and damping ratio ζef>ζο, such that its peak 
response under seismic excitation matches the peak response of an inelastic SDOF oscillator 
with pre-yield period T and damping ζο under the same excitation. Early linearization 
techniques assumed ductility-dependent secant stiffness at maximum displacement to define 
Tef using the geometry of bilinear force-deformation loops reaching some ductility μ under 
harmonic excitation (e.g., [24,28]). Then, ductility-dependent ζef is defined by enforcing 
equality criteria between the dissipated energy in the inelastic oscillator and in the ELS (e.g., 
[29 and references therein]). Nevertheless, secant stiffness-based linearization techniques were 
found to be deficient for displacement-based design and assessment (e.g., [14,30]). Therefore, 
numerous alternative linearization approaches yielding larger effective stiffness values from 
the secant stiffness have been developed for the task based on RHA of inelastic SDOF 
oscillators for large ensembles of recorded GMs (see e.g., [31,32,33 and references therein]). 
Some of these linearization approaches apply signal processing tools to the nonlinear response 
time-histories to define Tef such as Fourier-based peak picking [34] and wavelet analysis [35], 
while others consider statistical fitting of heavily damped linear response spectra to inelastic 
spectra (e.g., [25,30,36-38]).  

Recently, Giaralis and Spanos [39] established an alternative stochastic dynamics-based 
framework for code-compliant seismic demand estimation of bilinear hysteretic SDOF 
oscillators. The latter framework is considerably different from the previously reviewed 
approaches and does not require undertaking RHA. The steps of this framework, being of 
particular relevance to this paper, are delineated in Figure 1(a). They comprise: (I) the 
derivation of a stationary power spectrum representing a time-limited stationary stochastic 
process compatible in the median sense with a given linear response spectrum (i.e., a UHS) for 
ζο damping, (II) the application of statistical linearization to obtain ELPs (i.e., ωef and ζef) from 
a viscously damped bilinear SDOF oscillator with pre-yield natural period T and damping ζο 
excited by the previously derived power spectrum, and (III) the use of these ELPs in 
conjunction with the given UHS and damping adjustment factors to estimate the peak inelastic 
response of the nonlinear oscillator (i.e., inelastic seismic demand for the UHS) through heavily 
damped spectra. Giaralis and Spanos [39] used the early stochastic averaging technique due to 
Caughey [40] to derive ωef and ζef whose applicability is limited to relatively mild levels of 
nonlinear response (see also [41]). Later, Spanos and Giaralis [42] incorporated higher-order 
statistical linearization techniques in the above framework along with a system order reduction 
step allowing for treating a wide range of hysteretic force-deformation relationships (e.g., [43]), 
while enhancing the accuracy of seismic demand estimates compared to nonlinear RHA for 
UHS compatible GMs. 



 
Figure 1. (a) Stochastic dynamics framework for SDOF inelastic oscillators (Giaralis and Spanos 

2010), (b) Proposed stochastic dynamics framework for MDOF inelastic structures. 

 

The above review reveals that current approaches for code-compliant inelastic seismic 
demand estimation consistent with a linear response spectrum (e.g., a UHS) are solely 
applicable to idealized inelastic (mostly bilinear) SDOF oscillators. Properties of these 
oscillators are obtained from capacity curves derived through static inelastic analyses to MDOF 
structural models which do not account for dynamic energy-dissipation phenomena (i.e., 
viscous and hysteretic damping) in the MDOF systems [33], while the static external forces do 
not reflect the properties of the UHS (e.g., frequency content). To this end, this paper proposes 
a novel stochastic dynamics-based seismic analysis framework for peak inelastic demand 
estimation directly applicable to MDOF systems exposed to a linear pseudo-acceleration 

response spectrum (e.g., UHS) without undertaking nonlinear RHA and, therefore, constructing 

ensembles of UHS compatible GMs, and without considering inelastic spectra developed for 

non-structure specific (generic) inelastic oscillators. The proposed framework seamlessly 

derives ELPs for each DOF of interest which depend explicitly on the nonlinear dynamic 

behavior of the MDOF system as captured through standard statistical linearization techniques 

for MDOF systems and on the shape and intensity of the input response spectrum; ultimately, 

it returns peak inelastic responses for each DOF individually using the derived ELPs in 

conjunction with heavily damped UHS defined by damping modification factors. This is 

achieved by relying on and significantly extending the approach of Giaralis and Spanos [39] in 

two distinct ways. Firstly, it replaces previously considered statistical linearization techniques 

appropriate only for SDOF oscillators in step (II) by the recently developed in 

Kougioumtzoglou and Spanos [44] approximate stochastic dynamics analysis method 

involving the decoupling of the nonlinear MDOF system with d DOFs into d number of ELSs 

characterized by d sets of ELPs, ωef j and ζef j for j=1,2,…,d, as shown pictorially in Figure 1(b). 

Secondly, it incorporates a novel iterative scheme to enforce equality, within some tolerance, 

between ζef j and the damping ratio of the input UHS. In this setting, it secures compliance with 



the basic definition of the response/design spectrum which necessitates the considered 

linear/linearized oscillators and the imposed elastic response UHS to share the same damping 

premises. Clearly, the proposed approach treats in a rigorous and consistent manner, this well-

detected critical point which has not received so far the appropriate attention in the literature. 

This is achieved by using different damping modification factors for each DOF j (see Figure 

1(b)). The achieved consistency of the damping ratio of the input heavily damped spectrum 

with the damping ELPs enhances the accuracy of the inelastic seismic demand estimates as 

demonstrated in the numerical part of this work through pertinent nonlinear RHA in a Monte 

Carlo-based context. 

It is noted in passing that the scope and steps involved of the herein developed framework 
are very different from the reliability-based tail statistical linearization approach proposed by 
Der Kiureghian and Fujimura [45]. The latter approach admits as input stochastic models 
consistent with magnitude-epicentral distance earthquake scenarios used to define the seismic 
action in beyond-codes-of-practice seismic design and assessment. On the other hand, the 
herein framework is tailored to facilitate code-compliant seismic demand estimation using 
linear UHS along with the well-established concept of damping modification factors to specify 
the seismic input action and aims to relax heuristic approximating assumptions made by current 
code-prescriptive simplified methods while being considerably less computationally 
demanding compared to nonlinear RHA for UHS compatible GMs. 

In the remainder of this paper Section 2 reviews the mathematical background supporting 

the proposed framework, Section 3 presents an implementation algorithm of the framework 

and furnishes pertinent comments on its assumptions and practical usage, Section 4, presents a 

numerical application of the framework to a yielding building frame exposed to the Eurocode 

8 UHS [11] and assesses its accuracy against nonlinear RHA data, and Section 5 summarizes 

main conclusions. 

2 MATHEMATICAL BACKGROUND 

This section reviews the mathematical details involved in undertaking the steps of (i) 

defining a power spectrum compatible in the median sense with a given seismic response 

spectrum, of (ii) applying the standard statistical linearization to a d-DOF inelastic structure to 

derive an equivalent linear d-DOF system, and of (iii) decoupling the previous equivalent linear 

system into d number of linear SDOF oscillators. Special attention is focused on discussing the 

various simplifications and assumptions made in support of numerical efficiency. The latter 

consideration is important in minimizing the computational cost/time of the framework in 

Figure 1(b) which requires the iterative application of the above three steps. 

2.1 Derivation of response spectrum compatible power spectra 

A computationally efficient numerical scheme is adopted to statistically fit a stationary 

Gaussian acceleration process α̈g(t) of finite duration Ts, to a given/target linear pseudo-

acceleration response spectrum, 𝑆𝑎(𝜔, 𝜁) defined along the axis of natural frequencies ω for a 

fixed critical damping ratio ζ. The sought stochastic process is represented in the frequency 

domain by means of a non-parametric power spectrum computed on a uniform grid of 

frequencies using a recursive formula. This formula was originally derived by Cacciola et al. 



[46], and utilized by Giaralis and Spanos [39,42] to obtain response spectrum compatible power 

spectra utilized in the statistical linearization-based approach summarized in Figure 1(a). It 

theoretically stems from the work of Vanmarcke [47] and relies on well-established concepts 

from the theory of linear random vibrations.  

