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Chiral nematic liquid crystals in torus-shaped and cylindrical cavities

Charlie R. Wand * and Martin A. Bates

Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom

(Received 26 March 2019; published 25 November 2019)

We present a Monte Carlo simulation study of chiral nematic liquid crystals confined in torus-shaped and

cylindrical cavities. For an achiral nematic with planar degenerate anchoring confined to a toroidal or cylindrical

cavity, the ground state is defect free, with an untwisted director field. As chirality is introduced, the ground

state remains defect free but the director field becomes twisted within the cavity. For homeotropic anchoring,

the ground state for an achiral nematic within a toroidal cavity consists of two disclination rings, one large and

one small, that follow the major circumference of the torus. As chirality is introduced and increased, this ground

state becomes unstable with respect to twisted configurations. The closed nature of the toroidal cavity requires

that only a half integer number of twists can be formed and this leads to the ground state being either a single

disclination line that encircles the torus twice or a pair of intertwined disclination rings forming stable, knotted

defect structures.

DOI: 10.1103/PhysRevE.100.052702

I. INTRODUCTION

The topological properties of ordered fluids such as ne-

matic liquid crystals in confined geometries have received

considerable attention in the past few decades because of the

rich behavior that results from the frustration between the

elastic energy of the bulk and surface energy imposed at the

interface. Control of the geometry of the confined system,

along with the molecular alignment at the interface, can lead

to a fascinating and rich variety of director fields, including

regions in which the orientational order characteristic of a

liquid crystal vanishes, known as defects. This frustration

occurs in even the simplest of oil-in-water type droplets, and

so there has been a significant amount of work into under-

standing spherical droplets composed of liquid crystals with

different types of surface anchoring [1–9]. Thin, curved but

continuous surfaces such as nematic shells, which are double

emulsions formed as water-in-oil-in-water type droplets, have

also received interest and behave in a very different way due to

the inner surface [10–17]. For systems with planar degenerate

anchoring, the Poincaré-Hopf theorem [18] states that the total

topological defect charge at each surface must be equal to

the Euler characteristic of the system, given by χ = 2(1 − g)

where g is the number of handles. The topological strength, s,

of an individual defect is related to the rotation of the director

around the defect; thus an s = +1 defect has a rotation in

the director field of 2π . For a spherical surface (i.e., with no

handles), χ = +2, and therefore the total topological defect

charge on the surface must also be equal to +2. Thin nematic

shells are, therefore, predicted to have a total topological

charge of s = +2 on both the inner and outer surface. This
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constraint can be satisfied by four s = +1/2 defects, or two

s = +1 defects, or two s = +1/2 and one s = +1 defects in

the ground state, depending on the conditions under which

they are formed; in this case the defects are either disclination

lines or escaped defects, which touch both inner and outer

surfaces. Similar defects are also found at the surfaces of solid

colloidal particles or nonmiscible droplets within a nematic

host [19–24]. The induced interactions between the objects

can lead to their self-assembly into chains or two-dimensional

arrays [25–27] and disclinations in the nematic can be manip-

ulated by the inclusions into exotic geometries such as knots

[28,29]. The use of more complex-shaped colloidal particles,

such as stars [30], toriods [31], colloids with handles [32], and

knots [33,34], within a bulk nematic medium have also been

investigated.

More complex curved cavities have been realized experi-

mentally by Pairam et al. [35] and Ellis et al. [36]. Instead

of a fluid medium for the outer phase, a gel matrix is used

to stabilize nonspherical cavities. A nonspherical cavity, such

as a torus, can be generated using a moving injection point.

These droplets are topologically distinct from a sphere in that

it is not possible to continuously transform between them

without breaking the system. Nematic ordering on the surface

of a toroid has been investigated theoretically [37–46] and

a spontaneous twisted director configuration has been found

leading to the breaking of achiral symmetry. This twisted

director configuration has been observed experimentally [47]

within nematic toroidal droplets with planar anchoring and

also for DNA packing [48,49] and polymer bundles [50],

both of which have been analyzed using liquid crystalline

theory. Theoretical research by Koning et al. [51] and Pedrini

and Virga [52] predict a transition from an untwisted to

twisted director configuration dependent on the aspect ra-

tio of the toroidal droplet and ratio of the Frank elastic

constants of the liquid crystalline material. More recently ne-

matic tori with homeotropic anchoring have also been investi-

gated [36,53] and the geometric control of spontaneous twist
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considered including the possibility of forming interlinked

disclinations.