Specifically, consider the response displacement process 𝑋𝑖(𝑡) of a quiescent linear damped 

SDOF oscillator base excited by the process α̈g(t). The nth order steady-state response spectral 

moment reads as (e.g., [48]) 𝜆𝑛,𝑋𝑖 = ∫ 𝜔𝑛∞
0 1(𝜔𝑖2 − 𝜔2)2 + (2𝜁𝑜𝜔𝑖𝜔)2 𝐺𝑋𝑖𝜁𝑜(𝜔)𝑑𝜔,                                   (1) 

where 𝜔𝑖 and 𝜁𝑜 are the natural frequency and the critical damping ratio of the SDOF oscillator, 

respectively, while 𝐺𝑋𝑖𝜁𝑜(𝜔) is the one-sided power spectrum of the excitation process. Note that 

the above spectral moments do not account for the transient part of the response process. 

However, it has been numerically shown (e.g., [42]) that for SDOF oscillators with damping 

ratios 𝜁𝑜 ≥ 5% and natural periods 𝑇𝑖 = 2𝜋/𝜔𝑖 < 1.5𝑠, which are mostly pertinent in the 

analysis of ordinary low-to-mid-rise building structures, the response spectral moments 

determined via Eq.(1) are accurate as long as a sufficiently long duration of Ts≥15s is assumed 

for the underlying stochastic process. Under this assumption, the time-limited power spectrum 𝐺𝑋𝑖𝜁𝑜(𝜔) can be related to 𝑆𝑎(𝜔𝑖, 𝜁𝑜) in a statistical manner via the concept of the “peak factor” 𝜂𝛸𝑖 as in (e.g., [47]) 𝑆𝑎(𝜔𝑖, 𝜁𝑜) = 𝜂𝛸𝑖𝜔𝑖2√𝜆0,𝑋𝑖 .                                                            (2) 
In view of the above equation, the peak factor 𝜂𝛸𝑖 can be interpreted as the scalar by which the 

steady-state standard deviation of the process 𝑋𝑖(𝑡) needs to be multiplied to estimate the 

threshold 𝑆𝑎(𝜔𝑖, 𝜁𝑜)/𝜔𝑖2 below which the peak deformation of the considered stochastically 

excited SDOF oscillator remains with some pre-specified probability 𝑝. The determination of 

the peak factor 𝜂𝛸𝑖 requires knowledge of the first-passage probability, that is, the probability 

that the response process 𝑋𝑖(𝑡) crosses a predetermined threshold for the first time over a given 

time window. This has been a persistent mathematical problem in stochastic dynamics, but a 

number of sufficiently accurate for engineering purposes approximations exist. To this end, the 

peak factor can be estimated by the semi-empirical expression [47]    

𝜂𝛸𝑖(𝑇𝑠, 𝑝) = √2 ln{2 𝑣𝛸𝑖[1 − exp [−𝛿𝛸𝑖1.2√𝜋 ln(2 𝑣𝛸𝑖)]]},                        (3) 
where the mean zero crossing rate 𝑣𝛸𝑖 and the spread factor 𝛿𝛸𝑖 of the stochastic response 

process 𝑋𝑖(𝑡) are defined as  

𝑣𝛸𝑖 = 𝑇𝑠2𝜋 √𝜆2,𝑋𝑖𝜆0,𝑋𝑖 (− ln 𝑝) −1 ,                                                      (4) 
and 



𝛿𝛸𝑖 = √1 − 𝜆1,𝑋𝑖2𝜆0,𝑋𝑖 𝜆2,𝑋𝑖 ,                                                              (5) 
respectively. For the purposes of this work, it is reasonable to set the probability 𝑝 in Eq.(4) 

equal to 0.5, such that 𝑆𝑎(𝜔𝑖, 𝜁𝑜) in Eq.(2) is interpreted as the “median” pseudo-acceleration 

response spectrum. That is, half of the displacement response spectral ordinates of an ensemble 

of stationary samples of duration 𝑇𝑠 compatible with the power spectrum 𝐺𝑋𝑖𝜁𝑜(𝜔) lie below 𝑆𝑎(𝜔𝑖, 𝜁𝑜)/𝜔𝑖2 [39,47]. 

Note that the pseudo-acceleration response spectrum 𝑆𝑎(𝜔𝑖, 𝜁𝑜) appearing in Eq.(2) can 

be estimated in a straightforward manner using Eqs. (1-5), given power spectrum 𝐺𝑋𝑖𝜁𝑜(𝜔), 
duration 𝑇𝑠, and probability p. However, the derivation of a power spectrum 𝐺𝑋𝑖𝜁𝑜(𝜔) compatible 

in the median sense (i.e., p=0.5) with a given response spectrum 𝑆𝑎(𝜔𝑖, 𝜁𝑜) is appreciably more 

difficult and requires the solution of the “inverse” stochastic dynamics problem expressed by 

Eq.(2) (see e.g.,  [46,49-52]). Herein, the above aim is facilitated by adopting the following 

approximate formula for obtaining a reliable estimate of the variance of the response process 𝑋𝑖(𝑡) [47] 

𝜆0,𝑋𝑖 = 𝐺𝑋𝑖𝜁𝑜(𝜔𝑖)𝜔𝑖3 ( 𝜋4𝜁𝑜 − 1) + 1𝜔𝑖4  ∫ 𝐺𝑋𝑖𝜁𝑜(𝜔)𝑑𝜔𝜔𝑖0 .                                 (6) 
By substituting Eq.(6) to Eq.(2) and algebraically manipulating yields 𝑆𝛼2(𝜔𝑖, 𝜁𝑜) = 𝜂𝛸𝑖2 𝜔𝑖𝐺𝑋𝑖𝜁𝑜(𝜔𝑖) (𝜋 − 4𝜁𝑜4𝜁𝑜 ) + 𝜂𝛸𝑖2 ∫ 𝐺𝑋𝑖𝜁𝑜(𝜔)𝑑𝜔𝜔𝑖0 .                      (7) 
Next, the integral in Eq.(7) is approximated by a sum over the uniform grid of M frequency 

points 𝜔𝑖 = 𝜔𝑏𝑙 + (𝑖 − 0.5)𝛥𝜔;  𝑖 = 1,2, …M  within the range (𝜔𝑏𝑙 , 𝜔𝑏𝑢). Finally, the 

following formula is reached by solving for the power spectrum evaluated at any frequency 

point 𝜔𝑖 [46] 

𝐺𝑋𝑖𝜁𝑜(𝜔𝑖) = {  
  4𝜁𝑜𝜔𝑖𝜋 − 4𝜁𝑜𝜔𝑖−1 (𝑆𝛼2(𝜔𝑖, 𝜁𝑜)𝜂𝛸𝑖2 − 𝛥𝜔∑𝐺𝑋𝑖𝜁𝑜(𝜔𝑞)𝑖−1

𝑞=1 ) , 𝜔𝑏𝑙 < 𝜔𝑖 < 𝜔𝑏𝑢0, 𝜔𝑖 ≤ 𝜔𝑏𝑙   .   (8) 
The above formula can be recursively applied for 𝑖 = 1,2, …M to evaluate the ordinates of the 

power spectrum 𝐺𝑋𝑖𝜁𝑜(𝜔) at the M-1 frequency points 𝜔𝑖 lying 𝛥𝜔 apart in the range (𝜔𝑏𝑙 , 𝜔𝑏𝑢). 

In practice, the lower bound of this range, 𝜔𝑏𝑙 , is set equal to the lowest frequency for which 
Eq.(3) can be defined as discussed in [39]. Further, the upper bound, 𝜔𝑏𝑢 ≥ 𝜔𝑀, is the cut-off 

frequency above which 𝐺𝑋𝑖𝜁𝑜(𝜔) attains negligible values. Lastly, it is important to note that the 

recursive application of Eq. (8) to obtain 𝐺𝑋𝑖𝜁𝑜(𝜔𝑖) requires an estimate of the peak factor, 𝜂𝛸𝑖2 , 

for SDOF oscillators with 𝜁𝑜 damping ratio and 𝜔𝑖 natural frequency. Reasonable estimates of 

this term are obtained through Eq. (3) in which the crossing rate 𝑣𝛸𝑖 and the spread factor 𝛿𝛸𝑖 
are given by Eqs. (4) and (5), respectively, for an assumed excitation power spectrum, N(ω), 



used as a proxy of 𝐺𝑋𝑖𝜁𝑜(𝜔) in Eq. (1). Conveniently, both the crossing rate and the spread factor 

are independent of the amplitude of spectrum N(ω). Further, they are insensitive to the shape 
of N(ω) provided that it is sufficiently broad-band compared to the magnitude of the frequency 
response function (FRF) of the SDOF oscillators with 𝜔𝑖 and 𝜁𝑜 properties (see e.g. [48]). In 
this respect, Cacciola et al. [48] and Giaralis and Spanos [39] derived power spectra 𝐺𝑋𝑖𝜁𝑜(𝜔) 
achieving reasonably accurate levels of compatibility with 𝑆𝑎(𝜔, 𝜁𝑜) by assuming analytically 
defined power spectral shapes N(ω) widely used to model the seismic strong ground motion in 
place of 𝐺𝑋𝑖𝜁𝑜(𝜔) in Eq. (1). In this work, the filtered Kanai-Tajimi spectrum defined by [53] 

N(𝜔) = (𝜔/𝜔𝑓)4(1 − (𝜔/𝜔𝑓)2)2 +  4𝜉𝑓2(𝜔/𝜔𝑓)2 𝜔𝑔4 + 4𝜉𝑔2𝜔𝑔2𝜔2(𝜔𝑔2 −𝜔2)2 + 4𝜉𝑔2𝜔𝑔2𝜔2  ,                     (9) 
is used for the purpose where the parameters 𝜔𝑔, 𝜉𝑔, 𝜔𝑓, and 𝜉𝑓 are constants that need to be 
judicially assumed. The Kanai-Tajimi parameters 𝜔𝑔 and 𝜉𝑔 related to the soil “stiffness” and 
“damping” should be selected based on the ground conditions associated with the target 
response spectrum 𝑆𝑎(𝜔, 𝜁𝑜) (see e.g., [5,54,55]). The parameters 𝜔𝑓 and 𝜉𝑓 in Eq. (9) do not 
bear any physical significance: they govern the properties of a high-pass filter used to eliminate 
the spurious low frequency content allowed by the Kanai-Tajimi spectrum. These parameters 
can be arbitrarily set provided that 𝜔𝑓, controlling the cut-off frequency of the high-pass filter, 
is reasonably low (typically, below π rad/s), while 𝜉𝑓, controlling the “steepness” of the filter 
in the frequency domain, is relative high (typically, above 0.80).  

As a final remark, it is noted that the herein discussed approach is only one of the numerous 
proposed in the literature for the derivation of response spectrum compatible stationary power 
spectra in the median sense (see e.g., [49-51]). Regardless of the method used for this 
derivation, it is highlighted that the time-limited stationary power spectrum (and underlying 
stochastic process) is only used as a mathematical instrument to represent the seismic input 
action, defined in terms of a pseudo-acceleration response spectrum, in undertaking the 
statistical linearization step reviewed next. In this regard, the recursive application of Eq. (8) 
should be viewed only as a necessary “stepping stone” allowing for the application of the 
stochastic dynamics techniques discussed in the remainder of this section (see also Figure 1).   

2.2 Statistical Linearization for MDOF nonlinear structures under stationary seismic 

excitation  

Consider a nonlinear structural system with d number of DOFs base-excited by the Gaussian 

stationary acceleration stochastic process α̈g(t), characterized in the frequency domain by the 

power spectrum 𝐺𝑋𝑖𝜁𝑜(𝜔). The dynamic response of the structure is governed by the system of 

differential equations written in vector-matrix form as  𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝐱(𝑡) + 𝐠[𝐱(𝑡), �̇�(𝑡)] =  𝐅(𝑡).                               (10) 
In Eq. (10) 𝐱(𝑡), �̇�(𝑡), and �̈�(𝑡) are the response displacement, velocity, and acceleration 

vectors relative to the base motion, respectively, normalized by a common nominal yielding 

displacement 𝑥𝑦. Further, 𝐌, 𝐂, and 𝐊 denote the (d × d) mass, damping, and stiffness 



matrices, respectively, while 𝐠[𝐱(𝑡), �̇�(𝑡)] is a nonlinear (d × 1) vector function of the 

variables 𝐱(t) and �̇�(t). Lastly, 𝐅(t) = −𝐌𝛄𝑥𝑦−1α̈g(t), is a (d × 1) zero mean, stationary 

random vector process where 𝛄 is the unit column vector. In this regard, 𝐅(t) can be expressed 

in the frequency domain by the spectral density matrix 

𝐒𝐅𝐅(𝜔) = 𝐺𝑋𝑖𝜁𝑜(𝜔)𝑥𝑦2 𝐌𝛄𝜸𝑻𝐌.                                                        (11) 
To this end, the standard spectral matrix solution procedure of the classical statistical 

linearization [41] is employed to estimate the response power spectral density matrix 𝐒𝐱𝐱(𝜔) 
of the nonlinear structure. This is achieved by considering a linearized version of Eq. (10) 

written as 𝐌�̈�(𝑡) + (𝐂 + 𝐂𝐞𝐪)�̇�(𝑡) + (𝐊 + 𝐊𝐞𝐪)𝐱(𝑡) =  𝐅(𝑡),                               (12) 
where the (𝑗, 𝑙)𝑡ℎ element of the equivalent linear matrices 𝐂𝐞𝐪 and 𝐊𝐞𝐪 are given by the 

expressions [56,57] 𝑐𝑗,𝑙𝑒𝑞 = 𝐸 [𝜕𝑔𝑗𝜕�̇�𝑙 ],                                                                 (13) 
and 𝑘𝑗,𝑙𝑒𝑞 = 𝐸 [𝜕𝑔𝑗𝜕𝑥𝑙 ],                                                                 (14) 
in which E[∙] is the mathematical expectation operator. The expressions in Eqs. (13) and (14) 

are derived by minimizing the difference (error) between the nonlinear system of equations in 

Eq. (10) and the linear system of equations in Eq. (12) in the mean square sense and by utilizing 

the standard assumption that the response process vector 𝐱(𝑡) is Gaussian [41]. In this respect, 

the herein adopted statistical linearization approach approximates the response spectral density 

matrix of the nonlinear structure via the well-known frequency domain input-output 

relationship for linear systems [41] 𝐒𝐱𝐱(𝜔) = 𝐇𝐱(𝑖𝜔)𝐒𝐅𝐅(𝜔)𝐇𝐱∗(𝑖𝜔),                                              (15) 
where the superscript (*) denotes Hermitian transposition and the FRF matrix is defined as 𝐇𝐱(𝑖𝜔) = [[(𝐊 + 𝐊𝐞𝐪) + 𝐌(𝑖𝜔)2] + 𝑖𝜔(𝐂 + 𝐂𝐞𝐪)]−1 ,                        (16) 
where i is the imaginary unit. Moreover, the Gaussian assumption for 𝐱(𝑡) facilitates 
significantly the derivation of closed-form expressions for the integrals in Eqs. (13) and (14) 
for a variety of nonlinear functions 𝐠[𝐱(𝑡), �̇�(𝑡)] used to model the inelastic response of 
seismically excited yielding structures (see e.g., [39,42]). For any such nonlinear/hysteretic 
model, the expressions in Eqs. (13) and (14) involve the response displacement and velocity 
covariance matrix terms determined by  𝐸[𝑥𝑗(𝑡)𝑥𝑙(𝑡)] = ∫ 𝑆𝑥𝑗𝑥𝑙 ∞

− ∞ (𝜔) 𝑑𝜔 𝑎𝑛𝑑   𝐸[�̇�𝑗(𝑡)�̇�𝑙(𝑡)] = ∫ 𝜔2𝑆𝑥𝑗𝑥𝑙 ∞
− ∞ (𝜔) 𝑑𝜔   (17) 



where 𝑆𝑥𝑗𝑥𝑙(𝜔) is the (𝑗, 𝑙)𝑡ℎ element of the response power spectrum matrix 𝐒𝐱𝐱(ω) in Eq. 
(15).  

In this setting, the adopted statistical linearization scheme proceeds by solving the 
system of algebraic nonlinear equations in Eqs. (13-17). Any qualified nonlinear optimization 

algorithm may be employed for this task. Nevertheless, it is found that a simple iterative while-

loop is sufficient to simultaneously satisfy Eqs. (13-17) until convergence of the elements of 𝐂𝐞𝐪 and 𝐊𝐞𝐪 matrices is achieved within a pre-specified tolerance [41]. These iterations are 

initialized by neglecting the 𝐂𝐞𝐪 and 𝐊𝐞𝐪 matrices in Eq. (16) in determining the covariance 

matrix terms in Eq. (17), which are then used to compute the elements of 𝐂𝐞𝐪 and 𝐊𝐞𝐪 via Eqs. 

(13) and (14). 