In this paper, we investigate whether using a chiral nematic

instead of an achiral nematic can stabilize chiral director

configurations and thus form the intertwined disclinations as

the ground state. This will provide a reliable way to produce

these knotted defect structures. Coupled with the templating

ability of the disclination lines [54], this provides a facile

route for the synthesis of exotic nanoscale structures including

interlinked rings and trefoil knots.

II. MODEL AND SIMULATION DETAILS

Monte Carlo (MC) simulations are used to investigate the

behavior of both chiral and achiral nematic phases inside

toroidal cavities. We use a coarse-grained model [15] in which

a small volume of liquid crystal (LC) is modelled via an

orientation dependent potential,

U LC−LC(pi, p j, ri j ) =

⎧

⎨

⎩

r � σ, ∞

σ < r < σ ′, U LC−LC( p̂i, p̂ j, r̂i j )

σ ′ � r, 0

,

(1)

based upon a hard sphere of diameter σ , surrounded by an

orientation dependent attractive region which has a further

range of σ ′ − σ ; in all simulations, σ ′ = 1.5σ . The unit

vectors p̂i and p̂ j denote the orientations of particles i and j

and ri j = |ri j |r̂i j = rr̂i j is the interparticle vector. The use of

an off-lattice model overcomes the influence of the underlying

lattice that influences the alignment in lattice-based models

[24]. The anisotropic term which imposes the liquid crystal

ordering is

U LC−LC( p̂i, p̂ j, r̂i j )

= −ε( p̂i · p̂ j )
2 − εc[r̂i j · ( p̂i × p̂ j )][( p̂i · p̂ j )], (2)

in which the first term is responsible for the nematic ordering

and the second term introduces chirality; the strength param-

eters ε and εc correspond to the relative strengths of these two

terms. Energies and derived quantities are quoted using ε as

the scaling variable; thus temperature is scaled as T ∗ = kT/ε.

Similarly, σ is used as the scaling variable for all distances.

The molecular chirality can be varied through the parameter

εc and the pitch length as a function of εc has previously

been calculated for this model [15]. The bulk elastic constants

were calculated for this model from bulk simulations using

the method detailed by Allen et al. [55]. It was found that

K1/K3 = 1.038 and K2/K3 = 0.985 where K1, K2, K3 are the

splay, twist, and bend Frank elastic constants, respectively.

Indeed, due to the microscopic size of the toroidal droplets

in question, each sphere represents an (undefined) number of

mesogens, rather than a one-to-one mapping as, for example,

in the Gay-Berne ellipsoidal model [56,57]. The level of

coarse graining within this model allows for general features

of the nematic phase to be captured.

The model liquid crystal is confined to either a toroidal or

cylindrical cavity. A torus can be obtained by moving a sphere

with a radius of r∗
c along a ring with a radius of r∗

t . The aspect

ratio is defined as r∗
t /r∗

c , and gives a measure of thickness,

with small values corresponding to fat tori and larger values

to thinner tori. A cylinder can be thought of as a torus in the

limiting case of r∗
t → ∞. In simulations with a cylindrical

cavity, the cylinder is periodic in the z direction with a radius

r∗
c and length l∗. The anchoring at the surfaces of these

cavities is imposed by an anisotropic LC-wall interaction,

U LC−wall(pi, ri j ) =

⎧

⎨

⎩

r � σ, ∞

σ < r < σ ′, ±εA( p̂i · r̂i )
2

σ ′ � r, 0

, (3)

where r̂i is the unit vector between the center of the particle

and the minimum distance on the toroidal (or cylindrical)

wall. With the positive sign, U LC−wall corresponds to planar

anchoring and with the negative sign to homeotropic

anchoring. εA is the anchoring strength and although this

can be varied, in practice there is very little dependence on

it so long as it is large enough for strong anchoring and so

εA = ε is used throughout.