The above statistical linearization step provides estimates of the normalized by xy 

relative displacement and velocity auto-covariance terms for each j=1,2,…,d DOF of the 

nonlinear structure exposed to the response spectrum compatible power spectrum. These 

estimates are given as  𝐸[𝑥𝑗2(𝑡)] = ∫ (|H𝑥j1(𝑖𝜔)|2m12 + |H𝑥j2(𝑖𝜔)|2m22 +⋯+ |H𝑥jd(𝑖𝜔)|2md2) xy−2 ∞
0 𝐺𝑋𝑖𝜁𝑜(ω)dω,    (18) 

and 𝐸[�̇�𝑗2(𝑡)] = ∫ 𝜔2 (|H𝑥j1(𝑖𝜔)|2m12 + |H𝑥j2(𝑖𝜔)|2m22 +⋯+ |H𝑥jd(𝑖𝜔)|2md2) xy−2 ∞
0 𝐺𝑋𝑖𝜁𝑜(ω)dω, (19) 

respectively. Note that in Eqs.(18-19) the contributions of the off-diagonal terms (cross-terms) 

to calculating the mean square have been neglected, as their values are relatively negligible 

compared to the ones corresponding to the diagonal terms; see [53] and [59] for detailed 

discussions. From a computational implementation perspective, this is equivalent to 

considering a diagonal excitation power spectrum matrix in Eq.(11) of the form 𝐒𝐅𝐅(𝜔) =𝐺𝑋𝑖𝜁𝑜(𝜔)𝑥𝑦2 𝐌𝟐. The decoupling step reviewed in the next section utilizes the auto-covariances in 

Eqs. (18) and (19) to define linear SDOF oscillators with effective damping and natural 

frequency properties corresponding to each individual DOF. 

 

2.3 Decoupling of the equivalent linear system and derivation of effective linear 

properties (ELPs) 

Following the work of Kougioumtzoglou and Spanos [44], the equivalent linear system 

with d DOFs in Eq. (12) is next decomposed into d number of auxiliary SDOF linear oscillators 

each one assigned to a different DOF. It is assumed that all the auxiliary SDOF oscillators are 

base-excited by the same response spectrum compatible acceleration process, α̈g(t), considered 

in deriving the equivalent linear system via statistical linearization. In this respect, for the 𝑗𝑡ℎ 

DOF (j=1,2,…, d), the equation of motion of the auxiliary SDOF oscillator reads as �̈�j(𝑡) + 2ζef𝑗ωef𝑗�̇�j(𝑡) + ωef𝑗2 𝑞j(𝑡) = −𝑥𝑦−1 α̈g(t),                                       (20) 
where �̈�j(𝑡), �̇�j(𝑡), and 𝑞j(𝑡) are the relative response acceleration, velocity, and displacement 

processes of the oscillator normalized by the yielding displacement xy, and ωef𝑗 and ζef𝑗  are the 



effective natural frequency and damping ratio, respectively. These two effective linear 

properties (ELPs) characterizing each auxiliary SDOF oscillator are derived by the following 

two statistical conditions: the displacement and velocity response variances, 𝐸[𝑞𝑗2(𝑡)] and  𝐸[�̇�𝑗2(𝑡)], respectively, of the auxiliary oscillator corresponding to the 𝑗𝑡ℎ DOF are equal to the 

displacement and velocity response variances of  𝑗𝑡ℎ DOF of the equivalent linear MDOF given 

by Eqs. (18) and (19), respectively. Mathematically, these conditions are written as  𝐸[𝑥𝑗2(𝑡)] = 𝐸[𝑞𝑗2(𝑡)] = ∫ |H𝑥ef𝑗(𝑖𝜔)|2 xy−2∞
0 𝐺𝑋𝑖𝜁𝑜(𝜔)𝑑𝜔 = 𝜆0,𝑞𝑗xy−2,       (21) 

and 𝐸[�̇�𝑗2(𝑡)] = 𝐸[�̇�𝑗2(𝑡)] = ∫ 𝜔2 |H𝑥ef𝑗(𝑖𝜔)|2 xy−2∞
0 𝐺𝑋𝑖𝜁𝑜(𝜔)𝑑𝜔 = 𝜆2,𝑞𝑗xy−2,    (22) 

where 𝐻𝒙ef𝑗(𝑖𝜔) = 1[(𝑖𝜔)2 + 𝑖2ζef𝑗ωef𝑗𝜔 +ωef𝑗2 ].                                     (23) 
To this end, Eqs. (21) and (22) in conjunction with Eqs. (18) and (19) constitute a nonlinear 

system of two algebraic equations which are solved for the two ELPs ωef𝑗  and ζef𝑗  for each 

DOF. As in the case of the statistical linearization step, any nonlinear optimization algorithm 

can be used to find the ωef𝑗 and ζef𝑗  that satisfy simultaneously the conditions in Eqs. (21) and 

(22). Alternatively, the two conditions may be satisfied through a standard iterative updating 

“while-loop” until convergence of the properties is achieved within some pre-specified 

tolerance.  

Overall, for a d-DOF structure, a d number of 2x2 systems of nonlinear equations in 

Eqs. (21) and (22) need to be solved to derive d pairs of ELPs. In this manner, the MDOF 

equivalent linear system in Eq. (10) is decoupled into d SDOF linear oscillators. From a 

theoretical viewpoint, it is important to note that the above decoupling is very different from 

the one achieved by the well-known modal decomposition of linear structural dynamics which 

has been considered in conjunction with different statistical linearization schemes (e.g., 

[41,58]). In particular, note that the 𝑞j(𝑡)  response processes in Eq. (20) are not modal 

coordinates. Rather, they are direct estimates of the nonlinear normalized response 

displacement processes corresponding to each DOF of the nonlinear structure in Eq. (10) 

excited by a response spectrum compatible power spectrum.  

From a practical viewpoint, it is highlighted that the obtained ELPs, ωef𝑗  and ζef𝑗 , from 

the herein discussed decoupling step are amenable to a physical interpretation: they correspond 

to the stiffness and damping ratio of a linear SDOF oscillator, respectively. This is true for any 

kind of nonlinear vector function 𝐠 in Eq. (10) and for any type of statistical linearization 

formulation adopted (note that higher-order statistical linearization schemes, as the one 

considered later in the illustrative example section, do not necessarily yield linearized systems 

in Eq. (12) corresponding to a physically plausible dynamical system- see also [42]). Moreover, 

numerical results reported in the literature demonstrate that the thus obtained ELPs are not 

mathematical artifacts. Rather, they appear to capture the inelastic response of any MDOF 



system depending on the excitation intensity by taking on values in alignment with engineering 

intuition. For instance, stronger nonlinear response due to either a weaker structure and/or 

higher excitation intensity leads to heavier damped and/or more flexible auxiliary SDOF 

oscillators characterized by lower ωef𝑗  and higher ζef𝑗  values [42,44,60]. In this regard, the 

effective natural frequency ωef𝑗  has been considered in previous works to facilitate tracking 

and avoiding moving resonance phenomena [44,61,62], as well as to develop efficient 

approximate techniques for determining nonlinear system survival probability and first-

passage probability density functions (e.g., [63,64]).  

In this work, the above discussed attributes of the ELPs motivate their use to estimate 

the peak response of a given nonlinear MDOF structure exposed to a linear response spectrum 𝑆𝑎(𝜔𝑖, 𝜁𝑜) as have been originally considered in [39] and [42] for the case of nonlinear SDOF 

systems. That is, by simply “reading” the linear spectral ordinates from the excitation response 

spectrum for all different ωef𝑗  and ζef𝑗  corresponding to DOFs j=1,2,…,d (see also Figure 1). 

Conveniently, these spectral ordinates correspond to peak structural responses associated with 

each DOF and therefore no modal combination is required. The next section details the 

implementation of the framework in Figure 1(b) for response spectrum-based analysis of 

inelastic MDOF structures relying on the iterative application of the three steps discussed in 

this section.        

3 IMPLEMENTATION OF PROPOSED FRAMEWORK  

The three steps reviewed in the previous section are herein combined in a novel fashion 

to provide estimates of the peak inelastic response of nonlinear MDOF structures subject to a 

linear response spectrum 𝑆𝑎(𝜔, 𝜁𝑜) without resorting to RHA. At the heart of the proposed 

approach lies the novel idea of iteratively updating the nominal damping ratio 𝜁𝜊 of the input 

response spectrum by the effective damping properties, ζefj , obtained for each DOF until 

convergence. In this manner, input/output consistency of the damping ratio for each DOF is 

achieved. As will be evidenced in the next section in view of pertinent numerical results, this 

consistency provides improved accuracy of the peak inelastic response estimated for each DOF 

by 𝑆𝑎(ωef𝑗 , ζef𝑗) upon convergence of the proposed iterative procedure. In this section, the 

step-by-step implementation of the proposed stochastic dynamics framework in Figure 1(b) is 

presented with the aid of the flowchart in Figure 2, followed by a discussion on a number of 

important practical considerations in the application of the framework.   

  

3.1 Mechanization of the framework 

The proposed framework assumes as input an elastic response spectrum for a pre-specified 

damping ratio 𝜁𝜊 as well as the equations of motion of the d-DOF nonlinear structure to be 

analyzed. It initializes by deriving a single response spectrum compatible power spectrum 𝐺𝑋𝑖𝜁𝑜(𝜔) using Eq. (8) as shown in the upper three blocks of Figure 2. Standard statistical 
linearization is next applied once to the MDOF structure for this power spectrum using the 
formulation reviewed in section 2.2. In Figure 2, the global looping index value is k=0 for this 
first application of statistical linearization. A further local looping index, n, is also utilized in 
Figure 2 associated with the statistical linearization step which involves satisfying Eqs. (13-



17) using an iterative while-loop scheme. Convergence of the statistical linearization solution 
is assumed once the difference of all the elements of the 𝐂𝐞𝐪 and 𝐊𝐞𝐪 matrices lie below some 

small pre-specified thresholds β1 and β2, respectively. Next, the decoupling step detailed in 

section 2.3 is applied to derive d sets of ELPs ωef𝑗  and ζef𝑗 , each one corresponding to a 

particular j=1,2,…,d DOF, taking as input the variances in Eqs. (18) and (19) derived from the 

statistical linearization step. Subsequently, a convergence check is made separately for each 

DOF to ensure that the difference between the damping ratio assumed in the definition of the 

input response spectrum and the derived effective damping ratio lies below a small pre-

specified threshold β3. In this first passage, the aforementioned check shown in Figure 2 as |ζef𝑗(𝑘) − ζef𝑗(𝑘−1)|< β3 reads as |ζef𝑗(1) − 𝜁𝜊|< β3 as a single response spectrum with the (given) 

damping ratio 𝜁𝜊 applies. If the structure yields, this check will not be satisfied at this stage for 

any DOF. To this end, an updated response spectrum 𝑆𝑎(𝜔, ζef𝑗(1)) is defined, different for each 

DOF, and d different power spectra, 𝐺𝑋𝑖ζef𝑗(1) (𝜔), are computed using Eq. (8). Next, statistical 
linearization and decoupling steps are undertaken for all the different power spectra derived 

and a single check |ζef𝑗(2) − ζef𝑗(1)|< β3 is made for each 𝐺𝑋𝑖ζef𝑗(1) (𝜔) corresponding to the particular j 

DOF. The damping ratio in defining the input response spectrum is updated for those DOFs 

that damping ratio convergence was not achieved and the procedure is repeated individually 

for these DOFs until convergence of ζef𝑗(𝑘) with ζef𝑗(𝑘−1) values, as shown in Figure 2. Clearly, the 

aforementioned procedure establishes a cyclic relationship between the, output, stochastically 

equivalent damping coefficients of the effective linear SDOF oscillators and the, input, 

damping ratios of the elastic response spectrum until input/output damping ratio consistency is 

achieved for all DOFs of interest. Lastly, once convergence between ζef𝑗(𝑘) and ζef𝑗(𝑘−1) is observed 

after k iterations for a j DOF, the peak inelastic response corresponding to this DOF can be 
readily estimated as a function of 𝑆𝑎(𝜔ef𝑗(𝑘), ζef𝑗(𝑘)), that is by using the ordinate of the linear input 

response spectrum corresponding to the obtained ELPs from the proposed iterative algorithm. 
 



 
Figure 2. Implementation flowchart of the proposed framework.  

 

3.2 Discussion 

In view of the algorithmic implementation in Figure 2, comments on some important aspects 

and advantages of the proposed framework are herein discussed. Firstly, seismic excitation is 
conveniently represented by a linear (pseudo-acceleration) response spectrum, 𝑆𝑎, while the 
obtained peak inelastic response estimates are statistically consistent with this spectrum in the 
mean sense. This is achieved by setting the probability p equal to 0.5 in Eq. (4) such that 𝑆𝑎 is 
treated as the median response spectrum in the derivation of power spectra using Eq. (8). The 
latter consideration serves well code-compliant seismic design and assessment of structures, as 
mentioned in the introduction, relying on mean seismic demands compatible with a specified 
mean linear UHS, 𝑆𝑎.  



Secondly, the proposed framework assumes the availability of linear spectral ordinates for 

any damping ratio value 𝜁 ≥ 𝜁𝜊. This requirement stems from the fact that the effective 

damping ratios ζef𝑗(𝑘) will be higher from the nominal damping ratio 𝜁𝜊 for yielding structures 

since statistical linearization accounts for the hysteretic energy dissipation through increased 

effective damping ratios [42]. To this end, the accuracy of the peak inelastic response estimates 

obtained by the proposed approach depends on the accuracy of the damping adjustment factors 

used to modify the UHS spectral ordinates for the nominal damping ratio 𝜁𝜊. Therefore, 

dependable damping adjustment factors need to be chosen which should be compatible with 

the seismotectonic environment for which the response spectrum 𝑆𝑎 is associated with (see 

e.g., [2,65] and references therein). Conveniently, seismic design codes do include empirical 

formulae to define heavily damped spectra (see e.g., Eq. (A.2) in the Appendix) and, therefore, 

the proposed approach can be readily used in conjunction with code-defined UHS in practical 

applications.  

Another important issue of practical concern is the fact that the SDOF oscillators in Figure 
2 are associated directly with DOFs of the non-linear structure and not with modal responses 
of the underlying equivalent linear MDOF system. In this regard, the proposed approach does 
not involve any modal combination step: all response quantities lie in the physical space 
allowing for efficient peak response estimation directly from the response spectrum for each 
DOF. More importantly, the decoupling step can target only a small selected number of DOFs 
at will (e.g., it may be desired to obtain only the peak top floor lateral displacement in a multi-
storey building) without incurring any additional approximation or loss of accuracy (i.e., as 
would be the case of a truncated modal combination without making use of all modes). This is 
because the contribution of all DOFs in the equivalent linear system is accounted for in 

computing the variances in Eqs. (18) and (19) in which all the d response cross-spectral density 

terms appear. Still, when the peak response for more than one DOFs is sought, the estimated 
peak responses will not happen at the same time and will not bear any particular sign. 
Therefore, it is not recommended to combine the peak response estimates a posteriori in an ad 
hoc fashion to evaluate peak structural responses of interest. For example, in the commonly 
encountered practical case that peak inter-storey drifts in seismically excited multi-storey 
buildings need to be computed, these should not be evaluated by subtracting peak floor 
displacements. Instead, the equations of motion need to be written directly in terms of the inter-
storey drifts as exemplified in the illustrative application in the next section. 

Lastly, pertinent remarks are due on the novel concept of iteratively updating the damping 

ratio of the input seismic spectrum based on the effective damping ratio individually for each 

DOF of interest. From a numerical viewpoint, convergence of this iterative procedure is the 

natural outcome of solving at the current iteration a “system identification” problem (i.e., the 
decoupling step discussed in section 2.3) to find ELPs for each DOF, in which both the given 

input/excitation (i.e., response spectrum compatible spectrum) and the pre-specified 

output/response (i.e., displacement and velocity variances obtained from statistical 

linearization step) are found by relying on the ELPs identified in the previous iteration. Indeed, 

the response spectrum compatible power spectrum for iteration index k is derived by solving 

the inverse problem in Eq. (2) in which the desired response is the median response spectrum 

with ELP damping identified in the k-1 iteration while the considered system is also a SDOF 



with ELP damping from k-1 iteration. Further, the response variances in Eqs. (21) and (22) are 

found through linearization using the same power spectrum derived based on the ELP damping 

in k-1 iteration. Convergence, however, may not be monotonic in terms of peak response 

displacement as in most of the cases displacement spectral ordinates increase for oscillators 

with lower natural frequencies (longer periods), while statistical linearization to hysteretic 

structures of the softening kind yields equivalent linear oscillators with natural frequencies 

shifted towards lower frequencies reflecting on a reduced effective stiffness of yielding 

structures. Further comments on the rate and type of convergence of the herein proposed 

iterative procedure are included in the following section in view of pertinent numerical data. 