All simulations were run at a single fixed density ρ∗ =

Nσ 3/V = 0.75, corresponding to a relatively dense liquid;

this is approximately 80% of the density of the liquid at

the freezing point for hard spheres [58]. Note, when deter-

mining the number of particles required from the density,

only the volume accessible to particles is taken into account.

Therefore, a tube of radius rc is taken to have an effective

radius of rc − σ as the particles cannot approach the wall

any closer. Exploratory simulations to determine the behavior

were typically started from isotropic configurations and run at

T ∗ = 0.90T ∗
NI , where T ∗

NI = 1.46 is the bulk isotropic-nematic

transition temperature at this density [15]. In some cases,

further simulations started from idealized configurations were

also run and are discussed later. Various different system sizes

and temperatures were used, as outlined in the appropriate

sections. As a rough guide to system sizes, the smallest

simulations of toroids with dimensions r∗
t = 30 and r∗

c = 10

contain 35 975 particles and the largest with dimensions

r∗
t = 40 and r∗

c = 20 contain 213 776 particles. Simulations

were run using an in-house standard Metropolis method [59]

MC code and trial moves consisted of random translations,

rotations, or a combination of the two. An additional trial

move randomizing a selected p̂i was employed to speed up

the equilibration time. An acceptance ratio of between 0.4

and 0.6 was maintained. Simulations were run for 2.5 × 105

MC cycles (where a cycle is defined as N trial moves) to

equilibrate with results collected over 1.8 × 105 production

MC cycles for ten random number seeds.

A range of fixed values for the chirality parameter were

used; ε∗
c = εc/ε = 0.00, 0.06, 0.12, 0.18, and 0.24. ε∗

c = 0.00

corresponds to an achiral nematic phase (with infinite

pitch), and the pitch lengths for the remaining values are

p∗ = 202, 101, 62, and 48, respectively [15]. The pitch values

are found to be independent of temperature, which can be

related to the square-well nature of the model potential [60].

In order to determine the orientational order and identify

the locations and types of defects, the technique developed by

Callan-Jones et al. [61] was used. This has previously been

used for similar studies of nematic shells for both on- and

off-lattice models [12,15]. The simulation box is split into a

three-dimensional grid of cells with sides 1.5σ and a Q-tensor

calculated for each region. Note that although the grid is

applied to the whole simulation box, the analysis is only
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FIG. 1. (a) The director field for an achiral nematic (ε∗
c = 0.00)

with planar anchoring inside a cylinder of dimensions l∗ = 48, r∗
c =

16. (b) The director field in the defect-free ground state for a torus of

dimensions r∗
t = 28, r∗

c = 10 and (c) in a higher energy metastable

state with two pairs of boojum defects. Each boojum consists of a

s = +1 defect on the outer waist of the surface and a s = −1 defect

on the inner waist, giving a total surface topological charge of 0.

performed for those cells containing one or more particles.

The Q-tensor

Qαβ (r) =
1

N

N
∑

i=1

(

piα piβ −
1

3
δαβ

)

, (4)

where α, β = x, y, z and δαβ is the Kronecker delta, is calcu-

lated for each occupied cell and averaged over a number of

configurations before being diagonalized. A modified version

of the diagonalized Q-tensor, given by Ddiag = Qdiag + 1
3
I , is

used and has the eigenvalues λ1 � λ2 � λ3 and λ1 + λ2 +

λ3 = 1 from which the relevant Westin metrics can be de-

fined. The metric of most interest here is cl = λ1 − λ2, which

gives a measure of the local orientational order where cl = 1

corresponds to perfect order and cl = 0 to an isotropic state.

Defects are defined as regions with cl � 0.15. Preliminary

simulations confirmed that the analysis grid and threshold val-

ues employed were suitable to accurately detect the defects.

The local director can also be visualized, using stream

lines whose trajectory sweeps along the eigenvector field

corresponding to λ1, starting from random points chosen so

that the streams pass throughout the liquid crystalline region.

The visualizations were created using PARAVIEW 3.10.1 [62].

III. RESULTS AND DISCUSSION

A. Confined nematics and chiral nematics

with planar anchoring

For liquid crystals in cavities with planar anchoring, the

total topological charge at the surface is equal to χ , which is

zero for both toroidal and (infinite) cylindrical cavities. For

achiral nematics (ε∗
c = 0.00), the ground state in both types of

cavity is expected to be defect free. This is indeed the case,

as shown in Fig. 1, for all sizes of cylindrical and toroidal

cavities studied. For the cylinder, a defect-free configuration

is observed in which the director is parallel to the cylinder

axis throughout the cylinder [Fig. 1(a)] while for the toroid,

the director follows the major circumference of the torus

[Fig. 1(b)]. For the toroidal cavities, higher energy metastable

states are occasionally observed in which pairs of s = +1

and s = −1 defects form at the inner and outer surfaces

[Fig. 1(c)]. The probability of these defects forming depends

on the dimensions of the torus and on the cooling rate.

The director was found to follow the major circumference

throughout the volume in the lowest energy state of all toroidal

cavities investigated. The twisted director structure, as ob-

served experimentally by Pairam et al. [35] and investigated

theoretically by Koning et al. [51], was not observed. This

indicates that in all cases either the cavities investigated were

too slender (i.e., aspect ratio too large) to demonstrate the

twisted configuration or the ratio of elastic constants is too

close to 1. Due to the reasonably wide range of values of

aspect ratios investigated, it is probable that in this case

it is the ratio of elastic constants that is responsible for

the absence of the twisted director configuration. The ratio

κ = (K2 − K24)/K3 [35,51] is responsible for the spontaneous

twisting of the director with twisted configurations expected

for κ � 5r2
c /16r2

t . This reduces to 0.985 −K24/K3 in the case

of this model giving the upper bound for K24/K3 as 0.846.

The similarity in the elastic constants could again be due

to the lack of shape anisotropy in the basic particles. It has

also been suggested by Kulic [48] and later by Pedrini and

Virga [52] that the ratio K2/K3 is important for explaining

the presence of a twisted director configuration as, for many

mesogens, particularly chromonic systems have K2 < K3 and

the higher energy bend distortion around the torus is min-

imized by transforming to a lower energy twist distortion

instead. Again, the simulation results are also consistent with

this theory, as K2 ≈ K3 there is no energetic reason to form

the twisted director configuration.

To confirm that the untwisted director configuration is

favored for the achiral nematic inside a toroidal cavity, sim-

ulations were run in which a local field was added to perturb

the director into a twisted state. A local set of axes was

defined such that r is a vector between the point of interest

and the closest point on the major circumference, ŝ, is a unit

vector tangential to the major circumference of the torus and

t̂ (parallel to ŝ × r) is a unit vector tangential to the minor

circumference. A local field

Et = ε f

[

ŝ

(

1 − ξt

ri

rc

)

+ t̂

(

ξt

ri

rc

)]

(5)

is then applied to particle i, in which ε f is the field strength

and ξt is variable between 0 and 1; ri is the distance between

the particle and the major circumference. For ξt = 0, the

resulting director follows the major circumference throughout

the torus, whereas for ξt = 1, the director follows the major

circumference only at the center of the tubular volume (r = 0)

and twists as r tends towards the outer edge of the torus [see

Figs. 2(a) and 2(b)] in a double twist arrangement. A series

of simulations are then run in which the value of ξt is then

fixed while ε f is varied and the average energy, including the

aligning field, determined. A linear relationship is observed

on increasing ε f for all values of ξt [Fig. 2(c)], and so it

is straightforward to extrapolate back to zero field, ε f = 0,
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FIG. 2. Orientation of the aligning field in a torus of dimensions

r∗
t = 30, r∗

c = 20 when (a) ξt = 0.0 and (b) ξt = 1.0. Streamlines at

the center of the tube are colored red, then become green, then blue

as the surface is approached. (c) Average energy per particle as a

function of field strength ε f for ξt = 0.0; the line indicates the best

fit, with the extrapolation to zero field, ε f = 0.0. (d) Average energy

per particle, extrapolated to ε f = 0.0, as a function of the imposed

twist ξt .

to give a measure of the configurational energy when the

director is twisted but with the field turned off. A plot of

the average energy against the amount of twist ξt [Fig. 2(d)]

reveals that the minimum energy occurs for ξt = 0, i.e., the

untwisted state. Thus we can be certain that the untwisted

state is the ground state for this model. Similarly, the final

configurations with the director twist induced by the field are

found to become untwisted if further simulations are run with

ε f = 0, again indicating that the twisted director is not stable.