As a final remark, note that convergence of the above iterative procedure assigns response 
spectra of different damping ratios to each DOF which may be seen as counter-intuitive. 
Nevertheless, the variation of the damping ratios across different DOFs ensures that the value 
of ζef𝑗  found for each individual DOF is properly mapped onto a family of consistent input 
response spectral curves for different damping ratios and vice versa. Further, this variation is a 
consequence of the decoupling of the DOFs achieved by the adopted statistical criteria in Eqs. 
(21) and (22) and should be interpreted as a weighting factor applied consistently to the input 
earthquake excitation in a similar manner that participation factors scale differently the input 
seismic action for each mode in the standard modal response spectrum-based method of 
analysis for linear MDOF structures.  

4 ILLUSTRATIVE APPLICATION 

In this section the stochastic dynamics approach of Figure 2 is numerically illustrated by 

considering a yielding multi-storey frame structure subject to the Eurocode 8 elastic response 

spectrum [11] provided in the Appendix. Peak inelastic inter-storey drifts are derived by using 

ELPs in conjunction with the excitation response spectrum. The achieved accuracy of the 

predicted peak mean drifts is quantified by comparison with pertinent results derived from 

nonlinear RHA for an ensemble of time-histories compatible with the considered Eurocode 8 

response spectrum. The presentation starts with a description of the adopted structure.  

4.1 Inelastic frame structure 

The three-story non-classically viscously-damped inelastic shear frame shown in Figure 3(a) 
is considered to exemplify the proposed approach. The lumped mass at the j-th floor, mj, and 
the stiffness and damping coefficients of the j-th story, kj and cj, respectively, are reported in 
Figure 3(a) for j= 1,2,3. The inelastic behavior of the shear frame is governed by a hysteretic 
relationship between the resisting story shearing force and the inter-story drift. The same 
relationship is assumed for all three stories. Under these modelling assumptions, the resisting 
shearing force of the j-th story is given as the sum of an elastic and a hysteretic part as 𝛷𝑗(𝑡) =  𝛼𝑘𝑗𝑦𝑗(𝑡) + (1 − 𝛼)𝑘𝑗𝑧𝑗(𝑡),                                         (24) 



where 𝛼 is the post-yield to pre-yield stiffness ratio, 𝑦𝑗(t) is the inter-story drift normalized by 
the yielding displacement 𝑥𝑦, that is, 𝑦𝑗(t) = (𝑢𝑗 − 𝑢𝑗−1)/𝑥𝑦 where 𝑢𝑗 , j=0,1,2,3 is the lateral 
floor displacement relative to the ground displacement with 𝑢0=0 (Figure 3(a)), and z𝑗(t) is a 
hysteretic state variable. In all the ensuing numerical work 𝛼 is taken equal to 0.15 and the 

yielding displacement 𝑥𝑦 is taken equal to 5cm.  

Further, the parametric Bouc-Wen model [66] is adopted to govern the hysteretic storey 
shearing force versus normalized inter-storey drift relationship. This model has been used to 
capture the inelastic response of seismically excited frame structures (e.g., [67,68]), as the one 
herein considered, as well as of yielding structural components (e.g., [69]). This is due to its 
versatility to represent a wide range of hysteretic force-deformation experimental data from 
cyclic/seismic testing of structures and structural components (see e.g., [70]). The adopted 
model is herein introduced through the nonlinear differential equation żj(t) = {Αẏj(t) − βẏj(𝑡)|zj(𝑡)|n − γ|ẏj(𝑡)|zj(𝑡)|zj(𝑡)|n−1},                  (25) 
where parameters Α, β, γ control the shape and the exponent n controls the smoothness of the 
hysteretic loops between the state variable z and, consequently, the shear force in Eq. (24) and 
the normalized inter-storey drift. In this work, the following values are adopted for the Bouc-
Wen parameters Α = 1, β = γ = 0.5, n = 1 to represent a smooth softening hysteretic behavior 
[66]. The backbone curve of the adopted Bouc-Wen model is plotted in Figure 3(b) (broken 
black curve) together with four hysteretic loops for different peak inter-storey drifts normalized 
to xy obtained under harmonic excitation for steady-state conditions. It is seen that the model 
exhibits hysteresis even for drifts smaller than the nominal yielding deformation xy (see [70] 
for a detailed discussion). Consequently, effective damping ratios with ζef𝑗 > 𝜁𝜊 are expected 
by application of statistical linearization even for excitations that will not deform the structure 
beyond the nominal xy as discussed in [71] for the case of SDOF Bouc-Wen inelastic oscillators. 
Note that this is not the case of non-smooth idealized hysteretic models such as the bilinear 
model for which no hysteretic damping is exhibited unless x>xy [42]. For comparison, 
hysteretic loops of the non-smooth Bouc-Wen model computed by setting n=15 are plotted in 
Figure 3(b) (continuous grey curves).         

 

 
Figure 3. (a) Properties of the adopted inelastic  three-storey shear frame; (b) Typical 

hysteretic loops of the adopted Bouc-Wen inelastic model. 



4.2  Equations of motion for the non-linear and for the equivalent linear system 

The equations of motion for the inelastic 3-storey frame in Figure 3(a) base excited by a 
stationary seismic acceleration process α̈g(t) can be written in the form of Eq. (10)  by 
collecting in vector x the normalized by the yielding displacement inter-storey drifts and the 
hysteretic state variables for the three stories as 𝐱𝐓 = {y1 y2 y3 z1 z2 z3},                                                          (26) 
where the superscript “T” stands for matrix transposition. Then, the mass matrix in Eq. (10) is 

written as 𝐌 = [𝐌𝟏𝟏 𝟎3x3𝟎3x3 𝟎3x3],                                                               (27) 
where 

𝐌𝟏𝟏 = [m1 0 0m2 m2 0m3 m3 m3],                                                          (28) 
and 𝟎3x3 is the 3-by-3 zero matrix, while the damping matrix is written as 𝐂 = [ 𝐂𝟏𝟏 𝟎3x3𝟎3x3 𝚰𝟑𝒙𝟑 ],                                                                 (29) 
where 

𝐂𝟏𝟏 = [c1 −c2 00 c2 −c30 0   c3 ],                                                          (30) 
and 𝐈3x3 is the 3-by-3 identity matrix. Further, the stiffness matrix becomes 𝐊 = [𝐊𝟏𝟏 𝐊𝟏𝟐𝟎3x3 𝟎3x3],                                                                (31) 
where 

𝐊𝟏𝟏 = [αk1 −αk2 00 αk2 −αk30 0   αk3 ],                                                     (32) 
and 

𝐊𝟏𝟐 = [(1 − α)k1 −(1 − α)k2    00    (1 − α)k2 −(1 − α)k30    0    (1 − α)k3].                                    (33) 
Lastly, the vector g in Eq. (10) is written as 𝐠𝐓[𝐱(𝑡), �̇�(𝑡)] = {0 0 0 −𝑔1[ẏ1(𝑡), z1(𝑡)]−𝑔2[ẏ2(𝑡), z2(𝑡)] −𝑔3[ẏ3(𝑡), z3(𝑡)]}. (34) 
where 𝑔𝑗[ẏ𝑗(𝑡), z𝑗(𝑡)] = ż𝑗(𝑡),                                                        (35) 
and the forcing vector reads as 𝐅(t)T = {𝑓1(t) 𝑓2(t) 𝑓3(t) 0 0 0},                                                (36) 



where 𝑓𝑗(t) = −𝑚𝑗α̈g(t)/𝑥𝑦. 
Upon application of the standard statistical linearization, the equivalent linear matrices 

appearing in Eq. (12) take the form [41] 𝐂𝐞𝐪 = [𝐂𝐞𝐪𝟏𝟏 𝐂𝐞𝐪𝟏𝟐𝐂𝐞𝐪𝟐𝟏 𝐂𝐞𝐪𝟐𝟐],                                                          (37) 
where 𝐂𝐞𝐪𝟏𝟏 = 𝐂𝐞𝐪𝟏𝟐 = 𝐂𝐞𝐪𝟐𝟐 = 𝟎𝟑𝒙𝟑,                                               (38) 
and 

 𝐂𝐞𝐪𝟐𝟏 = [ceq1 0 00 ceq2 00 0 ceq3],                                                   (39) 
and 𝐊𝐞𝐪 = [𝐊𝐞𝐪𝟏𝟏 𝐊𝐞𝐪𝟏𝟐𝐊𝐞𝐪𝟐𝟏 𝐊𝐞𝐪𝟐𝟐],                                                       (40) 
where 𝐊𝐞𝐪𝟏𝟏 = 𝐊𝐞𝐪𝟏𝟐 = 𝐊𝐞𝐪𝟐𝟏 = 𝟎𝟑𝒙𝟑,                                           (41) 
and 

 𝐊𝐞𝐪𝟐𝟐 = [keq1 0 00 keq2 00 0 keq3].                                               (42) 
The elements ceqj and keqj  are given by the following closed-form expressions applicable for 

n=1 [43] 

ceqj = √2π [  
 γ E(ẏjzj)√E(ẏj2) + β√E(zj2)]  

 − A ,                                      (43) 
and 

keqj = √2π [  
 γ√E(ẏj2) + β E(ẏjzj)√E(zj2)]  

 ,                                             (44) 
respectively.  

4.3 Derivation of Eurocode 8 compatible ELPs 

The pseudo-acceleration elastic response spectrum prescribed by the current European 

seismic code, Eurocode 8, [11] for ground type B, nominal critical damping ratio 𝜁𝑜 = 5%, 

and peak ground acceleration (PGA) equal to 0.36𝑔 is used to excite the structure in Figure 



3(a). The adopted 𝑆𝑎 spectrum is provided in the Appendix and plotted in Figure 4(a) (grey 

continuous curve) against the natural period T=2π/ω.  

Following the implementation of the proposed framework in Figure 2, a single 𝑆𝑎 

compatible power spectrum is first derived using Eq. (8) and is plotted in Figure 4(b). The 

duration 𝑇𝑠 and the discetization step 𝛥𝜔 are taken equal to 20s and 0.1rad/s, respectively. The 

parameters assumed in Eq. (9) are 𝜉𝑔 = 0.78,  𝜔𝑔 = 10.78 𝑟𝑎𝑑 𝑠−1,  𝜉𝑓 = 0.90 and 𝜔𝑓 =2.33 𝑟𝑎𝑑 𝑠−1 which define a Clough-Penzien spectral shape plotted in Figure 4(c) compatible 

in the median sense with the herein adopted Eurocode 8 response spectrum derived in [55]. 

The spectral moments in Eq. (1) are computed using the default quadrature rule of the ‘quad’ 

built-in MATLAB function. The achieved level of compatibility between the power spectrum 𝐺𝑋𝑖𝜁𝑜(𝜔) and the response spectrum 𝑆𝑎 is assessed in Figure 4(a) by comparing the given 𝑆𝑎 of 
Eurocode 8 with the response spectrum computed by Eq. (2) (broken line). A further assessment 
is made in terms of the criterion posed by Eq. (2) for p=0.5 as discussed in section 2.1 by 

undertaking a pertinent Monte Carlo based analysis. Specifically, an ensemble of 1000 

stationary signals of 20s duration each compatible with the 𝐺𝑋𝑖𝜁𝑜(𝜔) spectrum in Fig. 4(b) are 

generated using the spectral representation simulation method [71]. The median response 

spectrum of these signals are plotted (dotted line) in Figure 4(a). Satisfactory matching between 

the latter median response spectrum and 𝑆𝑎 is observed which justifies the use of the ELPs 
derived as discussed below to approximate the peak inelastic inter-storey drifts of the structure 
in Figure 3(a) exposed to the response spectrum in Figure 4(a).   

       

 
Figure 4. (a) Adopted Eurocode 8 response spectrum for 5% damping ratio and compatibility 

assessment with the power spectrum using Eq.(2) and NRHA. (b) Eurocode 8 response spectrum 
compatible power spectrum obtained by Eq.(8). (c) Clough Penzien spectral shape in Eq.(9) used to 



derive the spectrum in (b). 

 Next, standard statistical linearization is applied for the derived power spectrum in Figure 

4(b) using Eqs. (15)-(17) and (37)-(44). As discussed in sections 2.2 and 3.1, a simple iterative 

while-loop scheme is used to satisfy the previous expressions simultaneously, among possible 

alternatives (see e.g., [73]). The adopted thresholds for checking the convergence are set to 

β1=β2= 10-4. Subsequently, a set of three 𝜔ef𝑗(1) and ζef𝑗(1) ELPs j=1,2,3 corresponding to the three 

inter-storey drifts of the frame structure are derived by application of the decoupling step 

detailed in section 2.3. Then, three different power spectra compatible with the Eurocode 8 

response spectrum given in the Appendix for critical damping ratios ζef𝑗(1)  j=1,2,3 are derived 

using the same settings as those used to derive the initial 𝐺𝑋𝑖𝜁𝑜(𝜔). Next, three different sets of 
ELPs for the previous three power spectra are obtained, one for each of the three DOFs and the 
process is iteratively repeated until the convergence check |ζef𝑗(𝑘) − ζef𝑗(𝑘−1)|< β3 is satisfied for 

all j=1,2,3. For illustration purposes, a very small β3= 10-4 threshold has been adopted in the 

analysis.   

  

 
Figure 5. Effective natural frequency and damping ratio elements from successive iterations. 

To illustrate the convergence achieved, the derived ELPs 𝜔ef𝑗(𝑘) and ζef𝑗(𝑘) are plotted in Figures 

5(a) and (b), respectively, for all three DOFs as a function of the iteration index k. Further, 

Figure 5(c) plots the input power spectra compatible with the Eurocode 8 response spectrum 



iteratively updated based on the damping ELPs for the second DOF considered. It is seen that 

convergence is achieved after 3 iterations for all DOFs, but, as discussed in section 3.2, 

convergence is not monotonic. In particular, a single application of the statistical linearization 

and decoupling steps (k=1) overestimates ELPs for all DOFs. Upon updating the damping ratio 

of the response spectrum, different input power spectra for each DOF are derived yielding 

smaller ELP values (k=2), a further small adjustment towards higher values in the ELPs occurs 

in the subsequent iteration (k=3) and ELPs (as well as the input power spectra) remain 

practically unchanged for k>3 (convergence). It is noted that the effective natural frequency 

values do not fluctuate significantly; this is why they are not considered in checking for 

convergence. It is further important to note that the obtained ELPs are consistent with 

engineering intuition: softer and heavier damped effective SDOF oscillators are assigned to the 

floors (DOFs) that yield more (see Figure 7 for a verification based on NRHA), while effective 

damping ratios drop for input power spectra of reduced intensity reflecting on less energy 

dissipated through weaker nonlinear behavior. These observations confirm that the obtained 

ELPs by application of the proposed framework to inelastic MDOF structures bear physical 

significance as previously reported in [42] for the case of inelastic SDOF systems. 

4.4 Peak inelastic response estimation using the ELPs and assessment via nonlinear RHA 

Upon convergence of the effective damping ratios (i.e., |ζef𝑗(𝑘) − ζef𝑗(𝑘−1)|< β3), the obtained 

pairs of ELPs are used to estimate the peak inter-storey drifts of the shearing frame in Figure 
3(a) in conjunction with the input Eurocode 8 elastic response spectrum. This is pictorially 
shown in Figure 6 where the Eurocode 8 spectrum is plotted against the natural period for the 
three different values of damping ratio ζef𝑗(6) , j=1,2,3 found, in terms of spectral acceleration, 𝑆α, left vertical axis, and in terms of spectral displacement, 𝑆α/𝜔2, right vertical axis. The three 
peak inelastic inter-storey drifts are read on the right vertical axis using the (Tef𝑗 =2𝜋 𝜔ef𝑗(6)⁄ , ζef𝑗(6)) pairs indicated on the figure. All estimated drifts are above the considered 

yielding drift of 5cm which indicates that the structure enters well into the inelastic range (see 
also Figure 3(b) and discussion on the assumed smooth Bouc-Wen model). It is seen that drifts 
decrease with height, which is expected from a shear-type frame with uniformly distributed 
mass in elevation, even though higher effective damping ratios, ζef𝑗 , are found for the effective 

SDOF oscillators assigned to the lower floors. Evidently, this is associated with ωef𝑗  taking on 
lower values, or equivalently Tef𝑗  becoming longer at lower floors leading to increase 
displacement demands despite the increase of the damping ratio. Overall, these observations 
confirm that the ELPs derived from the proposed method lead to reasonable peak drift response 
estimates.  