Although the achiral model nematic does not exhibit

the doubly twisted director configuration, a twisted director

configuration spontaneously forms for both cylindrical and

toroidal cavities for chiral models (ε∗
c �= 0.00), with the ob-

served twist increasing with ε∗
c . For the cylindrical cavity, the

director follows the cylinder axis at the center of the cylinder

[Figs. 3(a)–3(e)], as in the achiral nematic case. However, as

the distance from the center of the cylinder is increased, the

director twists away from the cylinder axis. For the highest

chirality (ε∗
c = 0.24) inside a cylinder of radius r∗

c = 16, the

director at the edge of the tube is becoming almost perpendic-

ular to that in the center; the angle is approximately 70°. Note

that if it was truly perpendicular, this would be equivalent to

a one quarter twist (through an angle of 90°). Since the pitch

length for this model is p∗ = 48, we might expect this rotation

in the director to occur for significantly narrower tubes. Thus

for the confined chiral nematic, the apparent pitch length is

larger than expected.

An analogous director configuration is observed in the

case of chiral nematics within toroidal cavities with planar

FIG. 3. Chiral nematics with planar anchoring inside a cylinder

of dimensions l∗ = 36, r∗
c = 16 with ε∗

c equal to (a) 0.00, (b) 0.06,

(c) 0.12, (d) 0.18, and (e) 0.24. A torus of dimensions r∗
t = 30, r∗

c =

20 with ε∗
c equal to (f) 0.06 and (g) 0.18.

anchoring, with the director at the center of the torus following

the major circumference and twisting away from this as the

surfaces are approached [Figs. 3(f) and 3(g)]. As expected, a

greater twist is observed for thicker toroids (larger r∗
c ) than

for thinner ones (smaller r∗
c ) although this is essentially inde-

pendent of the major circumference (r∗
t ). Thus the orientation

of the director at the surface is similar for both toroids and

cylinders of the same minor radius (and the same chirality

liquid crystal) and hence the bend of the torus has little effect.

B. Confined nematics and chiral nematics

with homeotropic anchoring

It is geometrically impossible to form an undistorted di-

rector configuration in a nematic liquid crystal inside a long

cylindrical or toroidal cavity when there is strong homeotropic

anchoring. The perpendicular surface alignment in a tubular

geometry forces the ground state to be either two s = +1/2

disclination lines parallel to the tubular axis, one s = +1

disclination line, or one s = +1 escaped defect. In the former

two cases, the director at any point is perpendicular to the

(local) tube axis. For the escaped configuration, the director is

perpendicular to the cylinder axis at the walls, but parallel to it

in the center of the tube. The s = +1 disclination line tends to

be found in narrow capillaries or close to the nematic-isotropic

transition, but is unstable with respect to two s = +1/2

disclination lines as the radius increases as the energy of a

disclination is proportional to s2 [63]. For large radii, the es-

caped director configuration is most stable; however, it is very

rarely observed, and instead a periodic array of defects with

partially escaped domains between the defects is frequently

observed [36,53,64,65]. Indeed, Ellis et al. [36] find either an

escaped radial or twisted escaped radial defect configuration

in nematic tori with 5CB and homeotropic anchoring.

For all simulations using the achiral nematic model (ε∗
c =

0.00) in cylinders or toroidal cavities with homeotropic an-

choring, the ground state was found to be the configuration

with two s = +1/2 disclination lines (Fig. 4). In the case of

cylindrically confined nematics with homeotropic anchoring
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FIG. 4. (a) An achiral nematic with homeotropic anchoring in-

side a cylinder of dimensions l∗ = 48, r∗
c = 16 and (b) inside a torus

of dimensions r∗
t = 30, r∗

c = 15. (c) A cut-through view of the torus,

showing the planarity of the disclination rings.

when ε∗
c > 0.00 the two s = +1/2 disclination lines twist

around the cylinder to preserve both the chiral nematic helical

twist and the homeotropic anchoring conditions (Fig. 5).

Similar defect configurations have been reported experimen-

tally for chiral nematic phases confined in capillaries [66,67].

Due to the periodic boundary conditions employed in these

simulations, it is only possible for the disclination lines to

form an integer number of half twists, ξ = n/2, where ξ is the

number of full twists and n is an integer. This ensures that the

director meets itself continuously at the boundary. Note that

the twist observed for the homeotropic anchoring is along

the axial direction of the cylinder, while for the previously

mentioned cylinders with planar anchoring it is in the radial

direction.

Preliminary simulations of cylindrical cavities in which the

chiral nematic was cooled from the isotropic phase found dif-

ferent amounts of twist for the same value of ε∗
c with different

random number seeds. The range of twists observed indicates

that there is a mismatch between the chosen tube length and

the (unknown) repeat distance. There are several possible

approaches to identify the repeat distance. For example, the

length of the tube could be varied, with a simulation run for

each length, and the average energy per particle plotted as a

FIG. 5. Representative configuration for chiral nematics with

homeotropic anchoring inside cylindrical cavities of dimensions l∗ =

96, r∗
c = 16 with (a) ξ = 0.0, (b) ξ = 0.5, (c) ξ = 1.0, and (d)

ξ = 1.5.

function of the length. Minima in the average energy would

occur when the tube length was equal to a half integer multiple

of the repeat distance with the energy increasing as the length

deviates from an optimal value. Jumps in the amount of twist

observed would also be expected as a function of length.

Alternatively, a fixed length cylinder could be used and the

angle at which the boundaries join used as a variable during

the simulation; again the system should reach an energy

minimum when the twist at the boundary satisfies the twist

required in the fixed length tube.

Here we take a slightly different approach based on ideal-

ized starting configurations based on a well-defined amount

of twist within the cylinder (Fig. 5) and vary the length of the

tube, or fix the length and vary the amount of twist. These

simulations are relatively efficient, since long equilibration

times to form the chiral nematic phase for each chiral model

(differing in ε∗
c ) are not necessary as we have well-defined

twisted configurations for which the average energy needs to

be determined. These simulations were necessarily run at a

lower temperature of T ∗ = 0.75T ∗
NI , as many of the higher

energy configurations were no longer stable at the higher

temperature of T ∗ = 0.9T ∗
NI and transformed into a more

stable neighboring state. Presumably at lower temperatures,

the thermal energy is not large enough to overcome the

barriers between the states. It is also important to note that,

for the chiral model used here, the bulk pitch length is found

to be independent of the temperature, which can be related

to the square-well nature of the potential [60] and therefore

the pitch lengths for the higher temperature data can be used

for comparison. We investigated two series, one with a fixed

r∗
c = 16 with l∗ = 24, 36, 48, 72, 96 [Figs. 6(a)], the other

with fixed l∗ = 48 for r∗
c = 12, 16, 20 [Figs. 6(b)] for all

values of ε∗
c = 0.00, 0.06, 0.12, 0.18, 0.24.

In the case of a fixed l∗ and r∗
c the amount of twist at

the interpolated minimum average energy can be estimated

by fitting a parabola to the data [Figs. 6(a) and 6(b)]. If two

different twist values have similar energies, it is likely that

they are either side of the optimal (but not possible) value;

indeed, this is why multiple values of the twist can be found on

cooling from the isotropic phase. Similarly, if the twist is fixed

and the length varied, the length at which the average energy

would have been a minimum can be estimated. The energy

differences, especially on varying the radius of the cylinder,

are relatively small and so quite a wide range of values are

needed to be able to estimate the minimum.