 
Figure 6. Peak inter-storey drifts estimation using the ELPs for k=6 in Figure 5 in conjunction 

with the Eurocode 8 response spectrum of the Appendix for different damping ratios. 

To further assess the accuracy of the above derived peak response estimates, nonlinear RHA 

for an ensemble of 5000 artificial acceleration time-histories compatible in the mean sense with 

the Eurocode 8 elastic response spectrum for 5% damping is conducted. Specifically, the 

considered time-histories are non-stationary in amplitude: an arbitrarily chosen time-history 

out of the ensemble is plotted in Figure 7(a). Their average and median response spectra 

achieve a good level of matching with the Eurocode 8 spectrum as shown in Figure 7(b). These 

time-histories are derived by first generating 5000 stationary realizations compatible with the 

Clough-Penzien spectrum in Figure 4(c) using the spectral representation method [72]. Next, 

these realizations are multiplied by an envelope function in time derived in [55] to achieve 

average spectral matching with the herein considered Eurocode 8 spectrum. Lastly, the 

nonlinear differential equations of motion in Eq. (10) are numerically integrated for the above 

ensemble via a standard fourth order Runge-Kutta algorithm, for x, M, C, K, g, and F defined 

in Eqs. (26)-(36).    

 

      
Figure 7. (a) Time-history of an arbitrarily chosen artificial accelerogram from an ensemble of 5000 

compatible with the Eurocode 8 spectrum with 5% damping. (b) Average and median response spectra 

of an ensemble of 5000 artificial accelerograms vis-à-vis the Eurocode 8 spectrum with 5% damping. 

 



 
Figure 8. Comparison of peak inter-storey drift estimates obtained from the proposed method for 

different iterations with ensemble average peak inter-storey drifts from NRHA. (a) Absolute values, (b) 

Percentage difference (error). 

Figure 8(a) compares the ensemble average of the peak response inter-storey drifts 

obtained from NRHA within a Monte Carlo simulation context (treated as “accurate” values 

hereafter), with the inter-storey drifts estimated using the ELPs reported in Figures 5(a) and 

5(b) in conjunction with the excitation Eurocode 8 response spectrum as illustrated in Figure 

6. Further, Figure 8(b) reports the percentage error between the inter-storey drifts from 

nonlinear RHA with those obtained by the proposed method for all 6 iterations performed. It 

is seen that enhanced accuracy compared to nonlinear RHA results is achieved for the DOFs 

(stories) exhibiting milder nonlinear behavior. The latter can be gauged through the average 

ductility demand obtained from nonlinear RHA results as 7.29/5= 1.46, 6.30/5= 1.26, and 

5.96/5= 1.19 for the 1st, 2nd, and 3rd story, respectively. This observation is in perfect alignment 

with pertinent numerical results reported in [42] for bilinear hysteretic SDOF oscillators and in 

[71] for Bouc-Wen SDOF oscillators for a wide range of ductility demands using ELPs derived 

by the same statistical criteria in Eqs. (21) and (22) for peak inelastic response estimation. The 

fact that accuracy deteriorates with stronger nonlinearity is readily attributed to the well-studied 

in the literature level of accuracy with which statistical linearization approximates inelastic 

response statistics in Eqs. (18) and (19) (see e.g. [41] and references therein).  

Nevertheless, the most important observation in Figure 8 is the remarkable 

improvement of accuracy achieved through the iterative updating of the excitation response 

spectrum based on the equivalent damping ratio for each DOF. In particular, the accuracy 

improves by about one order of magnitude upon convergence (i.e., for k>=3), compared to the 

results obtained by a non-iterative application the framework (i.e., a single passing through the 

three steps reviewed in section 2). Even more important is the fact that this improvement does 

not depend on the level of nonlinearity exhibited. For example, the same reduction by 84% to 

the estimation error for both the 1st and 2nd story drifts between no response spectrum updating 

(k=1) and 5 times response spectrum updating (k=6) is noted, even though the 1st floor exhibits 

16% higher ductility demand from the 2nd floor. In this respect, it can be argued that the novel 

concept of updating the damping ratio of the excitation response spectrum iteratively for each 

DOF individually to achieve consistency with the effective damping ratio benefit substantially 



the accuracy of the proposed stochastic dynamics framework in comparison with pertinent 

Monte-Carlo simulation-based results derived by nonlinear RHA. 

5 CONCLUDING REMARKS 

A computationally efficient nonlinear stochastic dynamics based framework has been 

proposed for estimating the peak inelastic response of hysteretic MDOF structural systems 

subject to a given family of linear response UHS defined for various damping ratios through 

modification factors, without the need to undertake nonlinear RHA. The proposed framework 

initiates by the derivation of a power spectrum representing a time-limited stationary process 

compatible with the given response spectrum for a nominal damping ratio treated as the median 

spectrum. Next, estimates of second-order response statistics for a considered inelastic MDOF 

structure are obtained through standard statistical linearization for the derived power spectrum. 

Then, for each DOF of interest of the MDOF structure, an effective linear SDOF oscillator is 

defined such that it has the same response displacement and velocity variance with those of the 

MDOF structure estimated by the statistical linearization step. The above three steps are 

repeated iteratively for each monitored DOF upon updating the damping ratio of the excitation 

response spectrum with the effective damping ratio of each linear SDOF whose value reflects 

on the level of the nonlinearity exhibited by the MDOF structure. Upon convergence of the 

damping ratio of the response spectrum with the effective damping ratio for each DOF (i.e., 

equality within some small error), the properties of each effective SDOF oscillator (ELPs) are 

used together with the excitation response spectrum for different damping ratios to obtain peak 

response estimates for the MDOF structure.  

It has been argued, based on heuristic nonlinear structural dynamics arguments, that 

convergence of the above novel iterative procedure lying at the core of the proposed framework 

will be observed for typical yielding seismically excited structures. This has been demonstrated 

in view of numerical results involving a three-storey shear frame excited by a Eurocode 8 UHS 

whose nonlinear behavior is modelled by the Bouc-Wen model. Moreover, nonlinear RHA 

involving an ensemble of 5000 non-stationary accelerograms whose mean response spectrum 

matches closely the considered Eurocode 8 UHS has been conducted to study the accuracy of 

the proposed framework. It has been found that the accuracy deteriorates for higher levels of 

nonlinearity gauged via average peak seismic inter-storey ductility demands for each floor of 

the frame considered which is consistent with the approximations involved in the statistical 

linearization step. However, it has been shown that considerably improved accuracy is achieved 

by the proposed framework through the iterative damping ratio updating procedure, 

independently of the exhibited level of nonlinearity. The latter observation qualifies the herein 

proposed approach as a rather advantageous analysis tool for preliminary/cursory seismic 

design and assessment of yielding structures based on seismic demands posed by a given 

response spectrum representing the seismic hazard.    

Still, it is recognized that the accuracy of the proposed framework as stronger non-linear 

behavior is exhibited is inevitably constraint by the well-reported in the literature accuracy of 

statistical linearization and, therefore, it may not provide sufficiently accurate peak response 

estimates for low-performing structures. Nevertheless, it is envisioned that the considered 

approach can significantly facilitate code-compliant design and assessment of relatively mildly 



yielding MDOF structures following any hysteretic force-displacement law treatable by means 

of statistical linearization. Comparisons of the proposed framework with existing simplified 

approaches for seismic demands estimation warrants further research left for future work.  

APPENDIX: ADOPTED EUROCODE 8 ELASTIC RESPONSE SPECTRUM 

The Eurocode 8 elastic pseudo-acceleration response spectrum for peak ground acceleration 

0.36g (g=981 cm/s2) and ground type B used in the numerical work of this paper is defined by 

[11] 

𝑆α(𝑇, 𝜁) = 0.432g ×
{  
  
  1 + 𝑇0.15 (2.5𝛿 − 1),                              0 ≤ 𝛵 ≤ 0.152.5𝛿,                                                        0.15 ≤ 𝛵 ≤ 0.51.25𝛿𝑇 ,                                                     0.50 ≤ 𝛵 ≤ 22.5𝛿𝑇2 ,                                                             2 ≤ 𝛵 ≤ 4          

                      (𝐴. 1) 
where 𝛿 = √ 105 + 𝜁 ≥ 0.55,                                                        (𝐴. 2) 
T=2π/ω is the natural period and 𝜁 is the critical damping ratio as a percentage. 
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