Both series investigated give similar values of the repeat

distance of the double helix as a function of ε∗
c , and the

repeat distance decreases as ε∗
c increases, in the same way that

the pitch of a chiral nematic phase decreases with increasing

chirality. The repeat distance was found to be 1.45× larger

than the bulk pitch length for all the different values of ε∗
c

studied [Fig. 6(c)]. Therefore it is clear that the homeotropic

anchoring and the presence of the disclination lines in the

cylinder weaken the effective chirality compared to in the

bulk. This increase in pitch length is comparable to the ex-

perimental findings of Lequeux and Kleman [67] who found

a twofold increase in pitch length in cholesterics confined

in capillaries. We did not observe any dependence of the

effective pitch length on r∗
c [Fig. 6(c)]. However, for all of

these systems the diameter of the tube is smaller than the bulk
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FIG. 6. (a) The average energy per particle as a function of ξ

for ε∗
c = 0.18 for fixed r∗

c = 16, l∗ = 48 (triangles, dashed line)

l∗ = 72 (circles, dotted line), and l∗ = 96 (squares, solid line).

(b) The average energy per particle as a function of ξ for ε∗
c = 0.18

for fixed l∗ = 48, r∗
c = 12(triangles, dashed line), r∗

c = 16 (circles,

dotted line) and r∗
c = 20 (squares, solid line). (c) The inverse of

the pitch (1/p∗) for the bulk chiral nematic (solid circles) and the

inverse of the repeat distance for cylindrically confined systems as

a function of chirality; data from all systems are investigated. The

open symbols correspond to the cylindrically confined nematics with

l∗ = 48 (triangles), 72 (squares), 96 (circles), and r∗
c = 16. The solid

line is a fit to the bulk pitch chiral nematic, while the dashed line is a

fit to the combined chiral nematic cases.

pitch length; with these off-lattice models it is not possible to

go to significantly large tube radii due to the large system sizes

that would be required.

We extend the idea from cylindrical cavities with

homeotropic anchoring to toroidal cavities. For a toroidal

cavity, the “length” of the tube (that is, the distance traveled

before the director has to be in phase with itself) is fixed

and equal to the major circumference. Therefore, as with

FIG. 7. Snapshots of the director field and disclination line(s) for

chiral nematics with homeotropic anchoring inside a toroidal cavity

of dimensions r∗
t = 30, r∗

c = 15 with ξ =(a) 0.0, (b) 0.5, (c) 1.0,

(d) 1.5, (e) 2.0, (f) 2.5, and (g) 3.0. (h) The average energy per particle

as a function of twist for ε∗
c = 0.00 to 0.24 (from top to bottom).

(i) The expected twist (solid circles) based on the bulk pitch length

(2πr∗
t /p∗) and the actual twist in the toroidal cavity (open symbols);

r∗
t = 12 (circles), 15 (squares), and 20 (triangles). The solid line is a

fit to the bulk pitch length case, while the dashed line is a fit to the

confined nematic cases.

the cylinder simulations, an integer number of half twists,

ξ = n/2, at the natural repeat distance may not fit exactly

into the toroidal cavity. Of course, frustration is more likely

when the major circumference is similar to or smaller than the

natural pitch of the double helix.

A number of preliminary simulations were run at T ∗ =

0.90T ∗
NI for different sized toroidal cavities and values of ε∗

c ,

and various chiral states were observed. In general, the larger

ε∗
c , the more twisted the disclination lines are. As for the fixed

length cylinders, a more systematic series of simulations was

then conducted at T ∗ = 0.75T ∗
NI , starting from well-defined

configurations for r∗
c = 10, 12, 15, 20 and the energy per par-

ticle is calculated. Representative configurations are shown in

Figs. 7(a)–7(g). Note that unlike the case of the cylinder, here

the circumference (and length) is fixed for a given r∗
t , and so

only the amount of twist is varied in the starting configura-

tions. Typical results for the average energy as a function of

twist are shown for different values of ε∗
c in Fig. 7(h). Clearly,

when ε∗
c = 0.00, the minimum occurs at zero twist, indicating

that the configuration with two disclination rings in the plane

of the torus is the ground state for the achiral model; if ξ = 0.5

or 1.0 then the elastic energy is increased. However, as the

chirality is increased, the minimum in average energy shifts

to larger twist values indicating that the ground state shifts

from the planar pair of disclination rings, where the director

has no twist around the circumference, to ξ = 0.5 in which a

single disclination line traverses the toroidal cavity twice.
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As ε∗
c continues to increase the lowest energy ξ also in-

creases, with whole integer values of ξ formed of two disclina-

tion rings and half integer values of a single disclination ring.

This dependence on ε∗
c means it should be possible to stabilize

any of the twisted metastable states by tailoring the chirality

of the chiral nematic [Fig. 7(i)]. Note that, as for the cylinders,

changing the minor radius rc appears to have no effect. As in

the case of cylindrical confinement, the actual twist is below

that expected from the bulk pitch length (2πr∗
t /p∗). Indeed,

the actual twist is reduced by a factor of 1.45 compared to

the expected value, in line with the value found for cylinders.

Note that the pitch length in the toroidal droplets is taken as

the lowest energy from a parabolic fit to the mean energy per

particle for 0 � n � 5 and as such it is not tied to half integer

values of ξ . In the case of a toroidal cavity with homeotropic

anchoring the splay elastic energy could be minimized by

twisting the nematic causing the effective pitch length to

deviate from that seen in the straight cylindrically confined

case. However, for all values of r∗
c considered here the same

effective pitch length was found.

IV. CONCLUSION

An off-lattice model has been used to investigate both achi-

ral and chiral nematics inside cylindrical and toroidal cavities

with either planar or homeotropic anchoring. For achiral ne-

matics with planar anchoring, a defect-free untwisted director

configuration is preferred. The twisted director configuration

previously observed experimentally [35] and predicted the-

oretically [48,51] was not observed here, likely due to the

similarity of K1, K2, K3 which were found to be approximately

equal in this model. Future work varying the Frank elastic

constant ratios is needed to observe the transition from an

untwisted to twisted director configuration which would allow

for the measurement of K24. Nevertheless, we are able to

provide an upper bound for the ratio K24

K3
of 0.846.

However, a twisted director configuration was observed for

chiral nematic systems, with the amount of twist observed

increasing with increasing molecular chirality. This twisted

director configuration can be observed for even the weakest

chirality and hence the longest bulk pitch length studied, even

though the pitch length is an order of magnitude larger than

the dimensions of the torus.

For cylindrical and toroidal cavities with an achiral nematic

with homeotropic anchoring, two s = +1/2 disclination lines

were observed that run parallel to the tubular axis. The use

of a chiral nematic causes these defect lines to twist about

the axis and the amount of twist in the disclinations can be

varied by varying the chirality of the nematic phase. Due to the

topology of the toroidal cavity, the amount of twist (ξ ) in the

director field when traveling around the major circumference

is necessarily a multiple of half integer twists so that the

director is continuous. This leads to the disclinations forming

torus knots or torus links, depending on whether the total twist

is half integer or integer. In the case of half integers, a single

disclination line is formed, which encircles the cavity twice

before joining to itself, producing torus knot structures such

as the trefoil or (ξ = 1.5) and cinquefoil (ξ = 2.5) knots. In

contrast, when ξ is an integer, two distinct disclination lines

form. In the simplest case of an achiral nematic, ξ = 0, the

ground state has disclinations that lie in the plane of the torus

and show no twist. However, with the introduction of chirality,

the pair of disclination lines twist around each other ξ times

forming linked circles and the disclinations can form linked

structures such as the Hopf link (ξ = 1) consisting of a pair

of circles linked once, a Solomon’s knot (ξ = 2) where the

pair of circles link twice, and so on. These findings highlight

the importance of the confinement geometry and boundary

conditions, demonstrating that more complex experimental

approaches previously reported [28,29] are not necessarily

required to controllably form knotted defect configurations.

The simulations suggest that a tunable chiral nematic is used

so that the chirality can be varied while the anchoring type

and strength remain essentially constant. Therefore we can

speculate that the most useful liquid crystal to use in such

experiments is an achiral liquid crystal doped with varying

amounts of a chiral dopant, to allow the chiral pitch to be

continuously tuned.
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